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Abstract. This paper considers an extension of probability space based
on interval random variables. In this approach, first, a notion of interval
random variable is introduced. Then, based on a family of continuous
distribution functions with interval parameters, a concept of probability
space of an interval random variable is proposed. Then, the mean and
variance of an interval random variable are introduced. The presented
theoretical results will be illustrated with some lemmas. Some numerical
examples will be used to show the performance of the proposed method.
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1 Introduction

Modelling real world problems typically involves processing uncertainty
of two distinct types. These are uncertainties arising from a lack of
knowledge relating to concepts and uncertainties due to inherent vague-
ness in concepts themselves which, in the sense of classical logic, may be
well defined. Traditionally, the above can be modelled in terms of proba-
bility theory and uncertainty theory respectively which are quite distinct
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theoretical foundations for reasoning and decision making in situations
of uncertainty. However, there are many situations where there is in-
sufficient information regarding vague concepts, i.e. in practical studies;
however, there are many practical problems that require dealing with
observations that represent inherently imprecise, uncertain, or linguis-
tic characteristics. In such cases, closed intervals may be more effective
in encoding observations rather than precise ones. For instance, if one
reports a perceived length of an object in a perceptual study, imprecise
responses such as “between 10 and 15” may reflect the perceived length
better than real-valued responses. Moreover, it is frequently difficult to
assume that the parameter, for which the distribution of a random vari-
able is determined, has a precise value, and so on. To produce suitable
probability theory dealing with imprecise information, so we need to
model the imprecise information and extend the usual probability space
to imprecise environments. This suggests the need for a theory of the
probability of closed intervals random variables.

The topic of probability theory with imprecise information has been
studied by some authors. Below is a brief review of some studies rele-
vant to the present work. A fuzzy event is a fuzzy set whose membership
function is Borel measurable and its probability is defined by Zadeh [24]
as the expected value of the membership function characterizing the
fuzzy set. Yager [21] introduced a methodology for obtaining a precise
fuzzy measure of the probability of a fuzzy event in the face of prob-
abilistic uncertainty on the base elements. Klement [10] has suggested
a modification of Yager’s definition which leads to a piecewise continu-
ous fuzzy subset. Yager [22] provided an appropriate interpretation for
Klements modification and used it to provide an alternative definition
for a fuzzy probability of a fuzzy event. Heilpern [9] studied the fuzzy
subsets of the space of all probability measures which the probability
of fuzzy event is equal to a fuzzy probability. Baldwin et al. [1] intro-
duced the probability of a fuzzy event using Mass assignment theory
techniques for processing uncertainty together with the t-norm defini-
tion of conditional probabilities. Toth [20] redesigned some definitions
of a probability of a fuzzy event based on the operational viewpoint of
f -set theory and on some concepts of operational statistics. Plasecki [15]
defined the probability of fuzzy events as a denumerable additivity mea-
sure. He also defined a notion of conditional probability of fuzzy events,
complete fuzzy repartition and independent fuzzy events by means of
the probability measure. Stein [19] discussed the treatment of fuzzy
probabilities in setting of fuzzy variables and joint possibility distribu-
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tions. Smets [18] proposed some axioms to justify the natural definition
of the probability of a fuzzy event initially given by Zadeh [24]. They are
based (1) on the postulate that the sum of the conditional probability of
a fuzzy event and of its complement given any fuzzy event adds to one
or (2) on soft independence for orthogonal sets with independent con-
stitutive elements. Cheng et al. [4] extended the fuzzy probability of a
fuzzy event from a fuzzy algebra to the fuzzy σ-algebra generated by it.
Grzegorzewski [7] generalized the notion of independence of events and
the concept of conditional probability on the intuitionistic fuzzy events.
Chinag et al. [5] considered fuzzy probabilities constructed over fuzzy
topological spaces. They also extend a notion of product fuzzy topologi-
cal space with product fuzzy topological space. Mesiar [14] transformed
probability measures on intuitionistic fuzzy events that were axiomati-
cally characterized by Riec̆an [16] as interval-valued fuzzy sets. En-lin
et al. [6], based on the interval probability, studied the second kind of
fuzzy random problem and provided some definitions of fuzzy probabil-
ity random variable and its distribution function, distribution sequence,
fuzzy math expectation, fuzzy variance and so on.

The purpose of this paper is to provide a novel method of construct-
ing a probability space based on interval random variables induced by
a family of parametric continuous distribution functions. Then, a con-
cepts of cumulative distribution function, density function, mean and
variance of an interval random variable are derived as a main result.

This paper is organized as follows: In Section 2, first some prelimi-
naries about closed intervals are reviewed and a distance between closed
intervals is introduced. Some concepts of the classical probability space
is also recalled in this section. In Section 3, a concept of interval random
variable is introduced. In Section 4, a method is proposed to construct
the probability of an event based on a family of parametric continuous
distribution function with interval parameters. In the same section, a
concept of mean and variance of an interval random variable is proposed.
Some basic properties of the proposed methods are also put into investi-
gation in this section. Moreover, some numerical examples are provided
to clarify the discussions in this article and give a possible applications
in Section 5. Finally, a brief conclusion and some proposals for further
study conclude the paper.
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2 Preliminaries

2.1 closed intervals

The arithmetic operators on closed intervals are basic content in interval
mathematics. Let’s have a look at the operations of closed interval
[13]. Let I = [a1, a2] and J = [b1, b2] be two closed intervals, where
a1, a2, b1, b2 ∈ R. Some of the main operations of closed interval we will
use in this paper are given as follows (for more see [8]):

• Addition: I ⊕ J = [a1 + b1, a2 + b2],

• Multiplication:

I ⊗ J = [min{a1b1, a1b2, a2b1, a2b2},max{a1b1, a1b2, a2b1, a2b2}],

In this paper, the set of all compact intervals in R is denoted by C(R).

Definition 2.1. Let I, J ∈ C(R). The distance between two fuzzy
numbers I and J is defined as follows

d(I, J) =

∫ 1

0
(Iα − Jα)

2dα,

where Iα = (1− α)IL + αIU for all α ∈ [0, 1].

It is easy to verify that d : C(R) × C(R) → [0,∞) has the following
properties.

Lemma 2.1. For three closed intervals I, J and K,

• d(I, J) = 0 if and only if I = J ,

• d(I, J) = d(J, I),

• d(I,K) ≤ d(I, J) + d(J,K).

We will use the proposed distance to define the variance of an interval
random variable in Section 4.

2.2 The Classical Probability Space

A probability space is denoted by the standard notation (Ω,A, P ) where:
Ω is a sample space, A is a σ-algebra of subsets of Ω, and P is a function
from A to [0, 1] with P (Ω) = 1 and such that if E1, E2, . . . ∈ A are
disjoint then P (∪∞

i=1Ei) =
∑∞

i=1 P (Ei). A set of probability measures
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Pθ on (Ω,A) indexed by a parameter θ ∈ Θ is said to be a parametric
family if and only if Θ ⊂ Rp for some fixed positive integer p and each
Pθ is a known probability measure when θ is known. The set Θ is called
the p-dimensional parameter space.

In statistical inference, the data set is viewed as a realization or obser-
vation of a random variable X defined on a probability space (Ω,A, P )
related to the random experiment. Now, let X : Ω → R be a ran-
dom variable, where R is equipped with the σ-algebra B(R), the set of
all Borel subsets of R. Then the probability measure induced by X,
PX : B(R) → [0, 1], is defined as follows:

∀ A ∈ B(R), PX(A) = P{X ∈ A} =

∫
A
dP (ω). (1)

In particular, if A = (−∞, x], then the cumulative distribution function
of X, for each x ∈ R, is obtained as follows:

FX(x) = P{X ≤ x} (2)

=

∫
{ω∈Ω|X(ω)≤x}

dP (ω).

Moreover, the probability of A = (a, b] can be obtained by P (a < X ≤
b) = FX(b)− FX(a).

3 Interval Random Variables

As it was mentioned in Introduction, in practical studies, we may come
across the interval data rather than precise ones. Such situations often
occur in humanities, especially in psychology, social studies, manage-
ment, etc. In this section, a notion of interval random variable induced
by a family of parametric continuous distribution functions is proposed.
It is noticeable that one of the most popular notions of a fuzzy random
variable is introduced by Kwakernaak [11, 12]. Here, the Kwakernaak’s
definition is applied to introduce the notion of interval random variable.

Definition 3.1. Let (Ω,A, P ) be a probability space. An interval-
valued function X : Ω → C(R), where X(ω) = [XL(ω), XU (ω)], is called
an interval random variable (I.R.V.) if XL : Ω → R and XU : Ω → R
are real-valued random variables.

The following property follows easily from this definition.
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Proposition 3.1. Let X : Ω → C(R) be an interval-valued function.
Then X is an I.R.V. if and only if, for each α ∈ [0, 1], Xα : Ω → R
defined by Xα(ω) = (1−α)XL(ω)+αXU (ω), for all ω ∈ Ω, is a random
variable.

Here we consider a special case of I.R.V.s as the member of a family
of a classical continuous parametric population based on Wu [23] and
Chachi et al. [3].

Definition 3.2. Assume {Fθ : θ = (θ1, θ2, . . . , θp) ∈ Rp} is a family of
continuous c.d.f. An I.R.V. X is said to have the same distribution as
F with a vector of interval parameters θ = (θ1, θ2, . . . , θp) ∈ (C(R))p, de-
noted by X ∼ Fθ, if at each level of α ∈ [0, 1], Xα ∼ Fθ(α) where θ(α) =

(θ1(α), . . . , θp(α)) and θj(α) ∈ θj = [θLj , θ
U
j ] for any j = 1, 2, . . . , p.

Remark 3.1. It should be noted that for an I.R.V. X, if α1, α2 ∈
[0, 1] satisfy α1 < α2 then, essentially, Xα1 and Xα2 should satisfy this
property that Xα2 is “stochastically greater than” Xα1 . Therefore, to
have the relation X ∼ Fθ, the distribution Fθ has to satisfy Fθ(α1)

(x) ≥
Fθ(α2)

(x) for all α1, α2 ∈ [0, 1] with α1 < α2 and all x ∈ R. To clarify

the discussion how to indicate θ, in a family of distribution with interval
parameters, consider the following examples:

Example 3.1. Assume that X ∼ Fλ, λ ∈ C(0,∞) where Fλ(x) =
1− e−λx, x > 0. Let λ(α) = αλL + (1− α)λU = λ1−α for all α ∈ [0, 1].
Then, we can easily observe that Fλ(α1)

(x) ≥ Fλ(α2)
(x) for all x ∈ R and

for every α1 < α2. So X ∼ Fλ if Xα ∼ Fλ1−α
for all α ∈ [0, 1]. Hence, in

particular, XL ∼ FλU and XU ∼ FλL . Now, let Fλ(x) = 1− e
−x
λ , x > 0.

In this case, if Xα ∼ Fλ(α) where λ(α) = λα, then it is easy to verify

that Fλ(α1)
(x) ≥ Fλ(α2)

(x) for all x ∈ R and for every α1 < α2. In this

case, note that XL ∼ FλL and XU ∼ FλU .

Example 3.2. Let θ = (µ, σ) ∈ C(R) × C(0,∞) where µ(α) = µα =
(1−α)µL+αµU , σ(α) = σα = (1−α)

√
(σ2)L+α

√
(σ2)U and Fµ,σ2(x) =

1
2πσ2 exp(

−(x−µ)2

2σ2 ). Then, it is easy to verify that Fθ(1−α1)
(x) ≥ Fθ(1−α2)

(x), where θ(1−α) = (µ1−α, σ1−α), for all x ∈ R and for every α1 < α2.

So X has the normal distribution with interval parameters µ and σ2 if
Xα ∼ F

µ1−α,σ
2
1−α

and therefore XL ∼ FµU ,(σ2)U and XU ∼ FµL,(σ2)L .
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Example 3.3. Let X ∼ Fθ where θ = (β, η) ∈ C(0,∞)×C(0,∞) with

the c.d.f. Fθ(x) = 1− e
−(x

η
)β
, θ = (β, η). Then, we easily have:

FXL(x) =

 1− e
−( x

ηL
)β

L

x ≤ ηU ,

1− e
−( x

ηL
)β

U

x > ηU ,

and

FXU (x) =

 1− e
−( x

ηU
)β

U

x ≤ ηU ,

1− e
−( x

ηL
)β

L

x > ηU .

4 Probability Space Induced by I.R.V.s

This section constructs a probability measure for an I.R.V. To do this,
the concept of c.d.f for an I.R.V. is extended firstly to interval environ-
ment. Let (R,B(R), P ) be a probability space and X : R → C(R) be an
I.R.V. For a given x ∈ R, let

FL(x) = inf
α∈[0,1]

FXα
(x) = FXU (x),

FU (x) = sup
α∈[0,1]

FXα
(x) = FXL(x).

As one can imagine naturally, the value of c.d.f. of X at x ∈ R should
belong to the interval [FL(x), FU (x)]. On the other hand, since every
convex linear combination of FL and FU is also a cumulative distribution
function; therefore, (in particular) the mean of lower and upper bounds
FL and FU , i.e.

FX(x) =

∫ 1

0
((1− α)FL(x) + αFU (x))dα =

FXL(x) + FXU (x)

2
, x ∈ R,

(3)
is also a c.d.f. In the sequel, we will denote by FX(x) the c.d.f. of X at
x ∈ R.

Now, for any A ∈ B(R), let

P (A) :=

∫
A
dFX =

P (XL ∈ A) + P (XU ∈ A)

2
. (4)

Therefore, if (R,B(R), P ) is a probability space and X : R → C(R) be
an I.R.V, then it is readily seen that (R,B(R), P ) is also a probability
space. As it is seen, P has the following properties:
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(i) For two events A and B if A ⊆ B then P (A) ≤ P (B).

(ii) For an event A, P (Ac) = 1 − P (A), where Ac is the complement
of A.

(iii) For two events A and B, P (A ∪B) = P (A) + P (B)− P (A ∩B).

(iv) For two events A and B, P (A−B) = P (A)− P (A ∩B).

(v) If An ↓ Ã then P (An) ↓ P (A).

(v) Suppose f is a continuous and strictly decreasing function on R.
If An ↓ A, then P (f(An)) ↓ P (f(A)).

Remark 4.1. AssumeX is an I.R.V. on the measurable space (R,B(R)).
Let A = (a, b]. Then it is easy to verify that the probability of (a, b] can
be obtained by P ((a, b]) = FX(b)− FX(a). In addition, the probability
density function (p.d.f) of X is given by

fX(x) =
d

dx
FX(x) =

f
X

L(x) + f
X

U (x)

2
. (5)

Definition 4.1. Let X is an I.R.V. on a probability space (Ω,A, P ).
The mean of X is defined by E(X) ∈ C(R) where (E(X))α = E(Xα)
for any α ∈ [0, 1]. In addition, the variance of an I.R.V. X is defined
by var(X) = var(d(X,E(X))) =

∫ 1
0 var(Xα)dα, where d denotes the

distance between two closed interval, introduced in Definition 2.1.

Based on interval arithmetic, it is easy to verify that the mean and
variance of an I.R.V. X satisfy the following properties:

Lemma 4.1. Let X is an I.R.V. on a probability space (Ω,A, P ).
Then,

(i)

E(a⊗X⊕ b) =

{
[aE(XL) + b, aE(XU ) + b] a > 0, b ∈ R,
[aE(XU ) + b, aE(XL) + b] a < 0, b ∈ R,

(ii) var(a⊗X⊕b) = a2var(X), for all a, b ∈ R, where ⊕ and ⊗ denote
the sum and multiply operations on C(R), respectively.
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5 Numerical Examples

In this section, some examples are provided to compute the probability
of an interval, mean and variance of an I.R.V. based on the proposed
methods.

Example 5.1. Suppose that a component/system is characterized by
an exponential life X ∼ Fλ where Fλ(x) = 1 − e−λx. Therefore, from
Eq. (3), the c.d.f. of X at x > 0 is given by

FX(x) = 1− e−λUx + e−λLx

2
.

For example suppose that λ = [0.02, 0.04]. The graph of c.d.f. of FX

is shown in Fig. 1. We can also obtain P ([8, 15]) = 0.144. In addition,
assume we want to calculate the probability that the component will fail
within A = [8, 15], given that it has survived at least 8 hours. So, from
Eq. (4),

P ([8, 15]|(8,∞)) =
P ([8, 15] ∩ (8,∞))

P ((8,∞))
=

FX(15)− FX(8)

1− FX(8)
= 0.182.

Moreover, the mean and variance of X are obtained as E(X) = [E(XL),
E(XU )] = [25, 50] and var(X) =

∫ 1
0 (

1
0.02α+(1−α)0.04)

2dα = 1250.

Example 5.2. Assume that X ∼ F
µ,σ2 where µ ∈ C(R), σ =

√
σ2 ∈

C(0,∞) and Fµ,σ2(x) = 1
2πσ2 exp(

−(x−µ)2

2σ2 ). Then, from Eq. (3), the

c.d.f. of X at x ∈ R is given by

FX(x) =
Φ(x−µU

σU ) + Φ(x−µL

σL )

2
,

where Φ denotes the c.d.f. of standard normal distribution. For example,
suppose that µ = [−1, 1], σ2 = [0.5, 1.5]. The graph of p.d.f. of fX is
shown in Fig. 2. In addition, based on Eq. (4), the calculations show
that P ([−1, 2]) = 0.62.

Example 5.3. Let X ∼ Fβ,η with the c.d.f. Fβ,η(x) = 1 − e
−(x

η
)β

where β, λ ∈ C(0,∞). From Example 3.3, therefore, the c.d.f. of X at
x ∈ R is obtained as
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Figure 1: Cumulative distribution function in Example 5.1
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Figure 2: Probability density function in Example 5.2

FX(x) =

 1− e
−( x

ηL
)β

L

+e
−( x

ηU
)β

U

2 x < ηU ,

1− e
−( x

ηL
)β

U

+e
−( x

ηU
)β

L

2 x > ηU .

For instance, assume β = [1.1, 1.3] and η = [3, 4]. The graph of c.d.f. of
FX is shown in Fig. 3. In addition, We have P ([5, 15]) = 0.203.

Remark 5.1. (A comparison study) It is mentioned that Buckley
[2] proposed a fuzzy probability of an event for the case where a (precise)
random variable X is induced from a family of distributions with fuzzy
parameters [2]. However, if we apply closed intervals instead of fuzzy
numbers, then the following interval probability

P (A) = [ inf
α∈[0,1]

∫
A
dFθα

, sup
α∈[0,1]

∫
A
dFθα

],

is obtained. It is noticeable that P has the following properties:
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Figure 3: Cumulative density function in Example 3.3

1. If A ∩ B ̸= ∅, then P (A ∪ B) ≼ P (A)⊕ P (B)⊖ P (A ∩ B), where
≼ denotes the ordering introduced by Wu [23] and ⊕, ⊖ represent
the sum and minus of two closed intervals (for more see [13]).

2. If A ⊆ B, then P (A) ≼ P (B).

3. 0 ≼ P (A) ≼ 1 for all A and P (∅) = 0, P (Ω) = 1.

4. P (A)⊕ P (Ac) ≽ 1.

However, in this paper, we construct a (precise) probability measure
based on I.R.V.s induced by a family of continuous parametric distri-
bution functions.

6 Conclusion

In this paper, a method to construct a probability space based on inter-
val random variables has been introduced. We proposed a probability of
an event in the case where the interval random variable is assumed to be
induced from a family of continuous parametric distribution functions.
It is also shown that the proposed method satisfies all properties as in
the classical case. A concept of mean and variance of an interval ran-
dom variable is also proposed and their properties are also investigated.
Some numerical examples are provided to clarify the discussions in this
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paper. The proposed method is an extension of the classical one, i.e.
the proposed methods reduce to the classical probability space, mean
and variance whenever all interval random variables as well as interval
parameters are reduced to the precise ones.

The topic of statistical inference based on interval random variables
including parameter estimation, statistical hypothesis test and Bayesian
inference are some interesting topics for future studies.
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