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Abstract. We introduce a new five-parameter distribution called the beta exponentiated
Gumbel (BEG) distribution that includes the beta Gumbel, exponentiated Gumbel and
Gumbel distribution. Expressions for the distribution function, density function and
rth moment of the new distribution and order statistics are obtained. We discuss
estimation of the parameters by maximum liklelihood and provide the information
matrix. Using a real data set, we observe that the BEG distribution is flexible and can
be used quite effectively in analysing positive data in place of the special cases.
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1 Introduction

Nadarajah and Kotz (2006) defined the cumulative distributions function (cdf) of the
exponentiated Gumbel (EF) distribution function by

G(x) = 1 −
{
1 − exp

[
− exp

(
−

x − µ
σ

)]}α
, x > 0 (1.1)

for −∞ < µ < +∞, σ > 0 and α > 0. Clearly, the Gumbel (G) distribution is a particular
case of the EG distributions when α = 1.
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Eugene et al. (2002) defined a class of generalized distribution from it given by

F(x) =
1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1dw, x > 0 (1.2)

where a > 0 and b > 0 are two additional parameters whose role is to introduce skew-

ness and to vary tail weight and B(a, b) =
∫ 1

0 wa−1(1−w)b−1dw, is the beta function. The
cdf G(x) could be quite arbitrary and F is named the beta G distribution. Indeed, if V is
a beta distribution with parameter a and b, then the cdf of the X = G−1(V) agrees with
the cdf given in (1.2).

Some new distributions have been introduced using (1.2) in the literature. For
example, the beta normal (BN) distribution was introduced by Eugene et al. (2002)
with G(x) in (1.2) to be the cdf of a normal distribution. General expressions for the
moments of the BN distribution were derived by Gupta and Nadarajah (2004). The
beta gumbel (BG) distribution was introduced by Nadarajah and Kotz (2004) in which
G(x) in (1.2) is the cdf of a Gumbel distribution. The Beta Fréchet (BF) distribution was
introduced by Nadarajah and Gupta (2004) in which G(x) in (1.2) is the cdf of a Fréchet
distribution and investigated by Barreto-Souza et al. (2008). Some other examples
are the beta exponential (BE) distribution introduced by Nadarajah and Kotz (2006),
the beta generalized exponential (BGE) distribution introduced by Barreto-Souza et al.
(2010), the beta Weibul (BW) distributeon introduced by Famoye et al. (2005), the beta
exponential-geometric (BEG) distribution introduced by Bidram et al. (2013).

In this paper we introduced the beta exponentiated Gumbel (BEG) distribution by
taking G(x) in (1.2) to be as defined in Equation (1.1). The cdf of the BEG distribution
is then

F(x) =
1

B(a, b)

∫ 1−
{
1−exp

[
− exp(− x−µ

σ )
]}α

0
wa−1(1 − w)b−1dw, x > 0 (1.3)

for a > 0 , b > 0 ,−∞ < µ < +∞, σ > 0 and α > 0. µ is location parameter, σ is scale
parameter and α is shape parameter. The pdf and the hazard rate function of the new
distribution are, respectively,
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f (x) =
α
σ

exp
(
− x−µ

σ

)
B(a, b)

exp
[
− exp

(
−

x − µ
σ

)]
×

{
1 − exp

[
− exp

(
−

x − µ
σ

)]}αb−1

×
{
1 −

{
1 − exp

[
− exp

(
−

x − µ
σ

)]}α}(a−1)
, x > 0 (1.4)

and

h(x) =
α exp

(
−x−µ

σ

)
exp

[
− exp

(
− x−µ

σ

)]{
1−exp

[
− exp

(
−x−µ

σ

)]}α+b−2

σB(a, b)

×

{
1 −

{
1 − exp

[
− exp

(
− x−µ

σ

)]}α}(a−1)(
1 − I(

1−
{
1−exp

[
− exp(− x−µ

σ )
]}α)(a, b)

) , x > 0. (1.5)

To prove that (1.4) is indeed a probability density function, we need to show that∫ +∞

−∞

α
σ
−ν

B(a, b)
exp(−ν){1 − exp(−ν)}αb−1{1 − {1 − exp(−ν)}α}a−1dx = 1,

where ν = exp
(
−x−µ

σ

)
.

Changing to the variable u = 1 −
{
1 − exp

[
− exp

(
−x−µ

σ

)]}α
we obtain

1
B(a, b)

∫ 1

0
ua−1(1 − u)b−1du = 1.

If X is a random variable with pdf (1.4), we write X ∼ BEG(a, b, µ, σ, α). The
BEG distribution generalizes some well-known distributions in the literature. The EG
distribution is a special case for the choice a = b = 1. If in addition α = 1, we obtain
Gumbel distribution. The BG distribution obtained from (1.4) with α = 1. Plots of the
density (1.4) for some special value of a, b, µ, σ and α are given in Figure 1.
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Figure 1: Plots of the density (4) for some values of the parameters.

2 Distribution Function and Order Statistics

We provide two simple formula to describe BEG distribution depending as to whether
the parameter b > 0 is real non-integer or integer. First, if |z| < 1 and b > 0 is real
non-integer thus we have

(1 − z)b−1 =

∞∑
j=0

(−1) jΓ(b)
Γ(b − j) j!

z j. (2.1)

Using the expansion (2.1) in (1.3), the cdf of the BEG distribution when b > 0 is real
non-integer is

F(x) =
1

B(a, b)

∫ 1−
{
1−exp

[
− exp(− x−µ

σ )
]}α

0
wa−1(1 − w)b−1dw

=
1

B(a, b)

∞∑
j=0

∫ 1−
{
1−exp

[
− exp(− x−µ

σ )
]}α

0

(−1) jΓ(b)
Γ(b − j) j!

wa+ j−1dw,

and then

F(x) =
1

B(a, b)

∞∑
j=0

(−1) jΓ(b)
Γ(b − j) j!(a + j)

×
(
1 −

{
1 − exp

[
− exp

(
−

x − µ
σ

)]}α)(a+ j)
. (2.2)

Second, if b > 0 is integer, on applying the binomial expansion in (1.3) we have

F(x) =
1

B(a, b)

b−1∑
j=0

(−1) j

(a + j)

×
(
1 −

{
1 − exp

[
− exp

(
−

x − µ
σ

)]}α)(a+ j)
. (2.3)
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Using the series

(1 + z)α =
∞∑
j=0

Γ(α + 1)
Γ(α + j − 1) j!

z j, (2.4)

density function (1.4) can be expressed in the mixture form

f (x) =
∞∑
j=0

∞∑
k=0

w j,k exp
(
−

x − µ
σ

)
exp

[
−(k + 1) exp

(
−

x − µ
σ

)]
, (2.5)

where w j,k =
αΓ(α)Γ(α( j + 1) + b − 1)

σΓ(α − j)Γ(α( j + 1) + b − k − 1) j!k!
.

We now give the density function of the ith order statistics X(i:n), f(i:n) say, in a ran-
dom sample of size n from the BEG distribution. It is well known that

f(i:n) =
1

B(i,n − i + 1)
f (x)Fi−1(x){1 − F(x)}n−i, (2.6)

for i = 1, 2, ..., n.

Using the expansion (
∑∞

i=0 ai)k for a(i),s i = 0, 1, are real number, k a positive integer
and mr = 0, 1, ... {r = 1, 2, ..., k}when b > 0 is real non-integer

f(i:n)(x) =
n−i∑
k=0

∞∑
m1=0

...
∞∑

mk+i−1=0

δ(1)
k,i f(k,i)(x), (2.7)

and for b > 0 integer

f(i:n)(x) =
n−i∑
k=0

b−1∑
m1=0

...
b−1∑

mk+i−1=0

δ(2)
k,i f(k,i)(x). (2.8)

Letting f(k,i)(x) represent the density of a random variable X(k,i) following a BEG(2a+∑k+i−1
r=1 mr, b, µ, σ, α) distribution, the functions δ(1)

k,i and δ(2)
k,i required for the above ex-

pressions are

δ(1)
k,i =

B(2a +
∑k+i−1

r=1 mr, b)
B(i,n − i + 1)

(−1)k+
∑k+i−1

r=1 mr

[B(a, b)]k+1

× (Γ(b))k+i−1∏k+i−1
r=1 Γ(b −mr)mr!(a +mr)

.
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and

δ(2)
k,i =

(
n − i

k

)
B(2a +

∑k+i−1
r=1 mr, b)

B(i, n − i + 1)
(−1)k+

∑k+i−1
r=1 mr

[B(a, b)]k+1

×
k+i−1∏

r=1

(b−1
mr

)
(a +mr)

.

3 Moments

The rth moment of the X ∼ BEG(a, b, µ, σ, α) can be written as

E(Xr) =
∫ ∞

0

∞∑
j=0

∞∑
k=0

w j,kxr exp(−
x − µ
σ

) exp[−(k + 1) exp(−
x − µ
σ

)]dx,

which on setting u = exp
(
−x−µ

σ

)
, reduces to

E(Xr) =
∞∑
j=0

∞∑
k=0

w j,k

∫ ∞

0
σ(µ − σ log (u))r exp[−(k + 1)u]du. (3.1)

Using the binomial expansion Equation (3.1) can be written as

E(Xr) = σ
∞∑
j=0

∞∑
k=0

r∑
l=0

(
r
l

)
w j,kµ

r−l(−σ)lI(l),

where I(l) denotes the integral

I(l) =
∫ ∞

0
(log (u))l exp[−(k + 1)u]du. (3.2)

Finally, by Equation (2.6.21.1) in Prudnikov et al. (1986, volume 1), Equation (3.2) can
be calculated as

I(l) =
(
∂

∂a

)l

[(k + 1)−aΓ(a)]|a=1.

Then we have

E(Xr) = σ
∞∑
j=0

∞∑
k=0

r∑
l=0

(
r
l

)
w j,kµ

r−l(−σ)l
(
∂

∂a

)l

[(k + 1)−aΓ(a)]|a=1. (3.3)
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We can easily obtain expression for the moment of order statistics from Equation
(16). The rth moment of X(i:n) for b > 0 real non-integer is

E(Xr
(i:n)) =

n−i∑
k=0

∞∑
m1=0

...
∞∑

mk+i−1=0

δ(1)
k,i E(Xr),

and for b > 0 integer

E(Xr
(i:n)) =

n−i∑
k=0

b−1∑
m1=0

...
b−1∑

mk+i−1=0

δ(2)
k,i E(Xr),

where X ∼ BEG(2a +
∑k+i−1

r=1 mr, b, µ, σ, α) distribution

4 Estimation and Inference

Let us assume that Y follows the BEG distribution and let θ = (a, b, µ, σ, α)T be the
parameter vector. The log-likelihood for a single observation y of Y is

ℓ = ℓ(a, b, µ, σ, α) = log (a) − log (σ) − log (B(a, b)) + log (u)
−u + (αb − 1) log(1 − e−u)
+(a − 1) log[1 − (1 − e−u)α], y > 0

where u = e
−

(x − µ)
σ .
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The components of the unit score vector U = (
∂ℓ
∂a
,
∂ℓ

∂b
,
∂ℓ

∂µ
,
∂ℓ

∂σ
,
∂ℓ

∂α
)
T

are

∂ℓ

∂a
= ψ(a + b) − ψ(a) + log[1 − (1 − e−u)α],

∂l
∂b

= ψ(a + b) − ψ(b) + α log(1 − e−u),

∂ℓ

∂µ
=

1
σ
− u
σ
+
αb − 1
σ

ue−u

1 − e−u −
α(a − 1)
σ

ue−u(1 − e−u)α−1

1 − (1 − e−u)α
,

∂ℓ
∂σ

= −1
σ
−

log(u)
σ
+

u log(u)
σ

− αb − 1
σ

u log(ue−u)
1 − e−u

+
α(a − 1)
σ

u log(ue−u)(1 − e−u)α−1

1 − (1 − e−u)α
,

∂ℓ

∂α
=

1
α
+ b log(1 − e−u) − (a − 1)

(1 − e−u)α log(1 − e−u)
1 − (1 − e−u)α

.

The expected value of the score vector is zero and then

E(log[1 − (1 − e−u)α]) = ψ(a + b) − ψ(a),

E(log(1 − e−u)) =
ψ(a + b) − ψ(b)

α
.

For a random sample y = (y1, ..., yn) of size n from BEG(a, b, µ, σ, α), the total log-
likelihood is ℓn = ℓn(a, b, µ, σ, α) =

∑n
i=1 ℓ

(i), where ℓ(i) is the log-likelihood for the ith
observation (i = 1, . . . , n). The total score function is Un =

∑n
i=1 U(i) , where U(i) is the

score function yi and it has the form given for i = 1, ..., n. The MLE θ̂ of θ is obtain
numerically from the nonlinear equation Un = 0. For interval estimation and tests of
hypotheses on the parameters in θ we obtain the 5 × 5 unit information matrix

K = K(θ) =


Ka,a Ka,b Ka,µ Ka,σ Ka,α
Ka,b Kb,b Kb,µ Kb,σ Kb,α
Ka,µ Kb,µ Kµ,µ Kµ,σ Kµ,α
Ka,σ Kb,σ Kµ,σ Kσ,σ Kσ,α
Ka,α Kb,α Kµ,α Kσ,α Kα,α


where the corresponding elements are given by

Ka,a = ψ́(a) − ψ́(a + b), Kb,b = ψ́(b) − ψ́(a + b), Ka,b = −ψ́(a + b)
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Ka,µ =
α
σ

T−1,1,−1,1,1,0,0, Ka,σ = −
α
σ

T−1,1,−1,1,1,1,0,

Ka,α = − 1
α

T−1,0,1,0,0,0,1, Kb,µ =
α
σ

T0,0,−1,1,1,0,0,

Kb,σ = −α
σ

T0,0,−1,1,1,1,0, Kb,α = T0,0,0,0,0,0,1,

Kµ,µ =
1
σ2 (−T0,0,0,0,1,0,0 + (αb − 1)(T0,0,−1,1,1,0,0 − T0,0,2,1,2,0,0))

− α(a − 1)
σ

T−2,0,1,0,0,0,0 − T−2,0,1,0,1,0,0

+ (α − 1)T−1,0,0,1,1,0,0 + αT−2,2,−2,2,2,0,0,

Kµ,σ = − 1
σ2 (−T0,0,0,0,1,1,0 + (αb − 1)(T0,0,−1,1,1,1,0 − T0,0,2,1,2,1,0))

− 1
σ2

α(a − 1)
σ

(T−2,0,−1,0,0,1,0 − T−2,0,1,0,1,1,0 + (α − 1)T−1,0,0,1,1,1,0)

+
α

σ2

α(a − 1)
σ

T−2,2,−2,2,2,1,0 −
1
σ2 (1 − T0,0,0,0,1,0,0)

− 1
σ2 ((αb − 1)T0,0,−1,1,1,0,0 − α(a − 1)T−1,1,−1,1,1,0,0),

Kµ,α =
1
σ

(bT0,0,−1,1,1,0,0 − (a − 1)T−1,0,1,1,1,0,0)

− α
σ

(a − 1)(T−1,1,−1,1,1,0,1 + T−2,2,0,1,1,0,0)

Kσ,σ =
1
σ

T0,0,0,0,0,1,0 −
1
σ2 T0,0,0,0,1,2,0 −

1
σ2 T0,0,0,0,1,1,0

+
(αb − 1)
σ2 (T0,0,−1,1,1,2,0 + T0,0,−1,1,1,1,0 + T0,0,−2,1,2,2,0)

− α(a − 1)
σ2 (T−1,1,−1,1,2,2,0 + T−1,1,−1,1,1,2,0 + T−1,1,−1,1,1,1,0)

− α(a − 1)2

σ2 (T−1,1,−2,2,2,2 + T−2,0,2,2,2,0)

+
1
σ2 (1 − T0,0,0,0,0,1,0 + T0,0,0,0,1,1,0 − (αb − 1)T0,0,0,1,1,1,0)

+
α(a − 1)
σ2 T−1,1,−1,1,1,1,0,
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Kσ,α =
1
σ

(bT0,0,−1,1,1,1,0 − (a − 1)T−1,1,−1,1,1,1,0)

− α
σ

(a − 1)(T−1,1,−1,1,1,1,1 + T−2,2,0,1,1,1,0),

Kα,α = − 1
α2 + (a − 1)(T−1,1,0,0,0,0,2 + T−2,2,0,0,0,0,2).

Here, we have defined the following expectation

Ti, j,k,l,m,r,q = E[Vi(1 − V)
j+

k
α (1 − (1 − V)

1
α )

l

(log(1 − (1 − V)
1
α ))

m

× (log(− log(1 − (1 − V)
1
α )))

r

(
1
α

log(1 − V))
q
];

i, j, k, l,m, r, q ∈ {−2,−1, 0, 1, 2}

where V ∼ Beta(a, b) and the integral obtained from the above definition is numerically
determined using MATLAB for any a, b and α. For example, for a = 0.9144, b = 0.9991
and α = 0.7910 we easily calculated some T,s in the information matrix:

T−1,1,−1,1,1,0,0 = −1.2483,T−1,0,1,0,0,0,1 = −0.7258,T0,0,2,1,2,0,0 = 0.1215,
T−1,1,−1,1,1,0,1 = 0.4834,T−1,1,0,0,0,0,2 = 0.6214, T−2,2,0,0,0,0,2 = 0.8070.

The total information matrix is then Kn = Kn(θ) = nK(θ).

Under conditions that are fulfilled for parameters in the interior of the parameter
space but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ)

is N5(0,K(θ−1)). The asymptotic multivariate normal N5(0,K(θ−1)) distribution of θ̂ can
be used to construct approximate confidence intervals and confidence regions for the
parameters and for the hazard and survival functions. The asymptotically normality
is also useful for testing goodness of fit of the BEG distribution and for comparing this
distribution with some of its special sub-models using one of the three well-known
asymptotically equivalent test statistics namely, the likelihood ratio (LR) statistic, Rao
score (SR) and Wald (W) statistics.

An asymptotic confidence interval with significance level γ for each parameter θi
is given by
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ACI(θi, 100(1 − γ)%) = (θ̂i − zγ/2
√

kθi,θi , θ̂i + zγ/2
√

kθi,θi),

where kθi,θi is the ith diagonal element of Kn(θ)−1 for i = 1, 2, 3, 4, 5 and zγ/2 is the
quantile 1 − γ/2 of the standard normal distribution.

Further, we can compute the maximum values of the unrestricted and restricted
log-likelihoods to construct the LR statistics for testing some sub-models of the BEG
distribution.

We consider the partition θ = (θT
1 , θ

T
2 )T, where θ1 is a subset of the parameters of

interest of the BEG and θ2 is a subset of the remaining parameters. The LR statistic for
testing the null hypothesis H0 : θ1 = θ

(0)
1 versus the alternative hypothesis H1 : θ1 , θ

(0)
1

is given by w = 2{ℓ(θ̂) − ℓ(θ̃)}, where θ̃ and θ̂ denote the MLEs under the null and
alternative hypothesis, respectively. The statistic w is asymptotically (as n → ∞)
distributed as χ2

k , where k is the dimension of the subset θ1 of interest.

5 Application

In this section we fit the BEG distribution to example of real data and test three types
of hypotheses H0 : Gumbel×H1 : BEG, H0 : EG×H1 : BEG and H0 : BG×H1 : BEG. The
data are the annual maximum daily rainfall in Sweden for location Stockholm. The
data set is:25.5, 40, 22.8, 38.8, 27, 43, 33.9, 31.9, 36.5, 22.4, 25.6, 35.8, 23.4, 41.1, 30.9,
28.4, 39.7, 56, 32.3, 49.8, 26, 23.6, 21.7, 44.9, 20.8, 31, 18.2, 54.1, 27.8, 26, 25,
45.8, 40.4, 31, 31.7, 34.6, 14.5, 23.7, 29.5, 23.3, 24.2, 24, 20.5, 32.2, 27.6, 59.8.
The MLEs and the maximized log-likelihood using the BEG distribution are

â = 0.9144, b̂ = 0.9991, µ̂ = 26.4636, σ̂ = 6.6051, α̂ = 0.7910,
ℓ̂BEG = −174.8821,

whereas for the BG , EG and Gumbel distribution we obtain

â = 1.69, b̂ = 0.62, µ̂ = 16.53, σ̂ = 6.44, hatℓBG = −179.6892,
µ̂ = 25.8849, σ̂ = 6.6365, α̂ = 0.8015, ℓ̂EG = −184.0968,

and
µ̂ = 27.2814, σ̂ = 7.5667, ℓ̂Gumbel = −184.1654,
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respectively.

For the data set, the values of the LR statistics for testing the hypotheses H0 :
Gumbel × H1 : BEG, H0 : EG × H1 : BEG and H0 : BG × H1 : BEG are: 18.5666
(p − value = 3.3601 × 10−4), 18.4294 (p − value = 9.9567 × 10−5) and 9.6143 (p − value = 19 × 10−4),
respectively. Therefore, we reject the null hypotheses in three cases in favor of the BEG
distribution at the significance level of 5%. The plots of the estimated densities of the
BEG,BG,EG and Gumbel distributions fitted to the data set given in Figure 2 show that
the BEG distribution gives a better fit than the other three submodels.

Figure 1: Estimated densities of the BEG, BG, EG and Gumbel distributions for the data
set

6 Concluding Remarks

We proposed a new five-parameter distribution called the beta exponentiated Gumbel
(BEG) distribution that includes the beta Gumbel, exponentiated Gumbel and Gumbel
distribution. We obtained expressions for the distribution function, density and rth
moment of the new distribution and order statistics. We discuss estimation of the
parameters by maximum likelihood and provide the information matrix. We observe
in one application to real data set that the BEG distribution flexible and can be used
quite effectively in analysing positive data in place of the special cases.
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