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Abstract. We introduce in this paper a new four-parameter generalized
version of the linear failure rate distribution which is called Beta-linear
failure rate distribution. The new distribution is quite flexible and can
be used effectively in modeling survival data and reliability problems. It
can have a constant, decreasing, increasing and bathtub-shaped failure
rate function depending on its parameters. It includes some well-known
lifetime distributions as special sub-models. We provide a comprehen-
sive account of the mathematical properties of the new distribution. In
particular, A closed form expressions for the probability density, cumu-
lative distribution and hazard rate functions of this new distribution is
given. Also, the rth order moment of this distribution is derived. We
discuss the maximum likelihood estimation of the unknown parameters
of the new model for complete data and obtain an expression for the
Fisher information matrix. In the end, to show the flexibility of the new
distribution and illustrative purposes, an application using a real data
set is presented.
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1 Introduction

The linear failure rate (LFR) distribution with parameters a ≥ 0 and
b ≥ 0, (a + b > 0) which is denoted by LFR(a, b), has the cumulative
distribution function (cdf)

G (x) = 1− exp(−ax− b

2
x2), x > 0, (1)

and probability density function (pdf)

g (x) = (a+ bx) exp(−ax− b

2
x2), x > 0.

Note that if b = 0 and a ̸= 0, then the LFR distribution is reduced
to the exponential distribution with parameter a (Exp(a)), and if a = 0
and b ̸= 0 then we can obtain the Rayleigh distribution with parameter
b (Rayleigh(b)). A basic structural properties of LFR(a, b) is that it is
the distribution of minimum of two independent random variables X1

and X2 having Exp(a) and Rayleigh(b) distributions, respectively (Sen
and Bhattacharyya, 1995).

If G denotes the cdf of a random variable, then a generalized class
of distributions can be defined by

F (x) = IG(x)(α, β) =
1

B(α, β)

∫ G(x)

0
tα−1(1− t)β−1dt, (2)

for α > 0 and β > 0, where Iy(α, β) =
By(α,β)
B(α,β) is the incomplete beta

function ratio and By(α, β) =
∫ y
0 t

α−1(1− t)β−1dt is the incomplete beta
function.

Many authors considered various forms of G and studied their prop-
erties: Eugene et al. (2002) (Beta Normal distribution), Nadarajah and
Kotz (2004) (Beta Gumbel distribution), Nadarajah and Gupta (2004)
and Barreto-Souza et al. (2011) (Beta Fréchet distribution), Famoye et
al. (2005), Lee et al. (2007) and Cordeiro et al. (2011) (Beta Weibull
distribution), Nadarajah and Kotz (2006) (Beta exponential distribu-
tion), Akinsete et al. (2008) (Beta Pareto distribution), Silva et al.
(2010) (Beta modified Weibull distribution), Barreto-Souza et al. (2010)
(Beta generalized exponential distribution), Khan (2010) (Beta inverse
Wibull distribution), Mahmoudi (2011) (Beta generalized Pareto dis-
tribution), Cordeiro et al. (2013b) (Beta-exponentiated Weibull distri-
bution), Cordeiro et al. (2013c) (Beta-Weibull geometric distribution),
Singla et al. (2012) (Beta generalized Weibull distribution), Cordeiro et
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al. (2013a) (Beta generalized gamma distribution) Jafari et al. (2014)
(Beta-Gompertz distribution) and Cintra et al. (2014) (Beta generalized
normal distribution).

In this article, we propose a new four-parameter distribution, referred
to as the beta linear failure rate (BLFR) distribution. The main reasons
for introducing this new distribution are: (1) The quality of procedures
used in statistical analysis depends heavily on the assumed probabil-
ity model or distributions. Because of this, considerable effort over the
years has been expended in the development of large classes of standard
probability distributions along with relevant statistical methodologies.
In fact, the statistics literature is filled with hundreds of continuous
univariate distributions. However, in recent years, applications from the
environmental, financial, biomedical sciences, engineering and economics
have further shown that data sets following the classical distributions are
more often the exception rather than the reality. Since there is a clear
need for extended forms of these distributions, a significant progress has
been made toward the generalization of some well-known distributions.
(2) The LFR distribution is also known as the linear exponential distri-
bution, containing the exponential and Rayleigh distributions as special
cases, is a well-known distribution for modeling lifetime data in relia-
bility and medical studies. It is also models phenomena with increasing
failure rate. The LFR distribution does not provide a reasonable para-
metric fit for modeling phenomenon with decreasing, non linear increas-
ing, or non-monotone failure rates such as the bathtub shape, which are
common in firm ware reliability modeling and biological studies (Lai et
al., 2001; Zhang et al., 2005).
(3) The BLFR distribution has greater tail flexibility than the LFR
distribution. The most realistic hazard rate is bathtub-shaped. This
occurs in most real-life systems. Such hazard rates can be observed in
the course of a disease whose mortality reaches a peak after some finite
period and then declines gradually. A state-of-the-art survey on the
class of such distributions can be found in Nadarajah (2009). Thus the
BLFR distribution which contains this type of hazard rate is a reason-
able model to fit these data.
(4) The new proposed four-parameter distribution contains many flexi-
ble lifetime distributions as special sub-models. These models are: the
Beta exponential (BE), Beta Rayleigh (BR), generalized linear failure
rate (GLFR) and LFR distributions, among others.

The reminder of the paper is organized as follows: In Section 2, we
define the BLFR distribution and investigate some properties of the dis-
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tribution in this Section. Some of these properties are the limit behavior
and shapes of the pdf and hazard rate function of the BLFR distribution.
Section 3 provides a general expansion for the moments of the BLFR dis-
tribution. In Section 4, we discuss the maximum likelihood estimation
(MLE) and calculate the elements of the observed information matrix.
Application of the BLFR distribution is given in the Section 5. A simu-
lation study is performed in Section 6. Finally, Section 7 concludes the
paper.

2 Definition of the BLFR Distribution and Some
Special Cases

We now introduce the BLFR distribution by taking G(x) in (2) to be
the cdf of the LFR distribution. Hence, the cdf and pdf of the BLFR
are given by

F (x) = I1−exp(−ax− b
2
x2)(α, β) =

∫ 1−exp(−ax− b
2
x2)

0
tα−1(1− t)β−1dt,

and

f(x) =
a+ bx

B(α, β)

(
1− exp(−ax− b

2
x2)

)α−1

exp(−aβx− bβ

2
x2), (3)

respectively. We use the notation X ∼ BLFR(a, b, α, β). The hazard
rate function of BLFR distribution is given by

h(x) =
a+ bx

B(α, β)−BG(x)(α, β)
(1−exp(−ax− b

2
x2))α−1exp(−aβx− bβ

2
x2).

2.1 Special cases of the BLFR distribution

1. If β = 1, then we get the GLFR distribution (GLFR(a, b, α)) which
is introduced by Sarhan and Kundu (2009).

2. If β = 1 and b = 0, then we get the generalized exponential distribu-
tion (GE) (Gupta and Kundu, 1999).

3. If β = 1 and a = 0, then we get two-parameter Burr X distribution
which is introduced by Surles and Padgett (2005) and also is known as
generalized Rayleigh distribution (GR) (Kundu and Raqab, 2005).

4. If α = 1, then (3) reduces to LFR distribution LFR(aβ, bβ).
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Figure 1: The histogram of a generated data set with size 100 and the
exact pdf of BLFR (left) and the empirical cdf and exact cdf (right).

5. If b = 0, then we get the BE distribution (BE(a, α, β)) which is
introduced by Nadarajah and Kotz (2006).
6. If a = 0, then we get the BR distribution (BR(b, α, β)) which is
defined by Akinsete and Lowe (2009) and is a special case of beta Weibull
distribution (Famoye et al., 2005).
7. If the random variable X has BLFR distribution, then the random
variable Y = 1 − exp(−aX − b

2X
2), satisfies the beta distribution with

parameters α and β. Therefore, T = aX + b
2X

2 satisfies the BE distri-
bution with parameters 1, α and β (BE(1, α, β)).
8. If α = i and β = n− i, where i and n are positive integer values, then
the f(x) is the pdf of ith order statistic of LFR distribution.

The following result helps in simulating data from the BLFR distri-
bution: If Y follows Beta distribution with parameters α and β, then

X = G−1(Y ) =

{
−a+

√
a2−2blog(1−Y )

b if a ≥ 0, b > 0

− log(1−Y )
a if a > 0, b = 0,

(4)

follows BLFR distribution with parameters a, b, α, and β.
For checking the consistency of the simulating data set form BLFR

distribution, the histogram for a generated data set with size 100 and
the exact pdf of BLFR(0.2, 0.1, 2, 0.3), are displayed in Fig 1 (left). Also,
the empirical cdf and the exact cdf is given in Fig 1 (right).

2.2 Properties of the BLFR Distribution

In this section, limiting behavior of pdf and hazard rate function of the
BLFR distribution and their shapes are studied.
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2.2.1 Mathematical Behaviour of the pdf

Theorem 2.1. Let f(x) be the pdf of the BLFR distribution. The
limiting behaviour of f(x) for different values of its parameters is given
bellow:
i. If α = 1 then limx→0 f(x) = aβ.
ii. If α > 1 then limx→0 f(x) = 0.
iii. If 0 < α < 1 then limx→0 f(x) = ∞.
iv. limx→∞ f(x) = 0.

Proof. The proof of parts (i)-(iii) are obvious. For part (iv), we have

0 ≤ (1− exp(−ax− b

2
x2))α−1 < 1.

Therefore,

0 < f(x) <
a+ bx

B(α, β)
exp(−aβx− bβ

2
x2) .

It can be easily shown that limx→∞(a+ bx) exp(−aβx− bβ
2 x

2) = 0. and
the proof is completed.

Theorem 2.2. Let f(x) denotes the pdf of the BLFR distribution.
(a) Let b = 0, we have:
i. If α > 1, the pdf f(x) is unimodal and the mode is given by x0 =
a−1 log(α+β−1

β ).
ii. If 0 < α < 1, then the pdf f(x) is decreasing.

(b) Let b > 0, we have:
i. If α > 1, the pdf f(x) is log-concave and hence unimodal. The mode

is the solution of the equation b
2bz+a2

+ (α− 1) exp(−z)
1−exp(−z) − β = 0.

ii. If 0 < α < 1, then the pdf f(x) may be either decreasing and uni-
modal.

Proof. (a). Let b = 0. Suppose η(x) = − ∂
∂x log(f(x)). Then η(x) =

a(1− α) exp(−ax)
1−exp(−ax) + aβ.

(i) If α > 1, then η′(x) > 0, thus f(x) is log-concave and hence unimodal.
the mode is given by x0 = a−1 log(α+β−1

β ). (ii) If 0 < α < 1, then
η(x) > 0 and hence the pdf f(x) is decreasing.

(b) Let b > 0. Consider z = ax+ b
2x

2 = b
2(x+ a

b )
2 − a2

2b . It implies that
z > 0 for x > 0 and also, it is increasing with respect to x. We have
x = 1

b

√
2bz + a2 − a

b . Now, rewriting the pdf of BLFR distribution as
function of z, ξ (z) say, we obtain

ξ(z) = f(
√

2bz + a2 − a

b
) =

√
2bz + a2

B(α, β)
(1− exp(−z))α−1exp (−βz) .
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If η(z) = − ∂
∂z log (ξ(z)) then

η′(z) = − ∂2

∂z2
log(ξ (z)) = 2b2

(
2bz + a2

)−2
+ (α− 1)

exp (−z)
(1− exp(−z))2

,

(i) If η′(z) > 0 then f(x) is log-concave and hence is unimodal. Thus the
pdf f(x) is unimodal if α > 1. The mode is the solution of the equation

b
2bz+a2

+ (α− 1) exp(−z)
1−exp(−z) − β = 0.

(ii) If 0 < α < 1, then f(x) may be either decreasing and unimodal.
Unfortunately, it is not possible to determine analytically (theoretically)
the behaviour of the pdf.

2.2.2 Mathematical Behaviour of the Hazard Rate Function

Theorem 2.3. Let h(x) be the hazard rate function of the BLFR
distribution. The limiting behaviour of h(x) for different values of its
parameters is given bellow:
(i) If b > 0 then

lim
x→0+

h(x) =


+∞ α < 1
aβ α = 1
0 α > 1,

lim
x→+∞

h(x) = ∞.

(ii) If b = 0, a > 0 then

lim
x→0+

h (x) =


+∞ 0 < α < 1
aβ α = 1
0 α > 1,

lim
x→+∞

h (x) =


0 0 < α < 1
aβ α = 1
+∞ α > 1.

Proof. The proof is obvious and is omitted.

Theorem 2.4. Let h(x) be the hazard rate function of the BLFR
distribution. Consider the following cases:
(a) Consider b = 0, we have
i. If α > 1, then BLFR distribution has an increasing hazard rate func-
tion.
ii. If 0 < α < 1, then the hazard rate function of the BLFR distribution
is decreasing.
(b) Consider b > 0, we have
i. If α > 1, then BLFR distribution has an increasing hazard rate func-
tion.
ii. If 0 < α < 1, then the hazard rate function of the BLFR distribution
is bathtub-shaped.
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Proof. (a) Let b = 0. Then, η′(x) = − ∂2

∂x2 log(f(x)) = a(α−1) exp(−ax)
(1−exp(−ax))2

.

i. If α > 1, then η′(x) > 0 and hence h(x) is an increasing function of x
using a theorem given by Glaser (1980).
ii. If 0 < α < 1, then η′(x) < 0 and hence h(x) is a decreasing function
of x. If α = 1, then h(x) is a linear function of x.
(b) Consider b > 0, then we have

η′(z) = − ∂2

∂z2
log ξ (z) = 2b2

(
2bz + a2

)−2
+ (α− 1)

exp(−z)
(1− exp (−z))2

,

i. If α > 1, then η′(z) > 0 for z > 0 and hence h(x) is an increasing
function of x.
ii. If 0 < α < 1, then there exist x0 such that η′(x) < 0 for x < x0 and
η′(x) > 0 for x > x0. Hence h(x) is a bathtub-shaped hazard rate func-
tion. Note that in this case limz→0+ η

′(z) = −∞ and limz→∞ η′(z) = 0+,
which shows that the hazard function is bathtub. It is not possible to
determine analytically (theoretically) the parameter values which cor-
respond to the bathtub-shaped hazard rate function for the BLFR dis-
tribution. The graphic analysis indicates (numerically) that the hazard
rate function is bathtub-shaped when b > 0 and 0 < α < 1.

Plots of pdf and hazard rate function of the BLFR distribution for
different values of it’s parameters are given in Fig. 2 and Fig. 3, respec-
tively.

3 Some Extensions and Moments

Here, we present some representations of cdf, pdf, and the survival func-
tion of BLFR distribution. The mathematical relation given below will
be useful in this section. If β is a positive real non-integer and |z| < 1,
then (1−z)β−1 =

∑∞
j=0wjz

j , and if β is a positive real integer, then the

upper of the this summation stops at β − 1, where wj =
(−1)jΓ(β)

Γ(β−j)Γ(j+1) .

1. We can express (2) as a mixture of cdf of generalized LFR distribu-
tions as follows:

F (x) =
∞∑
j=0

pj(G (x))α+j =
∞∑
j=0

pjGj(x),

where pj =
(−1)jΓ(α+β)

Γ(α)Γ(β−j)Γ(j+1)(α+j) and Gj (x) = (G (x))α+j is cdf of a ran-
dom variable which has a generalized LFR distribution with parameters
a, b, and α+ j.
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Figure 2: Plots of pdf of the BLFR distribution for selected parameters.
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Figure 3: Plots of hazard rate function of the BLFR distribution for
selected parameters.

2. We can express (3) as a mixture of pdf of generalized LFR distribu-
tions as follows:

f (x) =
∞∑
j=0

pj(α+j)g (x) (G (x))α+j−1 =
∞∑
j=0

pjgj (x),

where gj (x) is pdf of a random variable which has a generalized LFR
distribution with parameters a, b, and α+ j.

3. The kth moment of BLFR distribution can be expressed as a mixture
of the kth moment of generalized LFR distributions as follows:

E(Xk) =

∫ ∞

0
xkf (x) dx =

∫ ∞

0
xk

∞∑
j=0

pj(α+j)g (x) (G (x))α+j−1dx

=

∞∑
j=0

pj

∫ ∞

0
xkgj (x) dx =

∞∑
j=0

pjE(Xk
j ),

where gj (x) is pdf of a random variable Xj which has a generalized LFR
distribution with parameters a, b, and α+ j.
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4 Estimation and Inference

Consider X1, . . . Xn is a random sample from BLFR distribution. The
log-likelihood function for the vector of parameters θ = (a, b, α, β) can
be written as

ℓ (θ) =

n∑
i=1

log (a+ bxi)− nlog (Γ (α))− nlog (Γ (β))

+nlog (Γ (α+ β)) + (α− 1)

n∑
i=1

log (1− exp (ti)) + β

n∑
i=1

ti, (5)

where ti = −axi − b
2x

2
i . The log-likelihood can be maximized either

directly or by solving the nonlinear likelihood equations obtained by
differentiating (5). The components of the score vector U (θ) are given
by

Ua (θ) =
∂

∂a
ℓ (θ) =

n∑
i=1

1

a+ bxi
+ (α− 1)

n∑
i=1

xiexp (ti)

1− exp (ti)
− β

n∑
i=1

xi,

Ub (θ) =
∂

∂b
ℓ (θ) =

n∑
i=1

xi
a+ bxi

+
(α− 1)

2

n∑
i=1

x2i exp (ti)

1− exp (ti)
− β

2

n∑
i=1

x2i ,

Uα (θ) =
∂

∂α
ℓ (θ) = −nψ (α) + nψ (α+ β) +

n∑
i=1

log (1− exp (ti)),

Uβ (θ) =
∂

∂β
ℓ (θ) = −nψ (β) + nψ (α+ β) +

n∑
i=1

ti.

where ψ(.) is the digamma function.
The MLE’s of parameters (a, b, α, β), say (â, b̂, α̂, β̂), are the simulta-

neous solutions of of the equations U (θ) = 0.Maximization of Equation
(5) can be performed by using well-established routines like nlmb or op-
timize functions in the R statistical package. Our numerical calculations
showed that the surface of Equation (5) was smooth. The routines were
able to locate the maximum of the likelihood surface for a wide range
of starting values. However, to ease computations, it is useful to have
reasonable starting values. These can be obtained, for example, by the
method of moments.

Under conditions that are fulfilled for parameters in the interior of
the parameter space but not on the boundary, asymptotically

√
n(θ̂ − θ) ∼ N4(0, I(θ)

−1),
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where I (θ) is the expected information matrix. This asymptotic behav-
ior is valid if I (θ) is replaced by J(θ̂), i.e., the observed information
matrix evaluated at θ̂. For constructing tests of hypothesis and con-
fidence region we can use from this result. An asymptotic confidence
interval with confidence level 1− γ for each parameter θi, is given by(

θ̂i − zγ/2

√
J θ̂i , θ̂i + zγ/2

√
J θ̂i

)
,

where J θ̂i is the ith diagonal element of J(θ̂) and zγ is the upper γ point
of standard normal distribution.

5 Application of BLFR to Real Data Set

In this section, we provide a data analysis to see how the new model
works in practice. This data set is given by Aarset (1987) and consists
of times to first failure of fifty devices. The data is given by 0.1, 0.2, 1,
1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47,
50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85,
85, 85, 85, 85, 86, 86.

Here, we fit BLFR, GLFR, LFR, GR, GE, Rayleigh and exponential
models to the above data set. We use the MLE to estimate the model
parameters and calculate the standard errors of the MLE’s, respectively.
The MLE’s of the parameters (with std.), the maximized log-likelihood,
the Kolmogorov-Smirnov (K-S) statistic with its respective p-value, the
AIC (Akaike Information Criterion), AICC and BIC (Bayesian Infor-
mation Criterion) for the BLFR, GLFR, LFR, GR, GE, Rayleigh and
exponential models are given in Table 1.

We can perform formal goodness-of-fit tests in order to verify which
distribution fits better to the first data. We apply the Anderson-Darling
(AD) and Cramér-von Mises (CM) tests. In general, the smaller the
values of AD and CM, the better the fit to the data. For this data set,
the values of AD and CM statistics for fitted distributions are given in
Table 1.

The empirical scaled TTT transform Aarset (1987) can be used to
identify the shape of the hazard function. The TTT plot for this data in
Fig. 4 shows a bathtub-shaped hazard rate function and indicates the
appropriateness of the BLFR distribution to fit this data. The histogram
of data with the fitted pdf’s of BLFR, GLFR and LFR are displayed in
Fig. 4.
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Table 1: MLE’s (s.e.) of the fitted distribution, K-S with it p-value
p-value, −2 log(L), AIC, AICC, BIC, AD, CM, LR statistic with its
p-value corresponds to times to first failure.

Distribution
BLFR GLFR LFR GR GE Rayleigh Exp.

â 0.3347 0.5327 — 0.3520 0.7798 — —
(s.e.) (0.1432) (0.1145) — (0.0559) (0.1351) — —

b̂ 0.1243 — — — — — —
(s.e.) (0.0722) — — — — — —
α̂ 0.0172 0.0038 0.0136 — 0.0187 — 0.0219

(s.e.) (0.0354) (0.0030) (0.0038) — (0.0036) — (0.0031)

β̂ 0.0035 0.0003 0.0002 0.0003 — 0.0006 —
(s.e.) (0.0025) (8e-5) (1e-4) (8e-5) — (9e-5) —

-2log L 460.8 466.3 476.1 469.1 480.0 528.1 482.2
AIC 468.8 472.3 480.1 473.1 484.0 530.1 484.2
AICC 469.6 472.8 480.4 473.4 484.2 530.2 484.3
BIC 476.4 478.0 484.0 477.0 487.8 532.0 486.1
K-S 0.1554 0.1830 0.1768 0.2009 0.2042 0.2621 0.1911

p-value 0.1786 0.0703 0.0877 0.0353 0.0309 0.0021 0.0519
AD 1.749 2.4890 4.0346 3.0923 3.2530 13.3205 3.6505
CM 0.3574 0.4959 0.5443 0.6111 0.6472 0.8728 0.6006
LR — 5.5 15.30 8.3 19.2 67.3 21.4

p-value — 0.019 0.0005 0.0158 6.7e-5 1.6e-14 8.6e-5

The results for this data set show that the BLFR distribution yields
the best fit among the GLFR, LFR, GR, GE, Rayleigh and exponential
distributions. For this data, the K-S test statistic takes the smallest
value with the largest value of its respective p-value for BLFR distri-
bution. Also this conclusion is confirmed from the values of the AIC,
AICC and BIC for the fitted models given in Table 1 and the plots of
the pdf’s in Fig. 4.

Using the likelihood ratio (LR) test, we test BLFR distribution (al-
ternative hypothesis) versus other sub-models of BLFR distribution (null
hypothesis) The value of the LR test statistics and the corresponding
p-values are given in Table 1. These values show that the BLFR model
is superior to its sub-models in terms of model fitting for this real data
set at level 0.05.
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Figure 4: Plots of the empirical scaled TTT transform (left), and the
histogram of data with the fitted pdf’s (right).

6 Simulations

Here, we assess the performance of the MLE’s with respect to sample
size n. The assessment is based on a simulation study:
1. We generate 10,000 samples of size n = 50, 200 from the BLFR dis-
tribution for α = (0.5, 1, 3), β = (0.5, 2, 3), a = (1, 2, 3) and b = (1, 2, 3).
The random sample from the BLFR distribution can be obtain using
(4).

2. Compute the MLE’s of the parameters θ = (a, b, α, β), say θ̂
[j]
i , for

j = 1, . . . , 4, j = 1, . . . , 10000, using well-established routines like nlmb
or optimize functions in the R statistical package.
3. Calculate the AE’s and SD’s given by

AE(θ̂i) =
1

h

h∑
j=1

θ̂
[j]
i , SD(θ̂i) =

√√√√ 1

h− 1

h∑
j=1

(θ̂
[j]
i − θ̂i)2,

where h = 10000 is the number of replications. The results of simula-
tion study for the BLFR distribution is shown in Table 2, which indicate
the following results: (i) convergence has been achieved in all cases and
this emphasizes the numerical stability of the MLE method. (ii) The
differences between the average estimates and the true values are al-
most small. (iii) These results suggest that the MLE’s have performed
consistently. (iv) The standard errors of the MLE’s decrease when the
sample size increases. (v) The biases for each parameter either decrease
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Table 2: The averages of the 10000 MLE’s and mean of the simulated
standard errors for BLFR distribution.

AE SD

n (α, β, a, b) α̂ β̂ â b̂ sd(α̂) sd(β̂) sd(â) sd(b̂)
50 (.5,.5,1,1) 0.497 0.714 1.623 1.705 0.151 0.843 2.505 2.153

(.5,.5,1,2) 0.504 0.709 1.798 3.720 0.170 0.934 2.233 4.437
(.5,.5,3,1) 0.491 0.730 3.579 1.937 0.116 0.540 6.525 2.658
(1,2,1,3) 1.079 2.053 1.658 5.232 0.385 1.392 2.272 6.470
(3,2,1,1) 4.308 4.237 1.222 2.635 6.246 2.982 1.654 7.820
(3,3,3,3) 3.086 3.874 3.131 3.859 1.307 1.923 3.073 4.716

200 (.5,.5,1,1) 0.489 0.799 1.465 1.121 0.074 0.909 2.022 0.825
(.5,.5,1,2) 0.488 0.777 1.642 2.495 0.0845 0.955 2.227 1.902
(.5,.5,3,1) 0.494 0.737 3.762 1.036 0.057 0.498 4.427 1.038
(1,2,1,3) 1.005 2.062 1.264 4.522 0.197 1.122 0.810 4.719
(3,2,1,1) 3.070 4.021 0.944 1.987 1.311 2.944 0.967 3.587
(3,3,3,3) 2.999 3.766 3.053 3.626 0.633 2.025 1.940 3.962

or increase to zero as n→ ∞.

7 Conclusion

We define a new model, called the BLFR distributions, which generalizes
the LFR and GLFR distributions. The BLFR distributions contain the
GLFR, LFR,GR, GE, Rayleigh and exponential distributions as special
cases. The BLFR distribution present hazard functions with a very flex-
ible behavior. We obtain closed form expressions for the moments. The
Maximum likelihood estimation is discussed. Finally, we fitted BLFR
distribution to a real data set to show the potential of the new proposed
class.
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Far East Journal of Theoretical Statistics, 14(1), 15-24.

Nadarajah, S. and Kotz, S. (2004), The beta Gumbel distribution.
Mathematical Problems in Engineering, 2004(4), 323-332.

Nadarajah, S. and Kotz, S. (2006), The beta exponential distribution.
Reliability Engineering & System Safety, 91(6), 689-697.

Sarhan, A. M. and Kundu, D. (2009), Generalized linear failure rate
distribution. Communications in Statistics-Theory and Methods,
38(5), 642-660.



Beta-Linear Failure Rate Distribution and its Applications 105

Sen, A. and Bhattacharyya, G. K. (1995), Inference procedures for
the linear failure rate model. Journal of Statistical Planning and
Inference, 46(1), 59-76.

Silva, G. O., Ortega, E. M., and Cordeiro, G. M. (2010), The beta
modified Weibull distribution. Lifetime Data Analysis, 16(3), 409-
430.

Singla, N., Jain, K., and Kumar Sharma, S. (2012), The beta general-
ized Weibull distribution: properties and applications. Reliability
Engineering & System Safety, 102, 5-15.

Surles, J. and Padgett, W. (2005), Some properties of a scaled Burr
type X distribution. Journal of Statistical Planning and Inference,
128(1), 271-280.

Zhang, T., Xie, M., Tang, L. C., and Ng, S. H. (2005), Reliability and
modeling of systems integrated with firmware and hardware. In-
ternational Journal of Reliability, Quality and Safety Engineering,
12(3), 227-239.




