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Abstract. In this paper, we consider the problem of estimating E(Y) based on a simple
random sample when at least one of the population quantiles is known. We propose a
stratified estimator of E(Y), and show that it is strongly consistent. We then establish the
asymptotic normality of the suggested estimator, and prove that it is asymptotically
more efficient than the standard mean estimator in simple random sampling. For
finite sample sizes, Monte Carlo simulation is used to show that the proposed method
considerably improves the standard procedure. Finally, a real data example is used to
illustrate the application of the proposed method.
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1 Introduction

The use of auxiliary information to improve statistical inference has been widely dis-
cussed in sampling theory. The most widely used auxiliary information are mean,
median and coefficient of variation of the auxiliary variable, or correlation coefficient
between the auxiliary variable and the variable of interest. Srivastava and Jhajj (1981)
considered a class of estimators for the population mean under assumption that mean
and variance of auxiliary variable are available. Upadhyaya and Singh (1999) proposed
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two different ratio type estimators for situations in which the coefficient of variation
and the coefficient of kurtosis of the auxiliary variable are known. The problem of
estimation of variance using information of auxiliary variable has been considered by
Das and Tripathi (1978), Isaki (1983) and Yadav and Kadilar (2014).

Assuming that the mean of the auxiliary variable X is known, the ratio estimator of
the mean of the variable of interest Y is given by

µ̂R = µ
X

 µ̂Y
SRS

µ̂X
SRS

 ,
where µX is the true mean of the auxiliary variable X, and µ̂Y

SRS , µ̂X
SRS are the sample

means of auxiliary variable X and variable of interest Y, respectively.
The ratio estimator µ̂R is not unbiased but it generally has less mean square error

than µ̂Y
SRS, specially when the variable of interest and auxiliary variable are highly

correlated. See Cochran (1977) for more details about the properties of this estimator.
The problem of estimating the population mean when the mean and the first/third

quartiles of the auxiliary variable are known, has been considered by Al-Omari (2012).
Let µX be mean of the auxiliary variable X, Al-Omari (2012) proposed the ratio estima-
tors based on the first (q1) and the third (q3) quartiles of X as

µ̂SRS1 = µ̂
Y
SRS(

µX + q1

µ̂X
SRS + q1

), µ̂SRS3 = µ̂
Y
SRS(

µX + q3

µ̂X
SRS + q3

),

respectively, where µ̂X
SRS and µ̂Y

SRS are the sample means of auxiliary variable X and
variable of interest Y, respectively.

In the case ofµX being unknown, Al-Omari (2012) proposed to use double sampling
method to estimate µX. In doing so, one first selects a large sample size n′ to estimate
µX, then a sub-sample of size n′′ is selected from the population of interest to compute
µ̂Y

SRS.
Breidt (2004) considered control variate method for improving the efficiency of

quantile estimation when the population of interest has known mean. He proposed to
estimate population quantile

(
Qp
)

by

Q̃p = Q̂p +
(
µY − µ̂Y

SRS

)
,

where µY is the known mean of the population of interest, Q̂p and µ̂Y
SRS are sample

quantile and sample mean based on a simple random sample, respectively.
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In this paper, we consider the problem of estimating the population mean when at
least one of the population quantiles is known under the infinite population setting.
We introduce a stratified mean estimator in which the strata are based on the quantiles
information. The proposed method is different from standard post stratification (see
Lohr (1999)) in that the strata are based on the quantiles information rather than
covariate information. The mathematical development is similar to judgment post
stratification due to MacEachern et al. (2004).

It is worth mentioning that the results presented here are also applicable in estimat-
ing of E (h (Y)) instead of E(Y) as long as h is monotone and the variance of h(Y) exists.
Examples of h(Y) include h(Y) = Yl, l = 1, 2, . . ., corresponding to estimation of the pop-
ulation moments for random variables with non-negative supports, and h(Y) = I{Y≤c}
corresponding to estimation of distribution function.

The rest of the paper is organized as follows. In Section 2 of the paper, we propose a
non-parametric mean estimator for the case that at least one of the population quantiles
is known. We then prove that the proposed estimator is strongly consistent. We also
establish its asymptotic normality and show that it is asymptotically more efficient than
the standard mean estimator in simple random sampling. In Section 3, we examine
the performance of the introduced estimator for finite sample sizes via Monte Carlo
simulation. In Section 4, the application of the proposed method is illustrated using a
real data set. We end in Section 5 with a summary.

2 Estimation of E(Y)

Let Y be the variable of interest with distribution function F. The pth order quantile of
random variable of Y is defined as

Qp = in f
{
y : F(y) ≥ p

}
.

We adopt the following notations in the rest of the paper. Let Y1, . . . ,Yn be a simple
random sample of size n from a population with distribution function F, mean µ and
variance σ2. Let Q0 = (Qp1 . . . ,Qpk) be the vector of known quantiles of the population
of interest, and m = k + 1. Let T1, . . . ,Tn be auxiliary random variables corresponding
to the simple random sample of Y1, . . . ,Yn, where Ti = j if Qp j−1 < Yi < Qp j , and
zero otherwise, for i = 1 . . .n; j = 1, . . .m, where p0 = 0 and pm = 1. Therefore the
simple random sample of Y1, . . . ,Yn may be represented as (Y1,T1), . . . , (Yn,Tn). We
define µ j = E(Yi|Ti = j) and σ2

j = var(Yi|Ti = j), for j = 1, . . . ,m. Since the pairs (Yi,Ti),

i = 1, . . . , n, form a random sample, µ j and σ2
j do not depend on i. Note that µ j and
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σ2
j are in fact, the mean and the variance of the random variable Y, which is truncated

between Qp j−1 and Qp j , respectively.
Let Ii j be one if Ti = j and zero otherwise. Then, the number of observations which

are between Qp j−1 and Qp j is denoted by N j =
∑n

i=1 Ii j. One can simply show that the
vector N = (N1, . . . ,Nm) follows a multinomial distribution with mass parameter n and
probability vector d = (d1, . . . , dm), where d j = p j − p j−1, for j = 1, . . . ,m. Therefore,
the probability that some of the N j be zero is positive. Let I j = 1 if N j > 0 and zero
otherwise and Sn =

∑m
j=1 d jI j. Furthermore, let

J j =

0 N j = 0
1

N j
N j > 0.

The following lemma states that the population mean can be expressed in terms of
the weighted average of truncated means.

Lemma 2.1. The population mean satisfies µ =
∑m

j=1 d jµ j.

Proof. We have

µ = E(E(Y1|T1))

=

m∑
j=1

P(T1 = j)E(Y1|1T = j)

=

m∑
j=1

d jµ j. �

�

The next lemma shows that how population variance σ2 can be expressed as
weighted averages of variances of between truncated component and within trun-
cated component.

Lemma 2.2. The population variance satisfies

σ2 =

m∑
j=1

d jσ
2
j +

m∑
j=1

d j(µ j − µ)2
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Proof. We can write

σ2 = E(Var(Y1|T1)) + Var(E(Y1|T1))

=

m∑
j=1

d jσ
2
j +

m∑
j=1

d j(µ j − µ)2. �

�

Suppose that, we want to draw inference for the population meanµ based on (Yi,Ti).
Consider

L(µ) =
m∑

j=1

d jI jJ j

Sn

n∑
i=1

(Yi − µ)2Ii j,

as loss function forµ. In order to justify using this loss function, note that J j
∑n

i=1 (Yi − µ)2Ii j
can be regarded as mean squared error loss function of the sample units which fall be-
tween Qp j−1 and Qp j , for j = 1, . . . ,m. Therefore, L(µ) is in fact the weighted average of
those mean squared error loss functions.

We propose to estimate the parameter of µ by the minimizing L(µ) with respect to
µ, which results in the estimator

µ̂S =

m∑
j=1

w jµ̂ j,

where w j =
d jI j

Sn
, and µ̂ j is the mean of the observations between Qp j−1 and Qp j .

In the next theorem, we show that the proposed estimator is strongly consistent.

Theorem 2.1. µ̂S is a strongly consistent estimator of the population mean.

Proof. Note that I(N j > 0) a.s.−→ 1 as n tends to infinity. So it turns out from Theorem 11.1
in (Gut , 2005, p 247) that w j

a.s.−→ d j, for j = 1, . . . ,m.
Since µ̂ j is the sample mean of the observations which fall between QP j−1 and QP j , it
follows from strong law of large numbers that µ̂ j is a strongly consistent estimator of
µ j. Therefore, the theorem is proven by Lemma 2.1. �
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The next theorem establishes the asymptotic normality of the proposed mean esti-
mator.

Theorem 2.2. Let Y1, . . . ,Yn be a simple random sample of size n and Q0 = (QP1 , . . . ,QPk)
be the vector of known quantiles of the population. As the sample size n approaches to infinity√

n
(
µ̂S − µ

)
converges to a normal distribution with mean zero and variance

∑m
j=1 diσ2

j .

Proof. Note that

√
n(µ̂S − µ) =

√
n

m∑
j=1

w j(µ̂ j − µ j) +
√

n
m∑

j=1

µ j(w j − d j).

On the other hand, since by conditioning on N = (N1, . . . ,Nm), µ̂1, . . . , µ̂m are indepen-
dent random variables. Thus, for (t1, . . . , tm) ∈ Rm, we can write

P(
m∩

j=1

√
N j(µ̂ j − µ j) ≤ t j) = E{P(

m∩
j=1

√
N j(µ̂ j − µ j) ≤ t j|N)}

= E{
m∏

j=1

P(
√

N j(µ̂ j − µ j)) ≤ t j|N)}

−→ E{
m∏

j=1

P(Z j ≤ t j)}

= P(
m∩

j=1

Z j ≤ t j),

where Z j follows a normal distribution with mean zero and variance σ2
j . Thus, we can

conclude that the vector

UT = (
√

N1
(
µ̂1 − µ1

)
, . . . ,

√
Nm(µ̂m − µm))

converges in distribution to an m-dimensional normal distribution with mean zero and
variance covariance matrix Σ, where Σ is a diagonal matrix of the vector

(
σ2

1, . . . , σ
2
m

)
.

Let Cn =
(√

n
N1

w1, . . . ,
√

n
Nm

wm

)
, then it is clear that Cn converges in probability to the

vector C =
(√

d1, . . . ,
√

dm
)
. So, by using Slutsky’s theorem we have

√
n

m∑
j=1

wi

(
µ̂ j − µ j

)
= CnU d−→ N(0,

m∑
j=1

d jσ
2
j ).
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It remains to show that
√

n
∑m

j=1 µ j(w j − d j)
p−→ 0. To see this, note that since I

(
N j > 0

) a.s.−→
1, then for large enough values of n, we have | w j−d j |≤ d jo

((
1 − d j

)n)
. Therefore, ∀ϵ > 0

we have

P
(√

n | µ j

(
w j − d j

)
|≥ ϵ
)
≤
√

n | µ j | E
(
| w j − d j |

)
ϵ

≤
√

n | µ j |
ϵ
(
1 − d j

)n −→ 0 as n→∞,

and this completes the proof. �

Remark 1. One can conclude from above theorem and Lemma 2.2 that µ̂S is asymptoti-
cally more efficient than the standard mean estimator in simple random sampling, µ̂SRS.
To see this, note that according to the central limit theorem

√
n
(
µ̂SRS − µ

)
converges to

a normal distribution with mean zero and variance σ2. On the other hand, it follows
from Lemma 2.2 that

∑m
j=1 d jσ2

j ≤ σ2, and thus µ̂S asymptotically more efficient than
µ̂SRS.

For finite sample sizes, the proposed mean estimator is not unbiased in general and
the computation of its bias and variance requires tedious calculations which depends on
the distribution of the vector (w1, . . . ,wm). However, in the special case that the vector
(d1, . . . , dm) being

(
1
m , . . . ,

1
m

)
, we show that µ̂S is unbiased and has less variance than

standard mean estimator. The following lemma states some distributional properties
of (w1, . . . ,wm) in this case.

Lemma 2.3. Let (d1, . . . , dm) =
(

1
m , . . . ,

1
m

)
, then

(I) E (w1) = 1
m ,

(II) Var(w1) = 1
m2

∑m−1
j=1

( j
m

)n−1
,

(III) Cov(w1,w2) = −1
m−1 Var(w1) ,

(IV) nm2

m−1 Var(w1) < 1, ∀n ≥ 3,

(V) E
(
J1w2

1

)
= 1

mn

(
1
n+∑m

k=2
∑k−1

j=1
∑n−k−1

t=1
(−1) j−1

k2t
(m−1

k−1
)(k−1

j−1
)(n

t
) (

k − j
)n−t
)
.
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The proof follows from Lemma 4 in Dastbaravarde et al. (2016).

Theorem 2.3. Let Y1, . . . ,Yn be a simple random sample of size n and Q0 = (QP1 , . . . ,QPk) be
the vector of known quantiles of the population. Let (d1, . . . , dm) =

(
1
m , . . . ,

1
m

)
, then µ̂S is an

unbiased estimator of the population mean and its variance is given by

E(J1w1
2)

m∑
j=1

σ2
j +

m
m − 1

Var(w1)(
m∑

j=1

(µ j − µ)2).

Proof. One can write

E(µ̂S) = E(
m∑

j=1

E(w jµ̂ j|T))

= E(
m∑

j=1

w jµ j)

= E(w1)
m∑

j=1

µ j

=
1
m

m∑
j=1

µ j = µ.

The third equality holds because in the case that

(d1, . . . , dm) =
( 1
m
, . . . ,

1
m

)
,

w j’s are identically distributed.
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The variance of µ̂S can be written as

Var(
m∑

j=1

w jµ̂ j) = E(Var(
m∑

j=1

w jµ̂ j|T)) + Var(E(
m∑

j=1

w jµ̂ j|T))

= E(
m∑

j=1

w2
j J jσ

2
j ) + Var(

m∑
j=1

w jµ j)

= E(w2
1J1)

m∑
j=1

σ2
j +

m∑
j=1

µ2
j Var(w j) +

m∑
j1, j2

µ[ j1]µ[ j2]Cov(w[ j1],w[ j2])

= E(w2
1J1)

m∑
j=1

σ2
j + Var(w1)

m∑
j=1

µ2
j −

1
m − 1

Var(w1)(m2µ2 −
m∑

j=1

µ2
j )

= E(w2
1J1)

m∑
j=1

σ2
j +

m
m − 1

Var(w1)(
m∑

j=1

(µ j − µ)2).

The third equality holds because in the case that (d1, . . . , dm) =
(

1
m , . . . ,

1
m

)
, w j’s and

J jw2
j ’s are both identically distributed. �

Corollary 2.1. One can conclude from Theorem 2.3 that in the case that (d1, . . . , dm) =(
1
m , . . . ,

1
m

)
, the variance of the proposed mean estimator is less than the variance of the

standard mean estimator in simple random sampling. To see this, note that

Var(
m∑

j=1

w jµ̂ j) − Var(
1
n

n∑
i=1

Yi)

= (mE(J1w2
1) − 1

n
)

1
m

m∑
j=1

σ2
j + (

m2

m − 1
Var(w1) − 1

n
)

1
m

m∑
j=1

(µ j − µ)2.

Besides, m2

m−1 Var(w1) ≤ 1
n , as it was shown in Lemma 2.3. On the other hand, by using

Cauchy Schwarz inequality and Lemma 2.3, one can write nmE(J1w2
1) = m2E(N1)E(J1w2

1) ≥
m2(E(w1)2) = 1, and this gives the result.

3 Simulation study

In this section, we compare the performance of the proposed mean estimator with that
of µ̂SRS via Monte Carlo simulation. For this purpose, we have generated 1,000,000
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random samples of sizes n = 5, 10, 20, 30, 40, 50 from six distributions: standard nor-
mal distribution (N (0, 1)), standard exponential distribution

(
Exp (1)

)
, uniform distri-

bution (U (0, 1)), gamma distribution with scale parameter 1 and shape parameter 5
(Gamma (5)), beta distribution with parameters 0.5, 0.5 (Beta (0.5, 0.5)), and Student’s t
distribution with 3 degrees of freedom (t3). So, we allow the sample size to be small
(n = 5, 10), moderate (n = 20, 30) and large (n = 40, 50). Furthermore, symmetric and
skewed distributions, heavy-tailed and light-tailed distributions and distributions with
bounded and unbounded supports are all considered in the simulation study. We as-
sume that at least one of the population quartiles is known. The efficiency of µ̂S relative
to µ̂SRS is defined as

R̂E =
V̂ar
(
µ̂SRS
)

M̂SE
(
µ̂S
) .

Thus, R̂E > 1 indicates that the proposed estimator has better performance than
µ̂SRS. Furthermore, since µ̂S is not unbiased in general, we also report the estimated
bias of µ̂S. The simulation results are presented in Tables 1-3.
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Table 1 gives the results when the parent distributions are standard normal and
standard exponential, respectively. It is clear from this table that, when the parent
distribution is N (0, 1), the proposed estimator is always better than µ̂SRS. It is worth
noting that µ̂S is almost unbiased except when the sample size is too small (n = 5).
For this distribution, the best performance of µ̂S for n = 5 occurs when Q0 = (Q1,Q3)
is the vector of known quartiles. The largest REs for n ≥ 10 are achieved when
Q0 = (Q1,Q2,Q3) is the vector of known quartiles. In the case that standard exponential
to be parent distribution, µ̂S is the best estimator except for the cases that the sample
size to be too small (n = 5) and Q0 = (Q1) ,Q0 = (Q1,Q2) to be vector of known quartiles
where the performance of µ̂S is slightly worse than µ̂SRS. The proposed estimator is
almost unbiased for n ≥ 10. In this case, the highest relative efficiency for n = 5, n = 10
and n ≥ 20 happens when Q0 = (Q3) , Q0 = (Q2,Q3) and Q0 = (Q1,Q2,Q3) to be vector
of known quartiles, respectively.

The simulation results for uniform and gamma distributions are presented in Table
2. In the case of U (0, 1) being the parent distribution, the proposed estimator is almost
unbiased and always superior to µ̂SRS. For small sample sizes (n = 5, 10), the best
performance of µ̂S is obtained for Q0 = (Q2). For moderate and large sample sizes
(n ≥ 20), the largest REs are occurred when Q0 = (Q1,Q2,Q3) to be the vector of known
quartiles. In the case of Gamma (5) being the parent distribution, µ̂S is biased for
n = 5 and almost unbiased for n ≥ 10. The relative efficiency is always larger than
one. The best performance of µ̂S happens when Q0 = (Q1,Q3) ,Q0 = (Q2,Q3) and
Q0 = (Q1,Q2,Q3) to be vector of known quartiles for n = 5, n = 10, and n ≥ 20,
respectively.

Table 3 presents the simulation results for Beta (0.5, 0.5) and t3 distributions. For
Beta (0.5, 0.5) distribution, µ̂S is almost unbiased. We observe that for this distribution
the proposed estimator is always better than µ̂SRS, and the improvement over µ̂SRS
is considerable for n ≥ 20 and Q0 = (Q1,Q2,Q3). In this case, the best performance
of µ̂S is occurred when Q0 = (Q2) to be the vector of known quartiles for n = 5, 10
and Q0 = (Q1,Q2,Q3) for n ≥ 20. In the case of t3 being the parent distribution,
µ̂S is biased for n = 5 and almost unbiased for n ≥ 10 and always superior to µ̂SRS.
For this distribution, the best performance of µ̂S is obtained when Q0 = (Q1,Q3) ,
Q0 = (Q1,Q2,Q3) for n ≤ 10 and n ≥ 20, respectively.

It is worth mentioning that, for all considered cases, the relative efficiency increases
as the sample size increases while the other parameters are fixed. The proposed
estimator is almost unbiased when the sample size is not too small (n ≥ 10). The
highest relative efficiency for n ≥ 20 happens when Q0 = (Q1,Q2,Q3) to be the vector
of known quartiles for all considered distributions. Furthermore, note that µ̂S is an
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unbiased estimator of population mean in the case of Q0 = (Q2) and Q0 = (Q1,Q2,Q3)
being the vector of known quartiles of the population.

4 Performance comparison using a real data set

In this section, we assess the performance of µ̂S with real data set instead of Monte Carlo
simulation. The data set, we have used for this purpose, contains the percentage of body
fat determined by underwater weighing and different body circumference measure-
ments for 252 men, and is available online at http://lib.stat.cmu.edu/datasets/bodyfat.
We take the percentage of body fat as the variable of interest (Y), and we assume that
the population median (M = 19.2) is known. We compute the efficiency of the proposed
estimator for samples of size 5, 10, 20, 30, 40 and 50. The sampling is done with replace-
ment, so the assumption of independence is preserved. Note that in this example, m = 2
and d =

(
1
2 ,

1
2

)
, so it follows from Theorem 2.3 that the proposed estimator is unbiased

and its exact variance can be computed via this theorem. The exact variances of
√

nµ̂S
and

√
nµ̂SRS with their relative efficiency are given in Table 4. The relative efficiency

(RE) is defined as the ratio of variance of
√

nµ̂SRS to variance of
√

nµ̂S. Since the REs are
computed before doing any rounding, the relative efficiencies do not coincide with the
ratios between the tabled variances, which have been rounded to two decimal places.

Table 4: Efficiency of µ̂S to µ̂SRS for estimating the mean of the body fat of 252 men.

Sample size (n) 5 10 20 30 40 50
Var
(√

nµ̂SRS

)
14.00 7.00 3.50 2.33 1.75 1.40

Var
(√

nµ̂S

)
6.80 2.64 1.21 0.79 0.58 0.47

RE 2.05 2.65 2.88 2.94 2.97 2.99

We observe that the usage of auxiliary median information in the proposed mean
estimator, improves the precision of estimation of population mean as compared to the
standard mean estimator. The efficiency gain in estimation of population mean varies
from 2.05 to 2.99 as sample size goes from 5 to 50.



68 Zamanzade and Mohammad Ghasemi

5 Conclusion

In this paper, we introduced a nonparametric mean estimator when at least one of the
population quantiles is known. We proved that our estimator is strongly consistent.
We established asymptotic normality of the proposed estimator and showed that it
is asymptotically more efficient than the standard mean estimator. For finite sample
sizes, the superiority of the proposed mean estimator to the standard mean estimator
was shown by using Monte Carlo simulation and a real data set.
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