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Abstract. Here we consider a new class of skew logistic distribution as a generalized mixture of
the standard logistic and skew logistic distributions, and study some of its important aspects.
The tail behaviour of the distribution is compared with that of the skew logistic distribution
and a location-scale extension of the distribution is proposed. Further the maximum likelihood
estimation of the parameters of the extended class of distribution is attempted. The usefulness
of the proposed class of distribution is illustrated with the help of a data set.
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1 Introduction

The logistic distribution (LD) has received much attention in several areas of scientific research
especially in areas such as bioassay problems (Finney , 1952), study of income distributions (Fisk
, 1961), analysis of survival data (Plackett , 1959) and modelling of the spread of an innovation
(Oliver , 1969). A detailed account of the properties and applications of the LD is available
in Balakrishnan (1992). The LD is considered as an alternative to the normal distribution in
several practical occassions. Analogous to the skew normal distribution of Azzalini (1985),
Wahed and Ali (2001) introduced and studied the skew logistic distribution (SLD) through the
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following probability density function (p.d.f):

f1(x, β) =
2e−x

(1 + e−x)2(1 + e−βx)
, (1)

where x ∈ R = (−∞,+∞) and β ∈ R. Gupta and Kundu (2010) named the SLD with p.d.f
(1) as the “generalised logistic distribution (GLD)" and derived some of its basic properties.
Nadarajah (2009) proposed an extended form of this p.d.f as

f2(x, β, λ) =
2e(− x

β )

β(1 + e
(− x
β )

)2(1 + e
(− λx
β )

)
, (2)

in which x ∈ R, β > 0 and λ ∈ R. Clearly, when λ = 0, the p.d.f (2) reduces to the p.d.f of
the standard logistic distribution. Chakraborty et al. (2012) considered a new skew logistic
distribution (LS) with the following p.d.f, in which x ∈ R, α > 1 , λ ∈ R and β > 0:

f3(x;λ, α, β) =
[1 + {sin(λx/2β)}/α]e(− x

β )

β(1 + e
(− x
β )

)2
. (3)

Asgharzadeh et al. (2013) proposed a generalized skew logistic distribution (GSL) using
the type III generalized logistic distribution through the following p.d.f, in which x ∈ R, α > 0
and β ∈ R:

f4(x;α, β) = 2gα(x)Gα(βx), (4)

where

gα(x) =
1

B(α, α)
e−αx

(1 + e−x)2α

in which B(., .) is the beta function and

Gα(x) =
By(α, α)
B(α, α)

,

with y = (1 + e−x)−1, and By(., .) is the incomplete beta function.
Hazarika and Chakraborty (2014) considered another skew logistic distribution namely

the alpha skew logistic distribution(ASLG), which has the following p.d.f, in which x ∈ R and
α ∈ R:

f5(x;α) =
3{(1 − αx)2 + 1}e−x

{6 + (α2π2)}(1 + e−x)2 . (5)

A generalised version of the ASLG is also introduced by Hazarika and Chakraborty (2015).
But in practice, the data set may become more complex and possess shapes near to SLD, but
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having relatively more skewed shapes. To tackle such situations, we need more flexible skewed
models. So through this paper we consider a more flexible version of the SLD and named it
as the modified skew logisitic distribution (MSLD). The advantage of wider skewness range
of the proposed model is numerically illustrated in section 2 of the paper immediately after
the Corollary 2.3. The rest of the paper is organised as follows. In section 2, we present the
definition and some important properties of the MSLD and in section 3, we define the location-
scale extension of the MSLD and discuss the maximum likelihood estimation of the parameters
of the distribution, along with a numerical data illustration. In section 4, a simulation study is
conducted to test the efficiency of the MLEs of MSLD.

We need the following integral representations in the sequel, among them (6) and (7) are
from Gradshteyn and Ryzhik (2000, pp. 315 and 340) and (8) is from Prudnikov et al. (1986,
pp. 300), in which 2F1(a, b; c;θ) denotes the Gauss hypergeometric function. For any positive
reals u,v and w, and for any positive integer n, we have

u∫
0

xµ−1dx
(1 + βx)ν

=
uµ

µ
2F1(ν, µ; 1 + µ;−βu), |arg(1 + βµ)| < π; Re(µ) > 0, (6)

∞∫
0

xne−µxdx =
n!
µn+1 , Re(µ) > 0 (7)

and
w∫

0

xα−1dx
(x + w)2 =

wα−2

2
− (α − 1)wα−2δ(α), Re(α) > 0, (8)

in which

δ(α) =
1
2

[Ψ(
1 + α

2
) −Ψ(

α
2

)]with Ψ(a) =
d logΓa

da
. (9)

2 Definition and properties

Here we present the definition of the MSLD and discuss some of its important properties.

Definition 2.1. A random variable X is said to follow the modified skew logistic distribution
(MSLD) if its p.d.f is of the following form, in which x ∈ R, α ≥ −1 and β ∈ R.

f (x;α, β) =
2
α + 2

e−x

(1 + e−x)2 [1 +
αe−βx

1 + e−βx
] (10)

A distribution with p.d.f (10) hereafter we denoted as the MSLD(α, β). Clearly, when α = 0
and/or β = 0 the p.d.f (10) reduces to the p.d.f of the LD. When α = −1, the p.d.f (10) reduces
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to the p.d.f of the SLD as given in (2) with β = 1 and λ = β. The p.d.f plots of MSLD(α, β) for
particular choices of α and β are given in figures 1 to 3. From these figures it is seen that the
behaviour of skewness depends on the value of α.

Figure 1: Plots of p.d.f of MSLD(α, β) for different values of α and β

Figure 2: Plots of p.d.f of MSLD(α, β) for different values of αwith β = 5

Due to the complexity in the direct integration of (10), we derive certain single and double
series representation of the p.d.f, c.d.f, characterestic function and moments of the MSLD(α, β)
through the following results, those we derived by an analogous procedure employed to obtain
similar representations in case of the SLD of Nadarajah (2009).

In order to obtain series representations of the p.d.f (10), we need the following Taylor series
expansion.

(1 + e−βx)−1 =


eβx

∞∑
j=0

(−1
j
)
eβ jx, i f x < 0

∞∑
j=0

(−1
j
)
e−β jx, i f x > 0

(11)

where, (
−x
y

)
=

(−1)y(x + y − 1)!
y!(x − 1)!

,
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Figure 3: Plots of p.d.f of MSLD(α, β) for different values of βwith α = 2

which can be computed easily with the help of R softwares. In the light of (11), we have the
following single series representation of the p.d.f f (x;α, β) of the MSLD(α, β).

f (x;α, β) =


2
α+2 [ e−x

(1+e−x)2 +
α
∞∑
j=0

(−1
j )e(−1+β j)x

(1+e−x)2 ], i f x < 0

2
α+2 [ e−x

(1+e−x)2 +
α
∞∑
j=0

(−1
j )e−(1+β+β j)x

(1+e−x)2 ], i f x > 0

(12)

On expanding the terms (1+ e−x)−2 in (12), we obtain the following double series representation
of the p.d.f of the MSLD(α, β).

f (x;α, β) =


2
α+2 [

∞∑
k=0

(−2
k
)
e(1+k)x+α

∞∑
j=0

∞∑
k=0

(−1
j
)(−2

k
)
e(1+β j+k)x], i f x<0

2
α+2[

∞∑
k=0

(−2
k
)
e−(1+k)x+α

∞∑
j=0

∞∑
k=0

(−1
j
)(−2

k
)
e−(1+β+β j+k)x], i f x>0

(13)

Consequently, it is possible to develop a single series as well as double series representations
of the cumulative distribution function (c.d.f) of the MSLD(α, β), those we present through the
following results.

Proposition 2.1. The c.d.f of the MSLD(α, β) with p.d.f (10) has the following single series representa-
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tion, for any x ∈ R.

F(x)=



2
α+2 [ 1

1+e−x + α
∞∑
j=0

(−1
j
) e(1+β j)x

1+β j 2F1(2, 1 + β j; 2 + β j;−ex)], i f x < 0

2
α+2 [ 1

2 + α
∞∑
j=0

(−1
j
)
( 1

2 − β j δ(β j + 1))], i f x = 0

F(0) + 2
α+2 [ 1

1+e−x − 1
2

+α
∞∑
j=0

(−1
j
)
( 1

2 − (β + β j) δ(1 + β + β j) − φ j(x; β))], i f x > 0

(14)

in which

φ j(x; β) =
e−(1+β+β j)x

(1 + β + β j) 2F1(2, 1 + β + β j; 2 + β + β j;−e−x).

Proof. By definition, for x < 0, the c.d.f of the MSLD(α, β) has the following form, in the light
of (12).

F(x) =
2
α + 2

[

x∫
−∞

e−x

(1 + e−x)2 dx + α
∞∑
j=0

(
−1
j

) x∫
−∞

e(−1+β j)x

(1 + e−x)2 dx]

=
2
α + 2

[
1

1 + e−x + α
∞∑
j=0

(
−1
j

) x∫
−∞

e(−1+β j)x

(1 + e−x)2 dx] (15)

On substituting z = ex in the second term of (15), we get

F(x) =
2
α + 2

[
1

1 + e−x + α
∞∑
j=0

(
−1
j

) ex∫
0

zβ j

(1 + z)2 dz]. (16)

Now, by applying (6) in (16), we have

F(x) =
2

(α + 2)
[

1
1 + e−x + α

∞∑
j=0

(
−1
j

)
ex(β j+1)

β j + 1 2F1(2, 1 + β j; 2 + β j;−ex)] (17)

For x > 0, the c.d.f of the MSLD(α, β) can be written as given below, by using (12).

F(x) = F(0) +
2
α + 2

[

x∫
0

e−x

(1 + e−x)2 dx + α
∞∑
j=0

(
−1
j

) x∫
0

e−(1+β+β j)x

(1 + e−x)2 dx]

= F(0) +
2
α + 2

[
1

1 + e−x −
1
2
+ α

∞∑
j=0

(
−1
j

) ∫ x

0

e−(1+β+β j)x

(1 + e−x)2 dx] (18)
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On substituting z = e−x in the second term of (18) to get

F(x) = F(0) +
2
α + 2

[
1

1 + e−x −
1
2
+ α

∞∑
j=0

(
−1
j

) 1∫
e−x

zβ+β j

(1 + z)2 dz]

= F(0) +
2
α + 2

[
1

1 + e−x −
1
2
+ α

∞∑
j=0

(
−1
j

)
(

1∫
0

zβ+β j

(1 + z)2 dz

−
e−x∫

0

zβ+β j

(1 + z)2 dz)] (19)

on splitting the integral. By applying (6) and (8) in (19) we obtain the following.

F(x) = F(0) +
2
α + 2

[
1

1 + e−x −
1
2

+ α
∞∑
j=0

(
−1
j

)
(
1
2
− (β + β j) δ(1 + β + β j) − φ j(x; β))] (20)

in which

φ j(x; β) =
e−(1+β+β j)x

(1 + β + β j) 2F1(2, 1 + β + β j; 2 + β + β j;− e−x).

Repeating the above type of arguments with x = 0 yields the following.

F(0) =

∫ 0

−∞
f (y)dy

=
2
α + 2

[

0∫
−∞

e−x

(1 + e−x)2 dx + α
∞∑
j=0

(
−1
j

) 0∫
−∞

e−(1−β j)x

(1 + e−x)2 dx]

=
2
α + 2

[
1
2
+ α

∞∑
j=0

(
−1
j

)
[
1
2
− β j δ(1 + β j)]] (21)

Hence the proof follows from (17), (20) and (21). �

Proposition 2.2. The c.d.f of the MSLD(α, β) with p.d.f (10) has the following double series represen-
tation, for any x ∈ R.

F(x)=


2
α+2 [

∞∑
k=0

(−2
k
) e(1+k)x

(1+k) + α
∞∑
j=0

∞∑
k=0

(−1
j
)(−2

k
) e(1+β j+k)x

(1+β j+k) ], i f x < 0

1 − 2
α+2 [

∞∑
k=0

(−2
k
) e−(1+k)x

(1+k) + α
∞∑
j=0

∞∑
k=0

(−1
j
)(−2

k
) e−(1+β+β j+k)x

(1+β+β j+k) ], i f x ≥ 0

(22)
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Proof. By definition, the c.d.f of the MSLD(α, β) takes the following form, for x < 0 in the light
of (13).

F(x) =
2
α + 2

[
∞∑

k=0

(
−2
k

) x∫
−∞

e(1+k)xdx+α
∞∑

k=0

∞∑
j=0

(
−1
j

)(
−2
k

) x∫
−∞

e(1+β j+k)xdx]

=
2
α + 2

[
∞∑

k=0

(
−2
k

)
e(1+k)x

(1 + k)
+ α

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e(1+β j+k)x

(1 + β j + k)
] (23)

In a similar way, by using (13), the c.d.f of the MSLD(α, β) can be written as given below, for x >
0

F(x) = 1 −
∞∫

x

f (x)dx

= 1 − 2
α + 2

[
∞∑

k=0

(
−2
k

) ∞∫
x

e−(1+k)xdx

+ α
∞∑

k=0

∞∑
j=0

(
−1
j

)(
−2
k

) ∞∫
x

e−(1+β+β j+k)xdx]

= 1 − 2
α + 2

[
∞∑

k=0

(
−2
k

)
e−(1+k)x

(1 + k)

+ α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
e−(1+β+β j+k)x

(1 + β + β j + k)
] (24)

Thus (23) and (24) gives (22). With this c.d f we can easily evaluate the probabilites using
software such as mathcad, matlab, R etc. �

Corollary 2.1. When α = −1 and β = λ in (22) we get the c.d.f of SLD with β = 1.

Proposition 2.3. The single series representation of the characterestic functionΦX(t) of the MSLD(α, β)
with p.d.f (12) is the the following, for any t ∈ R and i =

√
−1.

ΦX(t) =
2
α + 2

[B(1 + it, 1 − it) + α
∞∑
j=0

(
−1
j

)
ξ(t, β)], (25)

in which B(1 + it, 1 − it) is the beta function and

ξ(t, β) = 1 − (β j + it) δ(1 + β j + it) − (β + β j − it) δ(1 + β + β j − it)

with δ(a) is as defined in (9).
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Proof. Let X follows the MSLD(α, β) with p.d.f (12). Then by the definition of characterestic
function, we have the following, for any t ∈ R and i =

√
−1.

Φx(t) = E(eitx)

= 2
α+2 [

0∫
−∞

e(it−1)x

(1+e−x)2 dx+α
∞∑
j=0

(−1
j
) 0∫
−∞

e−(1−β j−it)x

(1+e−x)2 dx+

∞∫
0

e(it−1)x

(1+e−x)2 dx + α
∞∑
j=0

(−1
j
) ∞∫

0

e−(1+β+β j−it)x

(1+e−x)2 dx]

(26)

Combining the first and third integrals (26) reduces to

Φx(t) =
2
α + 2

(I1 + I2 + I3), (27)

in which

I1 =

∞∫
−∞

e(it−1)x

(1 + e−x)2 dx, (28)

I2 = α
∞∑
j=0

(
−1
j

) 0∫
−∞

e−(1−β j−it)x

(1 + e−x)2 dx (29)

and

I3 = α
∞∑
j=0

(
−1
j

) ∞∫
0

e−(1+β+β j−it)x

(1 + e−x)2 dx. (30)

On substituting u = (1 + e−x)−1 in (28) we have

I1 =

1∫
0

uit(1 − u)−itdu

= B(1 + it, 1 − it) (31)

If we put z = ex in (29) and applying (8) we have

I2 = α
∞∑
j=0

(
−1
j

) 1∫
0

zβ j+it

(1 + z)2 dz

=
1
2
− (β j + it) δ(1 + β j + it) (32)
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If we put v = e−x in (30) and applying (8), we get

I3 = α
∞∑
j=0

(
−1
j

) 1∫
0

vβ+β j−it

(1 + v)2 dv

=
1
2
− (β + β j − it) δ(1 + β + β j − it). (33)

Now substituting (31), (32) and (33) in (27) yields (25). �

Proposition 2.4. The double series representation of the characteristic function ΦX(t) of MSLD(α, β)
with p.d.f (13) is the the following, for t ∈ R, i =

√
−1, Re(1 + k − it) > 0 and

Re(1 + β + β j + k − it) > 0.

ΦX(t) =
2
α + 2

[
∞∑

k=0

(
−2
k

)
(

1
1 + k + it

+
1

1 + k − it
)

+α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
(

1
1 + β j + k + it

+
1

1 + β + β j + k − it
)], (34)

Proof. By using the double series representation (13), we have

ΦX(t) =
2
α + 2

[
∞∑

k=0

(
−2
k

)
(

0∫
−∞

e(1+k+it)xdx +

∞∫
0

e−(1+k−it)xdx)

+α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
(

0∫
−∞

e(1+β j+k+it)xdx+

∞∫
0

e−(1+β+β j+k−it)xdx)],

which implies (34) by evaluating the integrals. �

Next we obtain an expression for nth raw moments of the MSLD through the following
result by utilising the double series representation of the p.d.f (10).

Proposition 2.5. The nth raw moment µ′n of the MSLD(α, β) with p.d.f (10) is the following, for n > 0

µ′n =



2αn!
α+2 [

∞∑
j=0

(−1) j{Ω(−1,n, β) +Ω∗(−1,n, β)}], i f n is odd

2n!
α+2

[
2(1 − 21−n)ζ(n)+

α
∞∑
j=0

(−1) j{Ω(−1,n, β) +Ω∗(−1,n, β)}], i f n is even

(35)
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Proof. By definition,

µ′n =

∞∫
−∞

xn f (x)dx

=
2
α + 2

[
∞∑

k=0

(
−2
k

) 0∫
−∞

xne(1+k)xdx

+ α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

) 0∫
−∞

xne(1+β j+k)xdx

+

∞∑
k=0

(
−2
k

) ∞∫
0

xne−(1+k)xdx

+ α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

) ∞∫
0

xne−(1+β+β j+k)xdx] (36)

which implies the following through evaluating the integrals by applying product rules of
integration in the first two terms of (36) and using (7) in its last two terms.

µ′n =
2
α + 2

[
∞∑

k=0

(
−2
k

)
(−1)nn!

(1 + k)n+1 + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
(−1)nn!

(1 + β j + k)n+1

+

∞∑
k=0

(
−2
k

)
n!

(1 + k)n+1 + α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
n!

(1 + β + β j + k)n+1 ] (37)

When n is odd, since the sum of the first and third terms of (37) is zero, we get the following.

µ′n =
2αn!
α + 2

∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
[

1
(1 + β + β j + k)n+1 +

(−1)n

(1 + β j + k)n+1 ]

=
2αn!
α + 2

[
∞∑
j=0

(−1) j{Ω(−1, n, β) +Ω∗(−1, n, β)}] (38)

where

Ω(−1, n, β) = Φ(−1, n + 1, 1 + β + β j) + (−1)nΦ(−1, n + 1, 1 + β j)

and

Ω∗(−1, n, β) = Φ∗(−1, n + 1, 1 + β + β j) + (−1)nΦ∗(−1, n + 1, 1 + β j),
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in which Φ(z, s, b) and Φ∗(z, s, b) are the Lerch function and generalised Lerch functions respec-
tively.
When n is even, we obtain the following by combining the first and third terms of (37).

µ′n =
2n!
α + 2

[2
∞∑

k=0

(−2
k
)

(1 + k)n+1+

α
∞∑
j=0

∞∑
k=0

(
−1
j

)(
−2
k

)
(

1
(1 + β + β j + k)n+1 +

1
(1 + β j + k)n+1 )]

=
2n!
α + 2

[2(1 − 21−n)ζ(n)

+ α
∞∑
j=0

(−1) j(Ω(−1,n, β) +Ω∗(−1,n, β))] (39)

Thus (38) and (39) together implies (35). �

Corollary 2.2. Differentiation of the characteristic function ΦX(t) given in (34) also yields the
same expression for the nth order raw moments of MSLD as in (35).

Corollary 2.3. When α = −1 and β = λ in (35) we get the expression for raw moments of the SLD
with β = 1.

By using some mathematical softwares such as MATHCAD, MATHEMATICA and R one
can compute the moments of any order. The plots of skewness and kurtosis for varying values
of α and β are obtained in Figure 4 to Figure 7. Tables showing the coefficient of skewness
and kurtosis for MSLD for particular values of its parameters are included in Appendix B. We
have presented the computed values of skewness for positive values of β only, since when β is
negative the corresponding values takes opposite sign with same magnitude. Thus, from Table
3 it is evident that the skewness varies from -2.1 to 2.1, which is a wider range of skewness
measure compared to those models of Wahed and Ali (2001), Nadarajah (2009) or that of
Hazarika and Chakraborty (2014). Thus the proposed skew logistic model can be considered
as a more flexible model useful for studying asymmetric data sets, compared to the above
mentioned existing models
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Figure 4: Skewness of MSLD(α, β) for different values of α for β =-10,...,10

Figure 5: Skewness of MSLD(α, β) for different values of β for α =-1,...,200

Proposition 2.6. If X1 ∼MSLD(α, β) and X2 ∼ SLD(λ, γ), we have the following.
i. For λ > 0 and 0 < γ < 1 , X1 has thicker tail compared to X2.
ii. For λ > 0 and γ > 1 , X1 has thinner tail compared to X2.
iii. For λ < 0 and 0 < γ < 1, X1has thicker tail compared to X2.
iv. For λ < 0 and γ > 1 and λ + γ − 1 >(<) 0 , X1 has thinner tail than X2.

Proof. The tail behaviour of two distributions can be compared by taking the limiting ratio (LR)
of their density (Tse , 2009). Faster the ratio approaches to zero(infinity) thinner(thicker) will
be the tail of the numerator density compared to the denominator density. The limiting ratio
of densities of random variables X1 ∼MSLD(α, β) and X2 ∼ SLD(λ, γ) defined as

LR = lim
x→∞

fX1 (x)
fX2 (x)

= lim
x→∞

2
(α+2)

e−x

(1+e−x)2 (1 + αe−βx
1+e−βx )

2e−
x
γ

γ(1+e−
x
γ )2(1+e−

λx
γ )

= lim
x→∞

γ

α + 2
[
1 + e

−x
γ

1 + e−x ]2[
1 + (1 + α)e−βx

1 + e−βx
]e−x(1− 1

γ )[1 + e
−λx
γ ] .
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Figure 6: Kurtosis of MSLD(α, β) for different values of α for β =-10,...,10

Figure 7: Kurtosis of MSLD(α, β) for different values of β for α =-1,...,10

(i) For λ > 0 and 0 < γ < 1, since

lim
x→∞

e−x(1− 1
γ ) = ∞

and

lim
x→∞

(1 + e−
λx
γ ) = 1,

we have

LR = lim
x→∞

γ

α + 2
[
1 + e

−x
γ

1 + e−x ]2[
1 + (1 + α)e−βx

1 + e−βx
]e−x(1− 1

γ )[1 + e
−λx
γ ]

→∞ as x→∞

Thus, for λ > 0 and 0 < γ < 1, X1 has thicker tail than X2.
(ii) For λ > 0 and γ > 1, since

lim
x→∞

e−x(1− 1
γ ) = 0

and

lim
x→∞

(1 + e−
λx
γ ) = 1,
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we have

LR = lim
x→∞

γ
α+2 [ 1+e

−x
γ

1+e−x ]2[ 1+(1+α)e−βx

1+e−βx ]e−x(1− 1
γ )[1 + e

−λx
γ ]

→ 0 as x→∞
.

Thus, for λ > 0 and γ > 1, X1 has thinner tail than X2.
(iii) For λ < 0 and 0 < γ < 1, since

lim
x→∞

ex( 1
γ−1) = ∞

and

lim
x→∞

(1 + e−
λx
γ ) = ∞,

we have

LR = lim
x→∞

γ
α+2 [ 1+e

−x
γ

1+e−x ]2[ 1+(1+α)e−βx

1+e−βx ]e−x(1− 1
γ )[1 + e

−λx
γ ]

→∞ as x→∞.

Thus, for λ < 0 and 0 < γ < 1, X1 has thicker tail than X2.
(iv) For λ < 0 , γ > 1 and λ + γ − 1 > (<)0, since

lim
x→∞

e−x(1− 1
γ ) = 0

lim
x→∞

(1 + e−
λx
γ ) = ∞

and

lim
x→∞

e−
x(λ+γ−1)
γ = 0(∞),

we have

LR = lim
x→∞

β
α+2 [ 1+e

−x
β

1+e−x ]2[ 1+(1+α)e−βx

1+e−βx ]e−x(1− 1
β )[1 + e

−λx
β ]

→ 0 as x→∞
.

Thus for λ < 0, β > 1 and λ + γ − 1 > (<)0, X1 has thinner tail than X2.
�
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3 Location scale extension and Maximum likelihood estima-
tion

In this section we define an extended form of the MSLD(α, β) by introducing the location
parameter µ and scale parameter σ in its p.d.f and discuss the maximum likelihood estimation
of the parameter of the location scale extended form of the MSLD(α, β). We put the definition
of this extended form as follows:

Definition 3.1. Let Z follows the MSLD(α, β) with p.d.f (10). Then for any µ ∈ R and σ > 0, the
distribution of X = µ+σZ is called "the extended MSLD" and its p.d.f takes the following form,
in which Z ∈ R, α ≥ −1 and β > 0.

f (x, µ, σ;α, β) =
2
α + 2

e−
(x−µ)
σ

σ(1 + e−
(x−µ)
σ )2

[1 +
αe

−β(x−µ)
σ

1 + e
−β(x−µ)
σ

] (40)

A distribution with p.d.f (40) hereafter we denoted as EMSLD(µ, σ, α, β).

Next, we discuss the maximum likelihood estimation of EMSLD(µ, σ, α, β). Let X1,X2, . . . ,Xn
be a random sample from a population having the
EMSLD(µ, σ, α, β) with p.d.f (40). The log likelihood fumction l = ln L(µ, σ, α, β) of the sample is
the following,

l = n ln 2 − n ln(α + 2) − n ln σ − 1
σ

n∑
i=1

(xi − µ) − 2
n∑

i=1

ln[1 + e
−(xi−µ)
σ ]

+

n∑
i=1

ln[1 +
αe

−β(xi−µ)
σ

1 + e
−β(xi−µ)
σ

] (41)

On differentiating (41) with respect to the parameters µ, σ, α and β and then equating to
zero, we obtain the following likelihood equations, in which zi =

xi−µ
σ and Λi j(x;µ, σ;α, β) =

[1 + (1 + α) je−βzi ]−1.

n=2
n∑

i=1

e−ziΛi0(x;µ, σ, α, 1)−αβ
n∑

i=1

e−βziΛi0(x;µ, σ, α, β)Λi1(x;µ, σ, α, β), (42)

n
α + 2

=

n∑
i=1

e−βziΛi1(x;µ, σ, α, β), (43)

nσ =
n∑

i=1

(xi − µ) − 2
n∑

i=1

(xi − µ)e−ziΛi0(x;µ, σ, α, 1)



A Flexible Class of Skew Logistic Distribution 87

+αβ
n∑

i=1

(xi − µ)Λi0(x;µ, σ, α, β)Λi1(x;µ, σ, α, β) (44)

n∑
i=1

(xi − µ)e−βzi

Λi0(x;µ, σ, α, β)Λi1(x;µ, σ;α, β)
= 0, (45)

On solving the system of equations (42) - (45) with the help of some mathematical softwares
such as MATLAB, MATHCAD, MATHEMATICA, R etc. one can obtain the maximum likeli-
hood estimates (MLE) of the parameters of the EMSLD(µ, σ, α, β). Next we obtain the Fisher
information matrix based on the likelihood equations as follows,

I =
−1
n

((Ii j))4×4, (46)

in which

I11 = E(
∂2l
∂µ2 ), I12 = E(

∂2l
∂µ∂σ

), I13 = E(
∂2l
∂µ∂α

), I14 = E(
∂2l
∂µ∂β

)

I21 = E(
∂2l
∂σ∂µ

), I22 = E(
∂2l
∂σ2 ), I23 = E(

∂2l
∂σ∂α

), I24 = E(
∂2l
∂σ∂β

)

I31 = E(
∂2l
∂α∂µ

), I32 = E(
∂2l
∂α∂σ

), I33 = E(
∂2l
∂α2 ), I34 = E(

∂2l
∂α∂β

)

I41 = E(
∂2l
∂β∂µ

), I42 = E(
∂2l
∂β∂σ

), I43 = E(
∂2l
∂β∂α

), I44 = E(
∂2l
∂β2 )

The expressions for Ii j’s are included in Appendix A.
For numerical illustration, we consider the variable y1 of the data set taken from Anthony
(2004), Table A.15, page 590. We obtain the MLEs of the parameters of the EMSLD(µ, σ, α, β) by
using the R software. The initial values are obtained by equating the first two raw moment of
the
EMSLD(µ, σ, α, β) with the corresponding sample raw moments. Kolmogrov-Smirnov statistic
(KSS) value and certain information measures such as Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Consistent Akaike Information Criterion (CAIC) and
Hannan Quinn Information Criterion (HQC) values are computed for comparing the model
EMSLD(µ, σ, α, β) with the existing models - LD(µ, σ), SLD(µ, σ, β) of Nadarajah (2009), LS(µ, σ, β1, β2)
of Chakraborty et al. (2012), ASLG(µ, σ, β) of Hazarika and Chakraborty (2014) and GSL(µ, σ, α, β)
of Asgharzadeh et al. (2013). The numerical results obtained are summarised in Table 1. From
Table 1 it is clear that EMSLD(µ, σ, α, β) is more appropriate to the data set, compared to the
other existing models. The empirical cumulative distribution of the data set is plotted along
with the corresponding c.d.fs of each model in figure 8 also support the suitability of the
EMSLD(µ, σ, α, β) to the data set compared to other models.
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Table 1: Estimated values of the parameters with the corresponding KSS, AIC , BIC,
CAIC and HQC values.

Distribution: LD SLD Ls ASLG GSL EMSLD
(µ, σ) (µ, σ, β) (µ, σ, β1, β2) (µ, σ, β) (µ, σ, α, β) (µ, σ, β, α)

µ̂ 3.152 7.329 4.033 5.102 7.107 7.231
σ̂ 2.494 3.569 2.493 2.232 0.209 3.516
β̂ - -8.448 - 0.298 -8.367 102.797
β̂1 - - -10.518 - - -
β̂2 - - 1.968 - - -
α̂ - - - - 0.045 81.703

KSS 0.153 0.135 0.206 0.141 0.117 0.094
p-value 0.037 0.089 0.002 0.067 0.190 0.439

AIC 992.396 926.494 981.372 980.300 910.507 906.800
BIC 998.667 935.902 993.915 989.707 923.050 919.343

CAIC 1000.667 938.902 997.915 992.707 927.050 923.343
HQC 994.941 930.311 986.462 984.117 915.597 911.889

4 Simulation

In order to assess the efficiency of the MLE of the parameters of EMSLD with p.f.d f (·), in this
section, we have conducted a brief simulation study. In order to simulate values of a random
variable Y with p.d.f f (·), we adopt the following procedure based on the acceptance/rejection
method.
Step 1. Simulate X=x from the p.d.f f1 of the standard logistic distribution
Step 2. Generate U, an independent uniform random variable on (0, 1) and f (x)

f1(x) < c , for all x.

Step 3. If U ≤ f (x)
c f1(x) , then accept Y = X otherwise go to step 1. Here c is is the constant such

that sup
x
{ f (x)

f1(x) } ≤ c.

By applying the above procedure we have carried out a simulation study based on the following
set of parameters of the EMSLD.
µ=7.231, σ= 3.516, α=81.703 and β =102.797. The computed values of the bias and mean square
error(MSE) corresponding to sample sizes 100, 200, 300 and 500 respectively are given in Table 2.
From the table it can be seen that both the absolute bias and MSEs in respect of each parameters
of the MSLD are in decreasing order as the sample size increases.
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Figure 8: Empirical distribution of the data set along with the fitted c.d.fs

Table 2: Bias and Mean Square Error(MSE) within brackets of the simulated data set.
sample size µ σ α β

100 0.223 -0.172 0.738 0.974
(0.653) (0.031) (0.654) (0.949)

200 -0.162 -0.143 -0.164 0.941
(0.042) (0.026) (0.143) (0.887)

300 0.108 0.073 -0.131 0.720
(0.034) (0.010) (0.065) (0.519)

500 0.021 -0.005 -0.078 0.206
(0.008) (0.007) (0.041) (0.247)
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Appendix A

We obtain the elements of the Fisher information matrix (46) as given below.

I11 =
−2n
σ2 J1 +

nαβ2

σ2 J2 −
nαβ2(1 + α)
σ2 J3,

I12 =
−n
σ2 −

2n
σ2 (J4 − J1 − J5) +

nαβ2

σ2 J6 −
nαβ
σ2 J2
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−
nαβ(2 + α)
σ2 J7 −

nαβ(1 + α)
σ2 J3 −

nαβ2(1 + α)
σ2 J8,

I13 =
nβ
σ

J9,

I14 =
−nβ
σ

J6 +
nα
σ

J2 +
nα(2 + α)
σ

J7 +
nα(1 + α)
σ

J3 +
nαβ(1 + α)
σ

J8,

I22 =
n
σ2 −

2nE(Z)
σ2 +

2n
σ2 J10 +

4n
σ2 (J4 + J11) + nαβ2 J12 + nαβ2(1 + α)J13,

I23 =
nβ
σ

J14,

I24 =
nα
σ

J6 −
nαβ
σ

J12 +
nα(2 + α)
σ

J15 +
nαβ(1 + α)
σ

J13 +
nα(1 + α)
σ

J8,

I33 =
n

(2 + α)2 − nJ16,

I34 = −nJ14,

I44 = nαJ12 − nα(1 + α)J13,

in which Z = X−µ
σ ,

J1 = E(
e−z

(1 + e−z)2 ), J2 = E(
e−βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
),

J3 = E(
e−3βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
), J4 = E(

ze−z

(1 + e−z)2 ),

J5 = E(
e−2z

(1 + e−z)2 ), J6 = E(
ze−βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
),

J7 = E(
e−2βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
), J8 = E(

ze−3βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
),

J9 = E(
e−βz

(1 + (1 + α)e−βz)2
), J10 = E(

z2e−z

(1 + e−z)2 ),

J11 = E(
ze−2z

(1 + e−z)2 ), J12 = E(
z2e−βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
),

J13 = E(
z2e−3βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
), J14 = E(

ze−βz

(1 + (1 + α)e−βz)2
),

J15 = E(
ze−2βz

(1 + (1 + α)e−βz)2(1 + e−βz)2
), J16 = E(

e−2βz

(1 + (1 + α)e−βz)2
).

Note that the expectations can be computed numerically with the help of mathematical soft-
wares such as MATHEMATICA, MATLAB, MATHCAD, R etc.
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A
ppendix

BTable
3:C

oeffi
cientofSkew

ness
and

K
urtosis

ofM
SLD

for
varying

values
of
α

and
β

C
oeffi

cientofSkew
ness

C
oeffi

cientofK
urtosis

β
0

5
10

50
100

150
200

0
5

10
50

100
150

200
α-0.8

0.0000
-0.0037

-0.0065
-0.0203

-0.0086
-0.0088

-0.0089
1.1997

2.4819
2.6016

2.6610
2.6747

2.6815
2.6854

-0.5
0.0000

-0.0154
-0.0186

-0.0203
-0.0207

-0.0209
-0.0210

1.1997
1.5001

1.5223
1.5331

1.5356
1.5368

1.5375
0

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
1.1997

1.1995
1.1995

1.1995
1.1995

1.1995
1.1995

2
0.0000

0.0194
0.0247

0.0275
0.0281

0.0284
0.0286

1.1997
1.8978

1.9544
1.9821

1.9885
1.9916

1.9934
4

0.0000
0.0037

0.0065
0.0082

0.0086
0.0088

0.0089
1.1997

2.4819
2.6016

2.6610
2.6747

2.6815
2.6854

6
0.0000

-0.0026
-0.0013

-0.0008
-0.0007

-0.0006
-0.0006

1.1997
2.8323

3.0002
3.0844

3.1038
3.1135

3.1191
8

0.0000
-0.0260

-0.0228
-0.0213

-0.0209
-0.0208

-0.0207
1.1997

3.0460
3.2493

3.3520
3.3758

3.3877
3.3945

10
0.0000

-0.0674
-0.0655

-0.0645
-0.0643

-0.0642
-0.0641

1.1997
3.1802

3.4098
3.5264

3.5535
3.5670

3.5748
12

0.0000
-0.1198

-0.1218
-0.1226

-0.1228
-0.1230

-0.1230
1.1997

3.2667
3.5159

3.6431
3.6727

3.6875
3.6959

14
0.0000

-0.1779
-0.1855

-0.1892
-0.1901

-0.1906
-0.1908

1.1997
3.3232

3.5873
3.7227

3.7542
3.7700

3.7790
16

0.0000
-0.2380

-0.2526
-0.2599

-0.2616
-0.2625

-0.2630
1.1997

3.3604
3.6361

3.7778
3.8108

3.8273
3.8368

18
0.0000

-0.2981
-0.3204

-0.3317
-0.3343

-0.3357
-0.3365

1.1997
3.3848

3.6695
3.8162

3.8504
3.8674

3.8773
20

0.0000
-0.3568

-0.3872
-0.4027

-0.4065
-0.4083

-0.4094
1.1997

3.4005
3.6923

3.8430
3.8782

3.8958
3.9059

50
0.0000

-0.9542
-1.0882

-1.1599
-1.1761

-1.1858
-1.1907

1.1997
3.3792

3.7018
3.8711

3.9107
3.9306

3.9420
100

0.0000
-1.3408

-1.5553
-1.6714

-1.6991
-1.7136

-1.7217
1.1997

3.3011
3.6257

3.7971
3.8374

3.8576
3.8690

150
0.0000

-1.5051
-1.7561

-1.8926
-1.9254

-1.9423
-1.9519

1.1997
3.2619

3.5853
3.7564

3.7967
3.8168

3.8283
200

0.0000
-1.5955

-1.8669
-2.0150

-2.0508
-2.0690

-2.0794
1.1997

3.2393
3.5616

3.7323
3.7724

3.7925
3.8041
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