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Abstract. The principal function of a control chart is to help man-
agement distinguish different sources of variation in a process. Control
charts are widely used as a graphical tool to monitor a process in or-
der to improve the quality of the product. Chen and Hsieh (2007) have
designed a T 2 control chart using a Variable Sampling Size and Con-
trol limits (V SSC) scheme. They have shown that using the V SSC
scheme results in charts with more statistical power to detect small to
moderate shifts in the process mean vector than the other T 2 charts. In
this paper, we develop an economic design for the T 2 − V SSC chart to
help determine the design parameters and then minimize the cost model
proposed by Costa and Rahim (2001) using a Genetic Algorithm (GA)
approach. We also compare economic design of the T 2 − V SSC chart
with the T 2 −DWL, T 2 − V SSI and T 2 − FRS charts so as to choose
the best option and, finally, carry out a sensitivity analysis to investigate
the effects of model parameters on the solution of the economic design.
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1 Introduction

An effective method for improving the quality of productions or ser-
vices in companies is Statistical Process Control (SPC). Control charts
are the most common tools of SPC for detecting the occurrence of an
assignable cause which leads to non-conforming products and hence a
change mean and variance values from target values. In some industrial
situations, quality control problems may characterize a single charac-
teristic which is a normal continuous random variable. When process
quality can be described by a single quality characteristic, univariate
control charts are used to maintain current control of the process. The
most common control chart for monitoring the mean of a single variable
is the X̄ chart. Walter Shewhart created these charts in the 1920s to
monitor processes to detect any large shift in process mean and process
variance. However, it is increasingly common today for processes to be
characterized by more than one variable which are usually correlated
and have a multivariate normal distribution. For example, resistance
of an industrial piece (e.g. a wheelwork), its dimensions and its weight
have univariate normal distribution, separately; But the correlation be-
tween these characteristics is not zero and hence, joint distribution of
them is multivariate normal. First time, Hotelling (1947) has developed
quality control procedures for several related random variables (or pro-
cess characteristics) with normal distribution. Among these procedures,
Hotelling’s T 2 control chart is probably the most widely known and ap-
plied in industry. Of course, recently Mason and Young (2002) showed
that if correlated quality characteristics have non-normal distribution,
the distribution of T 2 will be a function of Beta distribution which is
not studied in this paper.

Generally, the traditional practice for applying a control chart to
monitor a process is to obtain samples of fixed size at fixed sampling in-
tervals between successive samples. This procedure is called Fixed Ratio
Sampling (FRS). The efficiency of FRS scheme is good for large shifts
but not for small or even moderate shifts. The use of the X̄ − FRS
control chart requires the user to select three design parameters: the
sample size (n), the sampling interval (h), and the width of the control
limit (k). To improve the efficiency, the FRS policy was modified to a
Variable Ratio Sampling (V RS) policy. One procedure for comparing
the statistical performance of V RS schemes is a Variable Sample Size
(V SS) scheme. In this scheme, the sample size varies and is a func-
tion of prior sample results. The use of the X̄ − V SS control chart
requires the user to select five design parameters: the small and large
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sample sizes (n1, n2), the sampling interval (h), the warning limit (w),
and the control limit (k). The statistical design of the V SS scheme
for univariate Shewhart control chart has been studied by Burr (1969),
Daudin (1992), Prabhu et al (1993), Costa (1994) and Zimmer et al
(1998). Aparisi (1996) generalized V SS scheme to the multivariate case
and Faraz and Moghadam (2008) compared the T 2 − V SS chart with
the T 2 − FRS chart. Another procedure is the Variable Sampling In-
terval (V SI) scheme where the sampling interval is a function of prior
sample results. The X̄−V SI chart was introduced by Reynolds (1988),
Reynolds and Arnold (1989) and Runger and Pignatiellow (1991). Also,
the T 2 − V SI chart was studied by Aparisi and Haro (2001) and Faraz
et al (2009a). Variable Sample size and Sampling Interval (V SSI) is
another procedure in V RS schemes where both sample size and sam-
pling interval are functions of prior sample results. Prabhu et al (1994)
were the first to study the X̄ − V SSI chart. Costa (1997) obtained
similar results when comparing the V SSI scheme with the V SS, V SI
and FRS schemes. Aparisi and Haro (2003) developed V SSI scheme
to the multivariate case. The Double Warning Line (DWL) scheme de-
signed by Faraz and Parsian (2006) for the multivariate case, is also a
procedure in V RS schemes where there are two warning lines and both,
sample size and sampling interval, are functions of prior sample results.

As control charts became ubiquitous in industrial practice, researchers
became concerned over the economic consequences of control charts de-
sign and control charts which were designed based on statistical criteria
and cost parameters in a process became less popular. The method of
designing control charts based on economic models is called Economic
Design (ED). Based on the ED procedure, the charts are designed in
such a way that the overall costs associated with maintaining current
control of a process are minimized. Duncan (1956) proposed the first
economic model and used it to ED of the Shewhart X̄ chart. Also,
Lorenzen and Vance (1986) developed a cost model which is appropriate
for all kind of control charts. Costa and Rahim (2001), proposing a new
economic model made a comparison between the FRS and Variable Pa-
rameters (VP) schemes in the univariate case. Montgomery and Klatt
(1972) were the first to design a multivariate FRS control chart, econom-
ically. Chou et al (2006) studied the ED of the T 2 − V SI control chart.
Also, Chen (2006, a-b) studied ED of T 2−V SI and T 2 −V SSI charts.
Faraz et al (2009b) and Faraz et al (2010a) economically designed the
T 2 − V SS chart using the Costa and Rahim (2001) and Lorenzen and
Vance (1986) economic models. Also, Faraz et al (2010b) studied the
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ED of the T 2−DWL chart using the Costa and Rahim (2001) economic
model.

Chen and Hsieh (2007) designed a new V RS scheme called Variable
Sample Size and Control limits (V SSC), to improve the power of T 2

control charts, statistically. In some industries, economic aspects are
more important than statistical aspects. So, in this paper, we investigate
the effect of incorporating the T 2 − V SSC chart into economic designs
and compare the ED of the T 2 − V SSC chart with the other V RS
schemes. Also, for investigating the effects of model parameters on the
economic model, sensitivity analysis is used. The paper is organized as
follows: In Section 2, the T 2−V SSC chart and a Markov chain approach
to V SSC scheme are briefly reviewed. In Section 3, the cost model
proposed by Costa and Rahim (2001) is used to build a model of process
controlled by the T 2−V SSC chart. In Section 4, the Genetic Algorithm
(GA) is employed to obtain the optimal values of the parameters. Also,
the V SSC scheme is compared with other V RS schemes. In Section 5,
a sensitivity analysis is carried out to investigate the effects of model
parameters on the solution of the economic design and finally, section 6
contains a conclusion.

2 T 2 − V SSC Chart and the Markov Chain
Approach

Consider a process in which p correlated quality characteristics are mea-
sured simultaneously and the distribution of these quality characteristics
is a p-variate normal with mean vector µµµ and covariance matrix ΣΣΣ. In
practice, the vector µµµ and matrix ΣΣΣ are usually unknown and estimated
using the sample mean vector, X̄, and the sample variance-covariance
matrix, S̄.

µ̂µµ = X̄ =
1

m

m∑
i=1

X̄i , X̄i =
1

n

n∑
j=1

Xij ,

Σ̂ΣΣ = S̄ =
1

m

m∑
i=1

(X̄i − X̄)(X̄i − X̄)′

where Xij is the jth sample in the ith subgroup and X̄i is the mean
of the ith subgroup. Moreover, n is the sample size for all subgroups
and m is number of subgroups in the initial sampling from the process.
When the vector µµµ and matrix ΣΣΣ are known, the charting statistic, for
every subgroup, is T 2 = n(X̄ − µµµ)′ΣΣΣ−1(X̄ − µµµ) which is plotted on a
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control chart. The vector µµµ′
0 = (µ01, . . . , µ0p) is the vector of in-control

means for quality characteristics. Assuming to unknown µµµ and ΣΣΣ, the
ith subgroup statistic, T 2

i = n(X̄i−X̄)′SSS−1(X̄i−X̄) for i = 1, 2, . . . ,m, is
plotted on a control chart in sequential order. If a value of this statistic
is greater than the Upper Control Limit (UCL), the process will be
considered out of control. Otherwise, the process is in control.

In statistical design methodology, if the process parameters (µµµ andΣΣΣ)
are known, T 2 has a chi-square distribution with p degrees of freedom
and so UCL = χ2

(p,α). In practical situations, µµµ and ΣΣΣ are unknown

and for each i, the distribution of T 2
i is the Hotelling distribution and

UCL = C(m,n, p)F (p, ν, α), where

C(m,n, p) =


p(m+ 1)(n− 1)

m(n− 1)− p+ 1
n > 1

p(m+ 1)(m− 1)

m(m− p)
n = 1

and

ν =


m(n− 1)− p+ 1 n > 1

m− p n = 1

It is usually assumed that the variance-covariance matrix is fixed
but unknown and an assignable cause occurs upon a change of the mean
from µµµ0 to µµµ1. The magnitude of this shift is expressed by Mahalanobis
distance, d2 = (µµµ1−µµµ0)

′ΣΣΣ−1(µµµ1−µµµ0). If the process is out of control (d ̸=
0), the chart statistic will be distributed as a non-central distribution
with non-centrality parameter η = nd2.

In the FRS scheme, the chart parameters (sample size, n0, sampling
interval, h0, and UCL) are fixed. Applying this method is very simple
but its efficiency in detecting the small or moderate shifts is not good
enough and hence, V RS schemes are necessary. One V RS scheme is the
V SSC scheme in which we have a fixed sampling interval, h, two sample
sizes, n1 and n2 (n1 < n2), two warning lines, w1 and w2 (w1 > w2) and
two control limits, k1 and k2 (k1 > k2). The sample size and sampling
interval in a subgroup depend totally on the appearance of a prior sample
point on the chart. We describe this chart below.

If the sample point falls in the interval [0,wi], i = 1, 2, the next sam-
ple size will be n1 and the warning line and control limit for the next
sample will be w1 and k1, respectively. When the sample point falls in
the interval (wi, ki], i = 1, 2, the next sample size will be n2 and the
warning line and control limit for the next sample will be w2 and k2,
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respectively. Therefore, the T 2 − V SSC chart is defined as follows:

LCL = 0

UCL = C(m,nj , p)F (p, ν, 1− α)

(ni, wi, ki) =


(n1, w1, k1) 0 < T 2

i−1 ≤ wj

(n2, w2, k2) wj < T 2
i−1 ≤ kj

, j = 1, 2

If T 2
i−1 > kj , we say the process is out of control. However, if there is

not any assignable cause, then the signal is a false alarm. Note that the
sample size at the start of the process is chosen at random.

In this chart, at each sampling stage, one of the six following states
may occur according to the status of the process.
State 1: 0 < T 2 ≤ wi and the process is in control (d = 0).
State 2: wi < T 2 ≤ ki and the process is in control (d = 0).
State 3: T 2 > ki and the process is in control (d = 0).
State 4: 0 < T 2 ≤ wi and the process is out of control (d ̸= 0).
State 5: wi < T 2 ≤ ki and the process is out of control (d ̸= 0).
State 6: T 2 > ki and the process is out of control (d ̸= 0).

The control chart produces a signal when T 2 > ki. If the signal is
genuine, then the process should be stopped and after repair, it starts to
work again. The signal in state 3 is a false alarm and the signal in state
6 is a genuine alarm (absorbing state in Markov chain). The transition
matrix between states may be written as

P =



p11 p12 p13 p14 p15 p16
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
0 0 0 p44 p45 p46
0 0 0 p54 p55 p56
0 0 0 0 0 1


where pij denotes the transition probability from state i to state j. We
have defined pij ’s as follows:
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p11 = P (0 < T 2 ≤ w1)e
−λh = F (

w1

C(m,n1, p)
, p, ν1, 0)× e−λh

p12 = P (w1 < T 2 ≤ k1)e
−λh

= [F (
k1

C(m,n1, p)
, p, ν1, 0)− F (

w1

C(m,n1, p)
, p, ν1, 0)]× e−λh

p13 = P (T 2 > k1)e
−λh = [1− F (

k1
C(m,n1, p)

, p, ν1, 0)]× e−λh

p14 = P (0 < T 2 ≤ w1)(1− e−λh)

= F (
w1

C(m,n1, p)
, p, ν1, 0)× (1− e−λh)

p15 = P (w1 < T 2 ≤ k1)(1− e−λh)

= [F (
k1

C(m,n1, p)
, p, ν1, 0)− F (

w1

C(m,n1, p)
, p, ν1, 0)]× (1− e−λh)

p16 = P (T 2 > k1)(1− e−λh)

= [1− F (
k1

C(m,n1, p)
, p, ν1, 0)]× (1− e−λh)

p21 = p31 = P (0 < T 2 ≤ w2)e
−λh = F (

w2

C(m,n2, p)
, p, ν2, 0)× e−λh

p22 = p32 = P (w2 < T 2 ≤ k2)e
−λh

= [F (
k2

C(m,n2, p)
, p, ν2, 0)− F (

w2

C(m,n2, p)
, p, ν2, 0)]× e−λh

p23 = p33 = P (T 2 > k2)e
−λh = [1− F (

k2
C(m,n2, p)

, p, ν2, 0)]× e−λh

p24 = p34 = P (0 < T 2 ≤ w2)(1− e−λh)

= F (
w2

C(m,n2, p)
, p, ν2, 0)× (1− e−λh)

p25 = p35 = P (w2 < T 2 ≤ k2)(1− e−λh)

= [F (
k2

C(m,n2, p)
, p, ν2, 0)− F (

w2

C(m,n2, p)
, p, ν2, 0)]× (1− e−λh)

p26 = p36 = P (T 2 > k2)(1− e−λh)

= [1− F (
k2

C(m,n2, p)
, p, ν2, 0)]× (1− e−λh)

p44 = P (0 < T 2 ≤ w1) = F (
w1

C(m,n1, p)
, p, ν1, η1)

p45 = P (w1 < T 2 ≤ k1)

= F (
k1

C(m,n1, p)
, p, ν1, η1)− F (

w1

C(m,n1, p)
, p, ν1, η1)

p46 = P (T 2 > k1) = 1− F (
k1

C(m,n1, p)
, p, ν1, η1)
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p54 = P (0 < T 2 ≤ w2) = F (
w2

C(m,n2, p)
, p, ν2, η2)

p55 = P (w2 < T 2 ≤ k2)

= F (
k2

C(m,n2, p)
, p, ν2, η2)− F (

w2

C(m,n2, p)
, p, ν2, η2)

p56 = P (T 2 > k2) = 1− F (
k2

C(m,n2, p)
, p, ν2, η2),

where F (x, p, νi, ηi) is defined as the cumulative probability distribution
function of a non-central F distribution with p and νi = m(ni − 1) −
p + 1 degrees of freedom and non-centrality parameter ηi = nid

2, and

C(m,ni, p) =
p(m+ 1)(ni − 1)

m(ni − 1)− p+ 1
. When the mean vector and variance-

covariance matrix are known, instead of F (x, p, νi, ηi) we use F (x, p, ηi)
which is defined as the cumulative probability distribution function of a
non-central χ2 distribution with p degrees of freedom and non-centrality
parameter ηi.

In the investigations of Costa (1994), Duncan (1956), Lorenzen and
Vance (1986), Faraz and Moghadam (2008), Montgomery and Klatte
(1972), Chou et al (2006), the most recently used statistical measure to
compare the efficiency of different control schemes, is AATS, the aver-
age time from the process mean shift until the chart produces a signal.
This statistical measure determines the speed with which a control chart
detects a process mean shift and is related to the average time of the
cycle (ATC) which is the average time from the start of the production
until the production of first signal after the process shift. If it is assumed
that the shift in the process mean occurs at some random time in the
future (not at beginning) and that this random time has an exponen-

tially distributed random variable with mean
1

λ
, then the time that the

process is in control, has an exponential distribution with parameter λ.

So, the average time before occurrence of assignable cause is
1

λ
and the

steady-state AATS is

AATS = ATC − 1

λ
.

We can compute the average time of the cycle using the Markov
chain property (see Cinlar, 1975).

ATC = b′(I −Q)−1h
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where b′ = (p1, p2, p3, 0, 0) is a vector of initial probabilities with
∑3

i=1 pi
= 1, I is the identity matrix of order 5, Q is the 5× 5 matrix obtained
from P by deleting the absorbing row and column and h′ = (h, h, h, h, h).
Also b′(I−Q)−1 provides the expected number of trials needed to reach
the absorbing state. In this paper, we choose b′ = (0, 1, 0, 0, 0) for extra
protection and for preventing problems that may be encountered during
start-up.

We may also calculate the expected number of false alarm (ANF ),
the expected number of inspected items (ANI) and the expected num-
ber of samples (ANS) as follows:

ANF = b′(I −Q)−1(0, 0, 1, 0, 0)′

ANS = b′(I −Q)−1(1, 1, 1, 1, 1)′

ANI = b′(I −Q)−1(n1, n2, n2, n1, n2)
′

3 The Economic Model and Optimization

In this paper, we apply Costa and Rahim’s cost model (2001) to study
the ED of a T 2−V SSC chart. To formulate an economic model for the
design of a control chart, it is necessary to make certain assumptions
about the behavior of the process.

Suppose that the p quality characteristics follow a p-variate normal
distribution with mean vector µµµ and variance-covariance matrix ΣΣΣ. At
the beginning the process is in control. In this state, we have µµµ = µµµ0

and only an assignable cause changes the process mean from µµµ = µµµ0

to µµµ = µµµ1 (µµµ1 is known). Also the variance-covariance matrix ΣΣΣ stays
constant. The assignable cause occurs according to a Poisson process
with a mean of λ occurrences per an hour. So, the time interval that the

process remains in control is an exponential variable with mean
1

λ
. Also,

the process is not self-correcting. Hence, the process can be returned
to the in-control state from an out-of-control state only by management
intervention and appropriate corrective actions. We assume that the
quality cycle starts in an in-control state and continues until the process
reaches an out-of-control state, when it is repaired. The quality cycle
follows a renewal reward process. Note that during the search for an
assignable cause, the process is shut down.

According to the model, the production cycle may be divided to four
time intervals: An in-control process period, a period of searching for
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a false alarm, an out-of-control period and a period for identifying the
assignable cause and correcting the process. It is clear that the expected

time the process is in control, is equal to
1

λ
. The expected out-of-control

time period is the expected time from the process mean shift until an
out-of-control signal is triggered. This expected time is given by AATS
and ATC is the average time from the moment of stating process to the
time of chart signal after the process shift. Let T0 be the average time
wasted searching for an assignable cause when the process is in control
and T1 be the average time to find and correct the assignable cause.
Hence, the expected time of a production cycle is given by

E(T ) =
1

λ
+ T0ANF +AATS + T1

= ATC + T0ANF + T1

The profit from a production cycle includes the average profit while
the process is in control as well as where it is out of control. We also
incur a cost when searching for false alarms or assignable causes, for
repairing the process and for sampling and inspecting items. So, the
expected net profit from a production cycle is given by

E(I) = V0
1

λ
+ V1AATS − C0ANF − C1 − sANI

where V0 is the average profit per hour earned when the process is in
control, V1 is the average profit per hour earned when the process is
out of control, C0 is the expected cost of searching for false alarms, C1

is the expected cost of searching for an assignable cause and repairing
the process and s is the cost of inspecting an item. Due to the renewal

reward assumption, the expected net profit per hour is
E(I)

E(T )
.

Hence, the loss function, E(L), is given by

E(L) = V0 −
E(I)

E(T )

To obtain the ED of a T 2 − V SSC chart, we must obtain optimal
values for the seven chart parameters (k1, k2, w1, w2, n1, n2, h) of the cost
model, E(L), given the process parameters (p, λ, d, T0, T1) and the cost
parameters (V0, V1, C0, C1, s). Among the seven chart parameters, the
sample sizes are discrete variables (where 1 ≤ n1 < n0 < n2) and the
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other variables are continuous (where 0 < w1 < k1, 0 < w2 < k2,
0 < w2 < w1 and 0 < k2 < k1). The maximum value of the parameter h
is considered as the maximum hours available in a work shift, i.e. h ≤ 10.
Therefore, the general optimization problem is defined as follows:

Min E(L)

subject to : 0 < w1 < k1

0 < w2 < k2

0 < w2 < w1

0 < k2 < k1

0.1 ≤ h ≤ 10

1 ≤ n1 < n0 < n2

n1, n2 ∈ Z+.

This model is a non-linear function of the chart parameters with
mixed continuous-discrete variables and a discontinuous and non-convex
solution space. So, linear methods are inefficient for the minimization
problem and non-linear programming techniques to search for optimal
solution are necessary.

4 A Numerical Comparison between T 2 − FRS,
T 2 − V SSI, T 2 −DWL and T 2 − V SSC Control
Charts

For a fair comparison of the economic performance of the T 2 − V SSC
chart with other T 2 control charts (DWL, V SSI and FRS), they should
have the same costs when the process is in control. Two schemes which
have the same in-control time, are comparable if and only if they have
the same in-control cycle cost i.e. they must have the same expected
number of false alarms, the same expected number of inspected items
and the same expected number of samples. On the other hand, ANF ,
ANS and ANI values in all of these schemes should be equal during
the in-control period. Here, for the sake of simplicity, we suppose that
the vector µµµ and matrix ΣΣΣ are known. Hence, for the FRS scheme, the
in-control statistical measures are

ANF =
αe−λh0

1− e−λh0
, ANS =

1

1− e−λh0
, ANI =

n0

1− e−λh0
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and in the V SSC scheme, these measures are

ANF =
BF (w2, p, 0)e

−λh +A(1− F (k2, p, 0))e
−λh

A[1− (1− F (w2, p, 0))e−λh]
,

ANS =
F (w2, p, 0)e

−λh[1− (F (w1, p, 0)− F (w2, p, 0))e
−λh +A]

A[1− (1− F (w2, p, 0))e−λh]
,

ANI =
F (w2, p, 0)e

−λh{n1[1− (1− F (w2, p, 0))e
−λh] + n2[(1− F (w1, p, 0))e

−λh +A]}
A[1− (1− F (w2, p, 0))e−λh]

.

where

A = 1− [1− F (w2, p, 0) + F (w1, p, 0)

−(F (w1, p, 0)− F (w2, p, 0))e
−λh]e−λh

B = e−λh{(1− F (w1, p, 0))(1− F (k2, p, 0))e
−λh

+(1− F (k1, p, 0))[1− (1− F (w2, p, 0))e
−λh]}

Equating the statistical measures in these two schemes, we have h =
h0 and

k2 = F−1(1−K, p, 0)

where

K =
[1− (1− F (w2, p, 0))e−λh]{αe−λh0A− (1− e−λh0 )e−2λhF (w2, p, 0)(1− F (k1, p, 0))}

(1− e−λh0 )e−λh[F (w2, p, 0)(1− F (w1, p, 0))e−2λh +A]

and

n2 =
n0{A[1 − (1 − F (w2, p, 0))e

−λh]} − n1F (w2, p, 0)e
−λh[1 − (1 − F (w2, p, 0))e

−λh](1 − e−λh0 )

F (w2, p, 0)e−λh[(1 − F (w1, p, 0))e−λh + A](1 − e−λh0 )

Note that for i = 1, 2, F (x, p, ηi) is defined as the cumulative proba-
bility distribution function of a non-central chi-square distribution with
p degrees of freedom and non-centrality parameter ηi = nid

2.

Therefore, choosing optimal values of k1, w1, w2 and fixing n1, n0

and h0, we can obtain k2 and n2. This optimization problem is a decision
problem with continuous decision variables and a discontinuous and non-
convex solution space and may be solved using Meta heuristic methods,
such as Genetic Algorithms (GAs)(Goldberg, 1989).

In this paper, for a given parameters (k0, n0, h0), GA finds optimal
values of k1, w1 and w2 and then computes the values of k2 and n2

and, finally, E(L). The initial values of the used GA parameters are the
crossover rate (rC), the population sizes (Npop) and the mutation rate
(rM ) were set to Npop = 100, rC = 0.2 and rM = 0.25. The number of
iterations was set to 200.
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The MATLAB/GA computer program is used to perform a compar-
ison between these schemes using a numerical example. Consider a soft
drink fabrication process involving two quality characteristics of interest.
One of the quality characteristics is the pressure inside the soft drink
bottle and the other is the gas volume present in the drink. These qual-
ity characteristics directly affect the product quality. Difference levels of
the parameters were determined based on previous studies investigated
which are given in Table 1.

As in Chen (2006a), Table 2 provides a Taguchi orthogonal array
L16(2

942) of a mixed 24 levels experimental design for assigning 11 vari-
ables to the columns of the L16(2

942) orthogonal array. In the L16(2
942)

orthogonal array experiment, there are 16 trials (16 different level com-
binations of the eleven variables).

To compare the effectiveness of the V SSC and DWL, V SSI and
FRS schemes, we use the first level of the parameters in Table 1 for
d = 0.25(0.25)4 and obtain the optimal values of the design parameters
using GAs. For d = 0.25(0.25)4, tables 4, 5 and 6 respectively show the
optimal design parameters and the expected hourly loss for the T 2 −
V SSC chart together with the outputs of the T 2 − FRS, T 2 − DWL
and T 2 − V SSI control charts. For each trial in Table 2, the optimal
solution to the design parameters is obtained by GAs with the objective
of minimizing the expected hourly loss. Table 3 displays the optimal
design parameters and the expected hourly loss for the T 2 − V SSC
control chart of these 16 trials. All comparisons (V SSC and DWL,
V SSC and V SSI, and V SSC and FRS) are fair. The results indicate
that the expected hourly loss of the V SSC scheme is smaller than the
DWL, V SSI and FRS schemes. In fact, for small to large values of
d (d = 0.25(0.25)4), when compared with the FRS scheme, there an
average hourly saving of approximately 4.05%. Also, a comparison of
V SSC and DWL schemes, shows an average hourly saving of 23.90%
and a comparison of V SSC and V SSI schemes, an average hourly saving
of 14.45%. For small to moderate shifts (d < 2), these amounts change
to 17.36%, 19.76% and 14.08% respectively. The results are plotted in
Figure 1. This figure shows that for small to moderate shifts (Figure
1 (a)), the V SSC scheme has a greater economic advantage versus the
DWL, V SSI and FRS schemes. This is not unexpected. Faraz et al
(2010b) concluded that the T 2−DWL control chart is more economical
than the T 2 − V SSI, T 2 − V SS, T 2 − V SI and T 2 − FRS charts. So,
we can conclude that, specially for small to moderate shifts, the V SSC
scheme is more economical than other V RS and FRS schemes.
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5 Sensitivity Analysis

In this section, we conduct a sensitivity analysis for the above example
to study the effects of the model parameters (process parameters and
cost parameters) on the economic design of the T 2−V SSC chart. This
study is carried out using experimental design and linear regression anal-
ysis. In each linear regression model, given values of process parameters
(p, λ, d, T0, T1,m) and given values of cost parameters (V0, V1, C0, C1, s)
are regarded as possible independent variables while the test parameters
and the expected total cost are treated as the dependent variables. The
eleven model parameters considered in the sensitivity analysis and their
corresponding level plans are shown in Table 1. In our plan we have
nine parameters with two levels and two parameters with four levels.

To study the effect of the model parameters on the solution of eco-
nomic design of the V SSC scheme based on the data in Table 6, the
statistical software SPSS is used to run the regression analysis for each
dependent variable. For each dependent variable, the output of SPSS
includes an ANOVA table for regression and a table of regression co-
efficients, showing the corresponding information about statistical hy-
pothesis testing. Table 7 is the SPSS output for the small sample size
(n1). From the ANOVA in Table 7(a), we conclude that at least one
model parameter significantly affects the value of small sample size. On
examining Table 7(b), we find that both the parameters d and C1 sig-
nificantly affect the value of sample size n1. We note that the sign of
the coefficient of d and C1 is negative which indicates that higher values
of the magnitude of the shift and the expected cost of searching for an
assignable cause reduce the sample size n1. Table 8 is based on the large
sample size (n2) and shows that the parameters d and V0 significantly
affect the value of sample size n2. Increasing values of the magnitude of
the shift cause a decrease in the sample size n2 and lower values of the
average profit per hour earned when the process is in control leads to
larger values for n2.

Tables 9 and 10 are the SPSS outputs for the warning lines (w1,
w2). From these tables, we see that the only model parameter that
significantly affects the warning lines is p. Higher values of the number
of correlated quality characteristics leads to larger values for w1 and w2.
Tables 11 and 12 which display the results for changing control limits
(k1, k2), show that both parameters d and p significantly affect the
control limits. Higher values of the magnitude of the shift and number
of correlated quality characteristics lead to larger values for k1 and k2.
Table 13 gives the SPSS output for the expected loss value E(L). It is
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obvious that the parameters λ, V0, T1, d and m significantly affect the
expected loss. Since a higher penalty cost of defective products leads to
a higher total cost, to reduce the total cost, the penalty cost of defective
products should be decreased as much as possible.

6 Conclusion

In the present paper, the economic design of the T 2 − V SSC chart
is developed based on the cost model proposed by Costa and Rahim
(2001). The expected total cost per hour is minimized using GA and
finally, the T 2 − V SSC chart and the T 2 − DWL, T 2 − V SSI and
T 2 − FRS control charts are compared from an economic viewpoint.
Also, sensitivity analysis is carried out to investigate the effects of model
parameters on the solution of the economic design. The results indicate
that among the four possible schemes, the expected hourly loss of the
V SSC scheme is smaller than the DWL, V SSI and FRS schemes,
specially for small to moderate shifts. These results are presented on a
graph. Since Faraz et al (2010b) concluded that the T 2 −DWL control
chart is more economical when compared with T 2 − V SSI, T 2 − V SS,
T 2 − V SI and T 2 − FRS control charts, we conclude that the V SSC
scheme is more economical than the other V RS and FRS schemes.
Sensitivity analysis shows that C1, s, V1 and T0 have no significant
impact on the optimal solution of the V SSC scheme, while the eight
parametersm, s, d, C0, V0, T1, λ and p play significant role in influencing
the response parameters.
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Tables

Table 1. Levels for each model parameter
Model parameter Level 1 Level 2 Level 3 Level 4

m 10 50 100 1000
d 0.5 1.0 1.5 2.0
s 5 10
C0 250 500
C1 50 500
V0 250 500
V1 50 100
T0 2.5 5
T1 1 10
λ 0.01 0.05
p 2 5

Table 2. Experimental layout of the L16(2
942) array

No. m d s C0 C1 V0 V1 T0 T1 λ p

1 10 0.5 5 250 50 250 50 2.5 1 0.01 2
2 10 1.0 5 250 50 500 100 5 10 0.05 5
3 50 0.5 5 500 500 250 50 5 10 0.05 5
4 50 1.0 5 500 500 500 100 2.5 1 0.01 2
5 50 1.5 10 250 50 250 100 2.5 1 0.05 5
6 50 2.0 10 250 50 500 50 5 10 0.01 2
7 10 1.5 10 500 500 250 100 5 10 0.01 2
8 10 2.0 10 500 500 500 50 2.5 1 0.05 5
9 100 0.5 10 250 500 500 100 2.5 10 0.01 5
10 100 1.0 10 250 500 250 50 5 1 0.05 2
11 1000 0.5 10 500 50 500 100 5 1 0.05 2
12 1000 1.0 10 500 50 250 50 2.5 10 0.01 5
13 1000 1.5 5 250 500 500 50 2.5 10 0.05 2
14 1000 2.0 5 250 500 250 100 5 1 0.01 5
15 100 1.5 5 500 50 500 50 5 1 0.01 5
16 100 2.0 5 500 50 250 100 2.5 10 0.05 2
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Table 3. Optimal set of parameters for ED of the T 2 −
V SSC control chart for 16 trails
No. n1 n2 w1 w2 k1 k2 E(L)V SSC

1 14 21 2.20 1.70 5.73 4.63 40.71
2 12 18 8.10 7.60 15.18 14.18 211.20
3 6 22 3.63 3.13 5.05 4.75 146.28
4 9 16 4.30 3.80 10.70 8.85 42.96
5 4 8 7.02 6.52 12.95 12.72 54.74
6 3 5 1.91 1.40 12.10 11.85 71.32
7 4 7 2.49 1.99 10.02 9.54 43.72
8 3 6 6.21 5.71 16.67 16.50 107.25
9 3 25 3.17 2.68 8.30 7.44 122.18
10 5 9 2.58 2.08 7.22 6.33 90.80
11 15 23 2.29 1.79 5.46 4.85 176.69
12 8 12 6.77 6.27 12.34 11.07 52.29
13 4 7 2.47 1.97 10.53 9.85 212.08
14 4 6 4.87 4.37 18.47 18.30 20.01
15 7 12 7.74 7.24 18.90 18.41 34.31
16 2 5 2.54 2.04 11.15 11.00 95.96
∗ Minimum values of E(L) for given and optimal parameters

Table 4. Optimal set of parameters for ED of T 2−V SSC and T 2−FRS
control charts
d n1 n2 w1 w2 k1 k2 E(L)V SSC k0 h0 n0 E(L)FRS % of improvement

0.25 2 5 1.07 0.57 1.88 1.60 58.34∗ 1.67 10 3 58.43 0.15
0.50 13 23 2.27 1.77 5.65 4.68 40.71∗ 5.21 5.96 16 48.71 16.42
0.75 10 17 2.63 2.13 7.51 6.41 31.02∗ 7.09 4.49 12 38.55 19.53
1.00 7 12 3.57 3.07 8.72 7.38 25.06∗ 8.36 3.65 8 31.98 21.64
1.25 5 10 3.61 3.11 9.51 8.66 21.43∗ 9.32 3.08 8 27.48 22.02
1.50 4 7 2.59 2.09 10.36 9.64 19.14∗ 10.10 2.68 5 24.23 21.01
1.75 3 5 1.89 1.39 11.16 10.37 17.25∗ 10.75 3.37 4 21.76 20.73
2.00 2 4 1.96 1.45 11.40 3.60 39.23 11.31 2.13 3 19.83∗ -97.83
2.25 2 4 1.97 1.46 11.90 10.73 15.66∗ 11.80 1.94 3 18.27 14.29
2.50 2 4 1.97 1.47 12.30 11.34 14.83∗ 12.23 1.78 3 16.98 12.66
2.75 2 59 15.96 4.60 19.39 5.10 19.12 12.83 1.76 3 15.93∗ -20.03
3.00 2 6 3.18 2.65 14.82 11.80 14.10∗ 13.54 1.80 3 15.18 7.11
3.25 2 20 6.62 5.26 15.26 10.20 14.09∗ 14.29 1.83 3 14.65 3.82
3.50 2 4 1.97 1.47 18.40 13.76 13.09∗ 15.08 1.85 3 14.29 8.40
3.75 2 4 1.97 1.46 18.75 14.89 12.75∗ 19.92 1.88 3 14.03 9.12
4.00 2 56 17.95 10.50 17.97 11.00 13.07∗ 16.81 1.88 3 13.87 5.77
∗ Minimum values of E(L) for given and optimal parameters

Table 5. Optimal set of parameters for ED of the T 2−DWL control chart
d n1 n2 h1 h2 wN wT k E(L)DWL E(L)V SSC % of improvement

0.25 2 4 10.00 9.00 1.05 1.55 1.67 63.39 58.34∗ 7.97
0.50 13 20 6.09 5.70 1.95 2.45 5.21 49.17 40.71∗ 17.21
0.75 11 18 4.59 3.79 4.45 4.95 7.09 38.85 31.02∗ 20.15
1.00 7 14 3.75 2.86 4.57 5.07 8.36 31.89 25.06∗ 21.42
1.25 5 15 3.18 0.19 5.40 5.90 9.31 27.74 21.43∗ 22.75
1.50 4 9 2.10 2.78 3.67 4.17 10.10 25.11 19.14∗ 23.77
1.75 3 16 2.47 0.89 5.92 6.42 10.76 23.01 17.25∗ 25.03
2.00 2 8 2.23 1.43 3.99 4.49 5.21 43.69 39.23∗ 10.21
2.25 2 16 2.04 0.33 5.96 6.46 11.31 20.73 15.66∗ 24.46
2.50 2 11 1.88 0.72 4.83 5.33 11.83 20.68 14.83∗ 28.29
2.75 2 4 1.88 1.50 1.89 2.39 12.87 20.59 19.12∗ 7.14
3.00 2 13 1.90 0.51 5.31 5.81 13.62 19.40 14.10∗ 27.32
3.25 2 5 1.93 1.49 2.57 3.07 14.26 19.31 14.09∗ 27.03
3.50 2 6 1.95 1.39 3.14 3.64 15.20 19.03 13.09∗ 31.21
3.75 2 12 1.98 0.71 5.10 5.60 16.22 18.58 12.75∗ 31.38
4.00 2 7 1.98 1.30 3.56 4.06 7.03 30.46 13.07∗ 57.09
∗ Minimum values of E(L) for given and optimal parameters
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Table 6. Optimal set of parameters for ED of the T 2−V SSI control chart
d n1 n2 h1 h2 w k E(L)V SSI E(L)V SSC % of improvement

0.25 2 4 10.00 9.00 0.50 1.67 59.55 58.34∗ 2.03
0.50 11 18 7.60 4.01 1.30 5.21 48.02 40.71∗ 15.22
0.75 8 13 6.57 2.06 1.30 7.09 37.19 31.02∗ 16.59
1.00 4 9 5.80 0.87 1.18 8.36 29.99 25.06∗ 16.44
1.25 2 7 4.65 1.06 1.19 9.31 25.75 21.43∗ 16.78
1.50 2 6 4.07 1.01 1.25 10.10 23.07 19.14∗ 17.03
1.75 2 5 3.96 0.14 1.09 10.76 20.17 17.25∗ 14.48
2.00 2 19 5.03 1.39 3.34 5.21 35.44∗ 39.23 -10.69
2.25 1 4 2.66 1.13 1.30 11.31 18.23 15.66∗ 14.10
2.50 1 4 2.40 1.07 1.29 11.83 17.85 14.83∗ 16.92
2.75 2 5 1.97 1.60 1.72 12.87 17.32∗ 19.12 -10.39
3.00 2 5 2.06 1.60 1.70 13.63 16.87 14.10∗ 16.42
3.25 2 5 2.00 1.70 1.75 14.26 16.54 14.09∗ 14.81
3.50 2 5 2.05 1.70 1.73 15.20 16.30 13.09∗ 19.69
3.75 2 5 2.11 1.70 1.72 16.22 16.13 12.75∗ 20.95
4.00 2 17 3.14 1.65 3.90 7.03 26.61 13.07∗ 50.88
∗ Minimum values of E(L) for given and optimal parameters

Figure 1: Percentage loss decrease of E(L) for the VSSC scheme versus
FRS, DWL and VSSI schemes as a function of d.

Table 7(a). ANOVA table for sample size n1
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 153.675 2 76.837 10.166 0.002
Residual 98.262 13 7.559
Total 251.937 15

∗ Predictors: (Constant), d, C1

Table 7(b). Coefficients table for sample size n1

Model β̂ Std. Error t P − V alue
Constant 14.313 1.882 7.607 0.000

d -4.650 1.230 -3.782 0.002
C1 -0.008 0.003 -2.455 0.029
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Table 8(a). ANOVA table for sample size n2
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 680.050 2 340.025 54.104 0.000
Residual 81.700 13 6.285
Total 761.750 15

∗ Predictors: (Constant), d, V0

Table 8(b). Coefficients table for sample size n2

Model β̂ Std. Error t P − V alue
Constant 22.750 2.427 9.373 0.000

d -11.400 1.121 -10.168 0.000
V0 0.011 0.005 2.194 0.047

Table 9(a). ANOVA table for warning line w1
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 44.656 1 44.656 22.616 0.000
Residual 27.643 14 1.974
Total 72.299 15

∗ Predictors: (Constant), p

Table 9(b). Coefficients table for warning line w1

Model β̂ Std. Error t P − V alue
Constant 0.370 0.899 0.415 0.685

p 1.114 0.234 4.756 0.000

Table 10(a). ANOVA table for warning line w2
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 44.723 1 44.723 22.684 0.000
Residual 27.601 14 1.972
Total 72.324 15

∗ Predictors: (Constant), p

Table 10(b). Coefficients for warning line w2

Model β̂ Std. Error t P − V alue
Constant -0.113 0.891 -0.149 0.884

p 1.115 0.234 4.763 0.000

Table 11(a). ANOVA table for control limit k1
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 223.524 2 111.762 21.870 0.000
Residual 66.433 13 5.110
Total 289.957 15

∗ Predictors: (Constant), d, p
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Table 11(b). Coefficients table for control limit k1
Model β̂ Std. Error t P − V alue

Constant -0.581 1.912 -0.304 0.766
d 5.425 1.01 5.367 0.0020
p 1.456 0.377 3.865 0.002

Table 12(a). ANOVA table for control limit k2
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 255.768 2 127.884 30.986 0.000
Residual 53.653 13 4.127
Total 309.421 15

∗ Predictors: (Constant), d, p

Table 12(b). Coefficients table for control limit k2
Model β̂ Std. Error t P − V alue

Constant -2.024 1.718 -1.178 0.260
d 5.892 0.909 6.485 0.000
p 1.511 0.339 4.463 0.001

Table 13(a). ANOVA table for E(L)
Source Sum of Squares DF Mean Square F Value P − V alue

Regression∗ 55889.275 5 11177.855 35.729 0.000
Residual 3128.506 10 312.851
Total 59017.781 15

∗ Predictors: (Constant), λ, V0, T1, d, m

Table 13(b). Coefficients table for E(L)

Model β̂ Std. Error t P − V alue
Constant -47.055 19.397 -2.426 0.036

λ 2085.937 221.095 9.435 0.000
V0 0.217 0.035 6.127 0.000
T1 5.383 0.983 5.478 0.000
d -31.318 7.910 -3.959 0.003
m 0.027 0.011 2.532 0.030
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