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Abstract. Multivariate normal-Poisson model has been recently introduced as a special
case of normal stable Tweedie models. The model is composed of a univariate Poisson
variable, and the remaining variables given the Poisson one are independent Gaussian
variables with variance the value of the Poisson component. Two characterizations
of this model are shown, first by variance function and then by generalized variance
function which is the determinant of the variance function. The latter provides an
explicit solution of a particular Monge-Ampère equation.
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1 Introduction

Motivated by normal gamma and normal inverse Gaussian models, Boubacar Maïnas-
sara and Kokonendji (2014) introduced a new form of generalized variance functions
which are generated by the so-called normal stable Tweedie (NST) models of k-variate
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distributions (k > 1). The generating σ-finite positive measure µα,t onRk of NST models
is composed by the well-known probability measure ξα,t of univariate positive σ-stable
distribution generating L process

(
Xα

t

)
t>0

which was introduced by Feller (1971) as
follows

ξα,t(dx) =
1
πx

∞∑
r=0

trΓ(1 + αr)sin(−rπα)
r!αr(α − 1)−r [(1 − α)x]αr 1x>0dx = ξα,t(x)dx,

where α ∈ (0, 1) is the index parameter, Γ(.) is the classical gamma function, and IA
denotes the indicator function of any given event A that takes the value 1 if the event
accurs and 0 otherwise. Paremeter α can be extended into α ∈ (−∞, 2] (see Tweedie,
1984). For α = 2, we obtain the normal distribution with density

ξ2,t(dx) =
1√
2πt

exp
(
−x2

2t

)
dx.

For a k-dimensional NST random vector X = (X1, . . . ,Xk)⊤, the generating σ-finite
positive measure µα,t is given by

µα,t(dx) = ξα,t(dx1)
k∏

j=2

ξ2,x1(dx j), (1.1)

where X1 is a univariate (non-negative) stable Tweedie variable and (X2, . . . , ,Xk)⊤ =: Xc
1

given X1 are k − 1 real independent Gaussian variables with variance X1.
Normal-Poisson model is a special case of NST models; it is new and the only

model which has a discrete component. Among NST models, normal-gamma is the
only model which is also a member of simple quadratic natural exponential families
(NEFs) of Casalis (1996); she called it “gamma-Gaussian“ and it has been characterized
by variance and generalized variance functions. See Casalis (1996) or Kotz et al (2000,
Chapter 54) for characterization by variance function, and Kokonendji and Masmoudi
(2013) for characterization by generalized variance function which is the determinant
of covariance matrix expressed in terms of the mean vector.

In contrast to normal-gamma which is the same to gamma-Gaussian; normal-
Poisson and Poisson-Gaussian (Kokonendji and Masmoudi , 2006; Koudou and Pom-
meret , 2002) are two completely different models. Indeed, for any value of j ∈ {1, . . . , k},
normal-Poisson model has only one Poisson component and k − 1 Gaussian compo-
nents, while a Poisson-Gaussian j model has j Poisson components and k − j Gaus-
sian components which are all independent. Poisson-Gaussian is a particular case of
the simple quadratic NEFs with variance function VF(m) = diagk(m1, . . . ,m j, 1, . . . , 1)
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where m = (m1, . . . ,mk)⊤ is the mean vector, and its generalized variance function is
det VF(m) = m1 . . .m j. Some characterizations of Poisson-Gaussian j models have been
done by several authors such as Letac (1989) for variance function, Kokonendji and
Masmoudi (2006) for generalized variance function, and Koudou and Pommeret (2002)
for convolution-stability. Also one can see Kokonendji and Seshadri (1996); Kokonendji
and Pommeret (2007) for the generalized variance estimators of Poisson-Gaussian. This
normal-Poisson is also different from the purely discrete "Poisson-normal" model of
Steyn (1976), which can be defined as a multiple mixture of k independent Poisson
distributions with parameters m1,m2, . . . ,mk and those parameters have a multivariate
normal distribution.

Three generalized variance estimators of normal Poisson model have been intro-
duced (Kokonendji and Nisa , 2016). In this paper we present the characterizations
of multivariate normal-Poisson model by variance function and by generalized vari-
ance function which is connected to the Monge-Ampère equation (Gutiérrez , 2001).
In Section 2 we present some properties of normal-Poisson model. We present the
characterizations of normal-Poisson model by variance function in Section 3 and the
characterization by generalized variance in Section 4.

2 Normal-Poisson model

By introducing "power variance" parameter p defined by (p − 1)(1 − α) = 1 and equiv-

alent to p = p(α) =
α − 2
α − 1

or α = α(p) =
p − 2
p − 1

(see Jorgensen , 1997, Chapter 4, for

complete description of the power unit variance function of univariate stable Tweedie
distributions), in the case of α → −∞ or p = p(−∞) = 1, Expression (1.1) will lead to
k-variate normal-Poisson model. Replacing α(p) with p(α) the generating measure of
normal-Poisson model can be express as follows

µt(dx) = µ1,t(dx) = ξ1,t(dx1)
k∏

j=2

ξ0,x1(dx j). (2.1)

Then by (2.1), for a fixed power of convolution t > 0, denote Ft = F(µt) the multi-
variate NEF (Kotz et al , 2000, Chapter 54) of normal-Poisson with µt := µ∗t, the NEF of
a k-dimensional normal-Poisson random vector X is generated by

µt(dx) =
tx1(x1!)−1

(2πx1)(k−1)/2
exp

−t − 1
2x1

k∑
j=2

x2
j

1x1∈N\{0}δx1(dx1)
k∏

j=2

dx j. (2.2)
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Since t > 0 then µt is known to be an infinitely divisible measure; see, e.g., Sato (1999).
The cumulant function which is the logarithm of the Laplace transform of µt, i.e.

Kµt(θ) = log
∫
Rk exp(θ⊤x)µt(dx), is given by

Kµt(θ) = t exp

θ1 +
1
2

k∑
j=2

θ2
j

 . (2.3)

The function Kµt(θ) is finite for all θ in the canonical domain

Θ(µt) =

θ ∈ Rk;θ⊤θ̃c
1 := θ1 +

1
2

k∑
j=2

θ2
j < 0

 (2.4)

with
θ = (θ1, . . . , θk)⊤ and θ̃c

1 := (1, θ2, . . . , θk)⊤. (2.5)

The probability distribution of normal-Poisson which is a member of NEF is given by

P(θ;µt)(dx) = exp{θ⊤x −Kµt(θ)}µt(dx).

From (2.3) we can calculate the first derivative of the cumulant function that pro-
duces a k-vector as the mean vector of Ft, and also its second derivative which is a k× k
matrix that represents the covariance matrix. Using notations in (2.5) we obtain

K′µt
(θ) = Kµt(θ) × θ̃c

1 and K′′µt
(θ) = Kµt(θ) ×

[
θ̃

c
1θ̃

c⊤
1 + I01

k

]
,

with I01
k = diagk(0, 1, . . . , 1). The cumulant function presented in (2.3) and its derivatives

are functions of the canonical parameter θ. For practical calculation we need to use the
following mean parameterization:

P(m; Ft) := P(θ(m);µt),

where θ(m) is the solution in θ of the equation m = K′µt
(θ).

The variance function of normal-Poisson model which is the variance-covariance
matrix in term of mean parameterization is obtained through the second derivative of
the cumulant function, i.e. VFt(m) = K′′µt

(θ(m)). Then we have

VFt(m) =
1

m1
mm⊤ + diagk(0,m1, . . . ,m1) (2.6)
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on its support

MFt =
{
m ∈ Rk; m1 > 0 and m j ∈ R for j = 2, . . . , k

}
. (2.7)

Consequently, its generalized variance function is

det VFt(m) = mk
1 with m ∈MFt . (2.8)

Equation (2.8) expresses that the generalized variance of normal-Poisson model de-
pends mainly on the mean of the Poisson component.

The infinite divisibility property of normal-Poisson is very useful for its character-
ization by generalized variance. Regarding to this property, Hassairi (1999) found an
interesting representation as stated in the following proposition (without proof).

Proposition 2.1. If µ is an infinitely divisible measure generating an NEF F = F(µ) on Rk,
then there exists a positive measure ρ(µ) on Rk such that

det K′′µ (θ) = exp Kρ(µ)(θ),

for all θ ∈ Θ(µ). The positive measure ρ(µ) is called the modified Lévy measure of µ.

For Ft of normal-Poisson model, the modified Lévy measure that satisfies Proposi-
tion 2.1 is given by

ρ(µt) = tk

δe1

k∏
j=2

N(0, 1)


∗k

, (2.9)

where (e1) an orthonormal basis of Rk and N(0, 1) is the standard univariate normal
probability measure. It comes from the cumulant function of ρ(µt) which is

Kρ(µt)(θ) = kt

θ1 +
1
2

k∑
j=2

θ2
j


t

=:
(
k × θ⊤θ̃c

1

)t
.

By implementing Proposition 2.1 into normal-Poisson model we obtain

det K′′µt
(θ) = t exp

(
k × θ⊤θ̃c

1

)
. (2.10)

We use (2.10) for characterizing normal-Poisson by generalized variance. The problem
in this characterization is that for given information in the right-hand side of (2.10),
we need to find the cumulant function K in the left-hand side of (2.10) such that the
determinant of its second derivative equals to the Laplace transform exp Kρ(µt)(θ). So,
this problem becomes a particular case of the Monge-Ampère equation (see equation
(4.1) in Section 4 ).
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3 Characterization by variance function

In order to characterize normal-Poisson model through its generalized variance func-
tion from (2.10) back to (2.3) and then to (2.2), it is also interesting to have their
characterizations by variance functions from (2.6) back to (2.3), up to some elementary
operations of NEFs.

We here state the first result as follows.

Theorem 3.1. Let k ∈ {2, 3, . . .} and t > 0. If an NEF Ft satisfies (2.6), then, up to affinity, Ft
is normal-Poisson model.

The proof is established by analytical calculations and using the well-known prop-
erties of NEFs described in Proposition 3.1 below.

Proposition 3.1. Let µ and µ̃ be two σ-finite positive measures on Rk such that F = F(µ),
F̃ = F(µ̃) and m ∈MF.

(i) If there exists (d, c) ∈ Rk × R such that µ̃(dx) = exp{⟨d, x⟩ + c}µ(dx), then F = F̃:
Θµ̃ = Θµ − d and Kµ̃(θ) = Kµ(θ + d) + c; for m̃ = m ∈MF,

VF̃(m̃) = VF(m) and det VF̃(m̃) = det VF(m).

(ii) If µ̃ = φ∗µ with φ(x) = Ax + b, then: Θ(µ̃) = A⊤Θ(µ) and Kµ̃(θ) = Kµ(A⊤θ) + b⊤θ;
for m̃ = Am + b ∈ φ(MF),

VF̃(m̃) = AVF(φ−1(m̃))A⊤ and det VF̃(m̃) = (det A)2 det VF(m).

(iii) If µ̃ = µ∗t is the t-th convolution power of µ for t > 0, then, for m̃ = tm ∈ tMF,

VF̃(m̃) = tVF(t−1m̃) and det VF̃(m̃) = tk det VF(m).

Proposition 3.1 shows that the generalized variance function of F, det VF(m), is in-
variant for any element of its generating measure (Part (i)) and for affine transformation
φ(x) = Ax + b such that det A = ±1, in particular for a translation x 7→ x + b (Part (ii)).
Sometimes we use terminology type to call an NEF F as a particular model up to affinity
(Part (ii)) and convolution power (Part (iii)).
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Proof. Without loss of generality, first we assume that t = 1 with flashback to the
identifiability of Poisson component.

Let F = F(µ) be an NEF satisfies (2.6) and (2.7) for t = 1. Using the blockwise
inversion into VF(m) in (2.6), one has :

[VF(m)]−1 =

 1
m1
+ 1

m3
1

∑k
j=2 m2

j − 1
m2

1
(mc

1)⊤

− 1
m2

1
(mc

1) 1
m1

Ik−1

 (3.1)

with m1 > 0 and mc
1 := (m2, . . . ,mk)⊤ ∈ Rk. Since m = K′µ(θ) and VF(m) = K′′µ (θ), then

by writing θ in terms of m one gets

VF(m) = [θ′(m)]−1

which implies

θ(m) =
∫

[VF(m)]−1 dm.

For θ ∈ Θ := θ(MF) such that MF has the same elements as MFt in (2.7), there exists a
function φ : Rk → R such that

θ′(m) =
[
∂2φ(m)
∂mi∂m j

]
i, j=1,2,...,k

. (3.2)

Using (3.2) into (3.1) for getting the first information on Poisson component, we have

∂2φ(m)

∂m2
1

=
1

m1
+

1
m3

1

k∑
j=2

m2
j

and then
∂φ(m)
∂m1

= log m1 −
1

2m2
1

k∑
j=2

m2
j + f (m2, . . . ,mk), (3.3)

where f : Rk−1 → R is an analytical function to be determined. Note that since m1 > 0
then log m1 and 1/(2m2

1) in (3.3) are well-defined. Derivative of (3.3) with respect to m j
gives

∂2φ

∂m1m j
= −

m j

m2
1

+
∂ f (m2, . . . ,mk)

∂m j
. (3.4)
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Expression (3.4) is equal to the (1, j)th element of [VF(m)]−1 in (3.1), that is

−
m j

m2
1

+
∂ f (m2, . . . ,mk)

∂m j
= −

m j

m2
1

;

therefore, ∂ f (m2, . . . ,mk)/∂m j = 0 for all j ∈ {2, . . . , k}, this implies f (m2, . . . ,mk) = c1 (a
real constant). Thus, (3.3) becomes

∂φ

∂m1
= log m1 −

1
2m2

1

k∑
j=2

m2
j + c1 (3.5)

and by integration with respect to m1, one gets

φ(m) = m1 log m1 −m1 +
1

2m1

k∑
j=2

m2
j + c1m1 + h(m2, . . . ,mk), (3.6)

where h : Rk−1 → R is an analytical function to be determined. From now on, complete
information of the model (i.e. normal components) begin to show itself. The first and
second derivatives of (3.6) with respect to m j give, respectively,

∂φ(m)
∂m j

=
m j

m1
+
∂h(m2, . . . ,mk)

∂m j
, ∀ j ∈ {2, . . . , k} (3.7)

and
∂2φ(m)

∂m2
j

=
1

m1
+
∂h2(m2, . . . ,mk)

∂m2
j

, ∀ j ∈ {2, . . . , k}. (3.8)

Expression (3.8) is equal to the diagonal ( j, j)th element of [VF(m)]−1 in (3.1) for all
j ∈ {2, . . . , k}, hence we have

1
m1
+
∂2h(m2, . . . ,mk)

∂m2
j

=
1

m1
.

Consequently, ∂2h(m2, . . . ,mk)/∂m2
j = 0 and ∂h(m2, . . . ,mk)/∂m j = c j (a real constant) for

all j ∈ {2, . . . , k}. Then, equation (3.7) becomes

∂φ(m)
∂m j

=
m j

m1
+ c j ∀ j ∈ {2, . . . , k}. (3.9)



Characterizations of Multivariate Normal-Poisson Model 45

Using equation (3.5) and (3.9) one obtains

θ(m) =

log m1 −
1

2m2
1

k∑
j=2

m2
j ,

m2

m1
, . . . ,

mk

m1


⊤

+ (c1, . . . , ck)⊤

or

θ(m) =


θ1 = log m1 −

1
2m2

1

∑k
j=2 m2

j + c1

θ j =
m j

m1
+ c j , j = 2, . . . , k.

(3.10)

From (3.10), each θ j belongs to R for j ∈ {1, 2, . . . , k} because m1 > 0 and m j ∈ R for
j ∈ {2, . . . , k}. Thus, one has Θ(MF) =: Θ ⊆ Rk and also

m1 = exp

(θ1 − c1) +
1
2

k∑
j=2

(θ j − c j)2

 , (3.11)

m j = (θ j − c j) exp

(θ1 − c1) +
1
2

k∑
j=2

(θ j − c j)2

 . (3.12)

Since m =
∂Kµ(θ)
∂θ

, then using (3.11) one can obtain Kµ(θ) as follow:

Kµ(θ) =
∫ ∂K′µ(θ)

∂θ1
dθ1

= exp

(θ1 − c1) +
1
2

k∑
ℓ=2

(θ j − c j)2

 + g(θ2, . . . , θk), (3.13)

where g : Rk−1 → R is an analytical function to be determined. Again, derivative of
(3.13) with respect to θ j produces

∂Kµ(θ)
∂θ j

= (θ j − c j) exp

(θ1 − c1) +
1
2

k∑
j=2

(θ j − c j)2

 + ∂g(θ2, . . . , θk)
∂θ j

which is equal to (3.12); then, one gets ∂g(θ2, . . . , θk)/∂θ j = 0 for all j ∈ {2, . . . , k}
implying g(θ2, . . . , θk) = C (a real constant). Finally, it ensues from it that we have

Kµ(θ) = exp

(θ1 − c1) +
1
2

k∑
j=2

(θ j − c j)2

 + C.
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By Proposition 3.1 one can see that, up to affinity, this Kµ is a normal-Poisson cumulant
function as given in (2.3) with t = 1 on its corresponding support (2.4). Theorem 3.1 is
therefore proven by using the analytical property of Kµ. �

4 Characterization by generalized variance function

Before stating our next result, let us briefly recall that, for an unknown smooth function
K : Θ ⊆ Rk → R, k > 2, the MongeAmpère equation is defined by

det K′′(θ) = g(θ), (4.1)

where K′′ =
(
D2

i jK
)

i, j=1,...,k
denotes the Hessian matrix of K and g is a given positive

function (see e.g. Gutiérrez (2001)). The class of equation (4.1) given g has been a
source of intense investigations which are related to many areas of mathematics. Note
also that explicit solutions of (4.1), even if in particular situations of g, remain generally
challenging problems. We can refer to Kokonendji and Seshadri (1996); Kokonendji
and Masmoudi (2006, 2013) for some details and handled particular cases.

We now state the next result in the following sense.

Theorem 4.1. Let Ft = F(µt) be an infinitely divisible NEF on Rk (k > 1) such that

1. Θ(µt) = Rk, and

2. det K′′µt
(θ) = t exp

(
k × θ⊤θ̃c

1

)
for θ and θ̃c

1 given as in (2.5). Then Ft is of normal-Poisson type.

To proof of this theorem is to solve the Monge-Ampère equation problem of normal-
Poisson model (item 2 of the theorem). For that purpose, we need three propositions
which are already used in Kokonendji and Masmoudi (2006) and Kokonendji and
Masmoudi (2013) and we provide the propositions below for making the paper as
selfcontained as possible.

Proposition 4.1. If µ is an infinitely divisible measure on Rk, then there exist a symmetric
non-negative definite d × d matrix Σ with rank r 6 k and a positive measure ν on Rk such that

K′′µ (θ) = Σ +
∫
Rk

xx⊤ exp(θ⊤x)ν(dx).

(See, e.g. Gikhman and Skorokhod , 2004, page 342).
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The above expression of K′′µ (θ) is an equivalent of the Lévy-Khinchine formula
(see e.g. Sato, 1999); thus, Σ comes from a Brownian part and the rest L′′ν (θ) :=∫
Rk xx⊤ exp(θ⊤x)ν(dx) corresponds to jumps part of the associated Lévy process through

the Lévy measure ν.

Proposition 4.2. Let A and B be two k × k matrices. Then

det(A + B) =
∑

S⊂{1,2,...,k}
det (AS′) det (BS) ,

with S′ = {1, 2, . . . , k} \ S and AS = (ai j)i, j∈S2 for A = (ai j)i, j∈{1,2,...,k}2 . (See Muir, 1960).

Proposition 4.3. Let f : Rk → R be a C2 map. Then, f is an affine polynomial if and only if

∂2 f (θ)/∂θ2
i = 0, for i = 1, . . . , k.

(See Bar-Lev, et al. , 1994, Lemma 4.1).

Proof. Without loss of generality, we assume t = 1 in Theorem 4.1. Letting F = F(µ), we
have to solve the following equation (with respect to µt or its characteristic function):

det K′′µ (θ) = exp

k ·
θ1 +

1
2

k∑
j=2

θ2
j


 , ∀θ ∈ Rk. (4.2)

From Proposition 4.1 relative to the representation of infinitely divisible distribution,
the unknown left member of Equation (4.2) can be written as

det K′′µ (θ) = det
[
Σ +

∫
Rk

xx⊤ exp(θ⊤x)ν(dx)
]
= det

[
Σ + L′′ν (θ)

]
. (4.3)

For S = {i1, i2, . . . , i j}, with 1 6 i1 < i2 < · · · < i j 6 k, a non-empty subset of {1, 2, . . . , k},
and τS : Rk → R j the map defined by τS(x) = (xi1 , xi2 , . . . , xi j)

⊤, we define νS the image
measure of

H j(dx1, . . . , dx j) =
1
j!

(
det

[
τS(x1) . . . τS(x j)

])2
ν(dx1) . . . ν(dx j)

by ψ j : (Rk) j → Rk, (x1, . . . , x j) 7→ x1 + x2 + · · · + x j. By Proposition 4.2 and Expression
(4.3) the modified Lévy measure ρ(µ) in (2.1) can be expressed as

ρ(µ) = (detΛ)δ0 +
∑

∅,S⊂{1,2,...,k}
(detΛS′)νS , (4.4)
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where Λ is a diagonal representation of Σ in an orthonormal basis e = (ei)i=1,...,k (see
Hassairi , 1999, page 384). Since Σ is the Brownian part, then it corresponds to the k− 1
normal components from the right member of (4.2); that implies r = rank(Σ) = k − 1
and detΣ = 0. Therefore detΛ = 0 with Λ = diag(λ1, λ2, . . . , λk) such that λ1 = 0 and
λ j > 0 for all j ∈ {2, . . . , k}. For all non-empty subsets S of {1, 2, . . . , k} there exist real
numbers αS > 0 such that

(detΛS′)νS =

∏
i<S

λi

 νS = αS

[
δe1 ∗ N(0, 1)(ec

1)
]∗k
, (4.5)

where ec
1 = (e2, . . . , ek) denotes the induced orthonormal basis of e without component

e1; i.e. k − 1 is the dimension of ec
1.

With respect to Kokonendji and Masmoudi (2006, Lemma 7) for making precise
the measure ν of (4.5), it is easy to see that S0 = {1} is a singleton (i.e. set with exactly
one element) such that, for x = x1e1 + · · · + xkek,

x2
1ν(dx) = βδae1 ,

with β > 0 and a , 0. Consequently, we have the following complementary set
S′0 = {1, 2, . . . , k} \ {1}. So, from (4.5) we have kth power of convolution of only one
Poisson at the first component e1 and (k − 1)-variate standard normal. That means

K′′µ (θ) = Kµ(θ)
[
θ̃

c
1θ̃

c⊤
1 + I01

k

]
, with notations of (2.5). Let B(θ) = exp

(
θ1 +

1
2
∑k

j=2 θ
2
j

)
from (4.2). Since we check that ∂2(Kµ −B)(θ)/∂θ2

i = 0 for all i = 1, . . . , k, Proposition 4.3
allows that (Kµ1 − B)(θ) is an affine function on Rk and therefore

Kµ(θ) = exp

θ1 +
1
2

k∑
j=2

θ2
j

 + u⊤θ + b,

for (u, b) ∈ Rk×R. Hence F = F(µ) is of normal-Poisson type with t = 1. This completes
the proof of the theorem. �

A reformulation of Theorem 4.1, by changing the canonical parameterization into
the mean parameterization, is stated in the following theorem without proof.

Theorem 4.2. Let Ft = F(µt) be an infinitely divisible NEF on Rk such that

1. MFt =
{
m ∈ Rk; m1 > 0 and m j ∈ Rwith j = 2, . . . , k

}
, and
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2. det VFt(m) = mk
1.

Then Ft is of normal-Poisson type.

Theorem 4.1 can be viewed as the solution to a particular Monge-Ampère equation
(4.1). Whereas Theorem 4.2 is interesting for generalized variance estimation of the
model.

5 Conclusion

In this paper we described some properties of normal-Poisson model. Then we showed
that the characterization of normal-Poisson model by variance function was obtained
through analytical calculations and using some properties of NEF. Also, the charac-
terization of normal Poisson model by generalized variance which is the solution to
a specific Monge-Ampère equation: det K′′µ (θ) = exp

(
k × θ⊤θ̃c

1

)
on Rk can be solved

using the infinite divisibility property of normal-Poisson.
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