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Abstract. The purpose of this paper is to obtain the tracking interval
for difference of expected Kullback-Leibler risks of two models under
Type II hybrid censoring scheme. This interval helps us to evaluate
proposed models in comparison with each other. We drive a statistic
which tracks the difference of expected Kullback–Leibler risks between
maximum likelihood estimators of the distribution in two different mod-
els and obtain an estimator of the variance of this statistic under Type
II hybrid censoring scheme. Monte Carlo simulations are performed to
verify the theoretical results. A real data set representing micro-droplet
splashing reported in 90◦ spray angle is used to illustrate the results
for the tracking interval. Furthermore, because of the great importance
of prediction in coating industries, pivotal method is considered to ob-
tain the prediction interval of future observation of the droplet splashing
based on Type II hybrid censored sample.
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1 Introduction

An important problem in statistics is to test a sample of n independent
and identically distributed observations coming from a specified distri-
bution. Model selection has followed two approaches in the literature:
hypothesis testing and model selection criteria. Since then, several arti-
cles have been published on model selection based on complete data, for
example, Cox (1961; 1962) modified the classical hypothesis testing to
compare the non-nested hypothesis, Vuong (1989) tested the equivalence
of two models. The null hypothesis of Vuong test is the expectation un-
der the true model of the log-likelihood ratio of the two rival models are
equal to zero, which means that, two proposed models are equivalent.
This expectation however is unknown. But Vuong test works, because
the decision making procedure by Vuong test does not depend on this
unknown quantity. The results in Vuong have been extended and ap-
plied in a number of ways, including, Vuong and Wang (1993), Lien and
Vuong (1987), Commenges et. al. (2008), Sayyareh et. al. (2011), Say-
yareh (2012a). Akaike (1973) introduced a criterion to select the best
model under parsimony. One problem with Akaike information criterion
(AIC) is that its value has no intrinsic meaning; in particular, AIC is
not invariant to a one-to-one transformation of the random variables and
values of AIC depend on the number of observations. So, Commenges
et. al. (2008) and Sayyareh (2012b) considered the normalized differ-
ence of AIC as an estimate of a difference of Kullback-Leibler (KL) risks
between two models and then constructed the tracking interval to verify
the equivalence of two rival models.

However, in many experimental and reliability studies, the experi-
menter may not always obtain complete information on failure times for
all experimental units. Data obtained from such experiments are called
censored data. Type I (time) censoring, where the life testing experi-
ment will be terminated at a prescribed time T, and Type II (failure)
censoring, where the life testing experiment will be terminated upon the
rth failure are the two most popular censoring schemes used in the re-
liability and experimental studies. The mixture of Type I and Type II
censoring schemes is known as hybrid censoring scheme. Several authors
considered different aspects of these censoring schemes; (see for exam-
ple, Balakrishnan and Kundu (2013), Kundu and Gupta (2007), Kundu
and Raqab (2012), Park et. al. (2008), Kim and Yum (2011), Joarder
et. al. (2011), Panahi and Sayyareh (2013).

Although several articles have been done on the hybrid censoring
scheme but we have not come across any article on the tracking interval
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under this censoring. Thus, the main aim of this paper is two folds.
First we focus on the behavior of the two rival models under Type II hy-
brid censoring scheme. We want to decide whether or not the two rival
models are two equivalent models. For this purpose, we use the tracking
interval which should contain the difference of risks with a given prob-
ability. When rival models are non-nested, we propose a test statistic
that convergence in distribution to the normal distribution and use it
to test the null hypothesis that the rival models are equally close to the
data generating model against the alternative hypothesis that one model
is closer.

The second aim of this paper is to analyze the micro-droplet splash-
ing data and then compare the rival models using the tracking inter-
val. Thermal sprayed coatings are widely used to protect components
exposed to corrosion, wear or heat. The mechanical properties of coat-
ings are known to depend strongly on the shape of splats formed by
individual droplets as they impact and freeze. As a good-coated sur-
face is extremely important in the industry, one of the most important
phenomena, which cause deterioration of the coated surface, is droplet
splashing.

Splashing occurs when a single droplet breaks up on impact, produc-
ing secondary, or satellite, droplets. Figure 1 illustrates splashing via a
sequence of photographs of the impact of a molten tin droplet onto a
hot surface.

Figure 1: Splashing of a molten droplet during impact on a stainless
steel surface (Ref., Aziz and Chandra; 2000)

Splashing degrade coating quality since they leave voids in the de-
posit, increasing its porosity and reducing its strength. The physical
mechanisms of splashing are still not completely understood and the
splash study is an extremely interesting and attractive phenomenon.
Moreover, prediction of micro- droplets splashing can potentially reduce
the cost of the development of new micro splashing considerably. While
much research has been done on the study of droplet splashing, lack
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attention has been paid to the distribution modeling and statistical pre-
diction of this phenomenon. We know that the degree of splashing is
always positive and therefore, it is reasonable to analyze the splashing
data using the probability distribution, which has support only on the
positive real axis. Thus, we have considered different two-parameter
distributions namely, Burr XII, Weibull, generalized Rayleigh and Burr
III distributions. Then we construct the tracking intervals to verify the
equivalence of two rival models under different censoring schemes. More-
over, we consider the prediction interval of the future observation based
on the Type II hybrid censored sample.

The rest of the paper is organized as follows. In Section 2, as pre-
liminary, we briefly mention about the Type II hybrid censoring scheme,
the theory about models and KL divergence. In Section 3, we bring the
main results which we need to construct the tracking interval for the
difference of the expected KL divergence of two non-nested rival models
under Type II hybrid censoring scheme. Simulation results and the anal-
ysis of a real data are presented in Section 4, and the article concludes
in Section 5.

2 Preliminary

2.1 Type II Hybrid Censoring Scheme

A hybrid censoring scheme is a mixture of Type I and Type II censoring
schemes. In Type I hybrid censoring scheme, the experiment terminates
as soon as either the rth failure or the pre-specified censoring time T
occurs. However, under the Type I hybrid censoring model, the experi-
ment may be terminated too early resulting in very few failures. For this
reason, Childs et al. (2003) has focused on Type II hybrid censoring,
under which the experiment terminates when the latter of the rth fail-
ure and the censoring time T occurs. The main aim of this paper is to
focus on the non-nested model selection under Type II hybrid censoring
scheme. Type II hybrid censoring scheme has the advantage of guaran-
teeing at least r failures to be observed by the end of the experiment
and it can be described as follows:

Put n identical items on test, and then stop the experiment at the
random time T ∗ = max(T, Yr). Therefore, under this censoring scheme
we can observe the following three Cases of observations when Y1, ..., Yn
denote the ordered sample of X1, ..., Xn.
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Case I : {y1 < ... < yr} if yr > T
Case II : {y1 < ... < yr < yr+1 < ... < ym < T < ym+1} if r ≤ m < n
and ym < T < ym+1

CaseIII : {y1 < ... < yn < T} (1)

Note that, in case II, we do not observe ym+1 but ym < T < ym+1

means that the mth failure took place before T and no failure took place
between ym and T.

2.2 Statistical Models and Kullback–Leibler (KL)
Divergence

Consider a sample of independently identically distributed (i.i.d.) ran-
dom variables, X1, ..., Xn having probability density function h(.). Let
us consider two rival models:

Fα = {fα(.), α ∈ M ⊂ Rp} and Gβ =
{
gβ(.), β ∈ B ⊂ Rq

}
.

Definition 2.1. (i) (f) and (g) are non overlapping if (f)
∩
(g) = ϕ;

(ii) (f) is nested in (g) if (f) ⊂ (g); (iii) (f) is well- specified if
there is a value α0 ∈ M such that fα0(.) = h; otherwise it is mis-
specified. If the model is well-specified then α0 = α∗, where α∗ =
arg maxα∈MEh(L

f
n(α)), and refer to as the pseudo-true value of the α.

We consider the fα(.) as a proposed model, then quasi log-likelihood

function is given by Lf
n(α) =

∑n
i=1 log f

α(xi). Under the following con-
dition, α̂n is a quasi maximum likelihood estimator (QMLE):

Lf
n(α̂n) = supα∈MLf

n(α)

The KL information in favor of h(x) against fα(.) is defined in
Kullback–Leibler (1951) to be

KL(h, fα) = Eh

(
log

h(X)

fα(X)

)
=

∫ ∞

−∞
h(x) log

h(x)

fα(x)
dx

We have KL(h, fα) ≥ 0 andKL(h, fα) = 0, implies that h = fα, that is
α = α0. The KL divergence is often intuitively interpreted as a distance
between the two probability measures, but this is not mathematically
a distance; in particular, the KL divergence is not symmetric. It may
be felt that this is a drawback. But, this feature may also have a deep
meaning in some model selection problem when there is no symmetry
between the true and the proposed models. We assume that, there is a
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value α∗ ∈ M which minimizes KL(h, fα). If the model is well-specified
α0 = α∗. Also, α̂n is a consistent estimator of α∗. We can say that
(f) is closer to h than (g) if KL(h, fα∗) < KL(h, gβ∗). We cannot
estimate KL(h, fα∗) because the entropy of h, Eh ( log h(X) ), cannot
be correctly estimated. However, we can estimate the difference of risks
∆hybrid(f

α∗ , gβ∗) = EKL(h, fα∗)−EKL(h, gβ∗), a quantitative measure

of the difference of misspecification by [−n−1(Lf
n(α̂n) − Lg

n(β̂n))]. This
result may not be completely satisfactory in practice if n is not very
large because the distribution we will use is f α̂n rather than fα∗ . Thus
it is reasonable to consider the risk Eh

{
log(h(X)/f α̂n(X))

}
that we

call the expected KL risk and that we denote by EKL(h, f α̂n).

3 Main Results

In this section, we consider the difference quasi log-likelihood functions of
the Type II hybrid censoring scheme. From (1), the quasi log-likelihood
functions for three different cases follow.

Case I : Lf
n(α) =

∑r
i=1 log f

α(yi) + (n− r) logF
α
(yr)

Case II : Lf
n(α) =

∑m
i=1 log f

α(yi) + (n−m) logF
α
(T )

Case III : Lf
n(α) =

∑n
i=1 log f

α(yi)

where, F
α
(.) = 1 − Fα(.). Therefore, the quasi log-likelihood function

of combined Cases I, II, and III, can be written as:

Lf
n(α) =

R∑
i=1

log fα(yi) + (n−R) logF
α
(U)

Here, R denotes the number of the total failures in experiment and
U = yr if R = r and U = T if R = m > r.
In other words,

R =


r for caseI

m > r for caseII
n for caseIII

and

U =

{
yr for caseI
T for caseII and caseIII
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Therefore, the differences of the quasi log-likelihood functions of the two
rival models can be obtained as:

Lf/g
n (α̂n, β̂n) = Lf

n(α̂n)−Lg
n(β̂n) =

R∑
i=1

log
f α̂n(yi)

gβ̂n(yi)
+(n−R) log

F
α̂n

(U)

G
β̂n
(U)
(2)

where, α̂n is the quasi maximum likelihood estimator for the parameter
α. Suppose that Y1, ..., YR are distributed as the order statistic of a
random sample of size R from truncated distribution at U by probability

density function (pdf) h*. Now, if r
n → p as n → ∞ such that Yr

P−→ ζp,
the pth percentile of true distribution, then from Voung (1989) and the
property of Continuous Mapping, we have

1

n

R∑
i=1

log
f α̂n(yi)

gβ̂n(yi)

P−→ p̆Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
;

and

1

n
(n−R) log

F
α̂n

(U)

G
β̂n
(U)

P−→ (1− p̆) log
F

α∗
(ζ̆p)

G
β∗
(ζ̆p)

where,

lim
n→∞

R

n
= p̆ =

{
p = lim

n→∞
r
n if R=r

p∗ = lim
n→∞

m
n if R = m > r

and

ζ̆p =


ζp; if F (T ) < p

ζF (T ); o.w.

Then the difference quasi log-likelihood function of two rival models is
converges in probability as below:

1

n
Lf/g
n

(
α̂n, β̂n

)
P−→
{
p̆Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
+ (1− p̆) log

F
α∗
(ζ̆p)

G
β∗
(ζ̆p)

}

where

α∗ = argmax
α∈M

{
p̆Eh∗ [log fα(Y )] + (1− p̆) logF

α
(ζ̆p)

}
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β∗ = argmax
β∈B

{
p̆Eh∗

[
log gβ(Y )

]
+ (1− p̆) logG

β
(ζ̆p)

}
α∗ and β∗ are pseudo-true values of α and β, respectively. Also quasi
maximum likelihood estimator of α say α̂n, can be obtain as a solution
of ∂

∂αL
f
n (α) = 0. The minimum assumptions,ℜ, for compact neighbor-

hood M of α∗ are:
ℜ1 :The parameter space M is an open interval in R.
ℜ2 :All rival probability density functions have the same support.
ℜ3 :For almost all x, the derivatives ( ∂

∂α) log f
α(x), ( ∂2

∂α2 ) log f
α(x)

and ( ∂3

∂α3 ) log f
α(x) all exist for every α.

ℜ4 :For every α,
∣∣∣∂ log fα(x)

∂α .∂ log fα(x)
∂α′

∣∣∣ and
∣∣∣∂2 log fα(x)

∂α∂α′

∣∣∣ are dominated

by integrable functions independent on α.
ℜ5 :

∫
( ∂
∂α) L

f (α)d(H∗) = 0 has a unique solution α∗ on M, where H∗ is
the true distribution function related to the true density h∗.

Theorem 3.1. (Asymptotic Distribution of the L
f/g
n (α̂n, β̂n)

Statistic): Given Assumptions ℜ1 − ℜ5, suppose that the proposed
model is misspecified and fα∗ ̸= gβ∗, then,

√
n

(
1

n
Lf/g

n (α̂n, β̂n)− p̆Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
− (1− p̆) log

F
α∗

(ζ̆p)

G
β∗
(ζ̆p)

)
D−→ N

(
0, ω2

∗hybrid
)

(3)

where,

ω2
∗hybrid = V arh

(
log

fα∗(W )

gβ∗(W )

)
+ (1− p̆)V arh∗

1

(
log

fα∗(Z)

gβ∗(Z)

)
(4)

and w = (w1, ..., wn) =the complete data, z = (z1, ..., zn−R) =the com-
plete data of size n−R, from the left truncated population with density
function,

h∗1 =
fα(z)

F
α
(U)

; z > U.

Proof. From the Taylor expansion of Lf
n(α∗) around the α̂n, we can

write

Lf
n(α∗) = Lf

n(α̂n) +
n

2
(α̂n − α∗)

′ ⌢
J fhybrid (α̂n − α∗) + op(1)

and

Lg
n(β∗) = Lf

n(β̂n) +
n

2
(β̂n − β∗)

′ ⌢
J ghybrid (β̂n − β∗) + op(1)
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where,

⌢
J fhybrid

= E

(
∂2 log (fα(Y ))

∂α ∂α′

)
and

⌢
J ghybrid

= E

(
∂2 log (gβ(Y ))

∂β ∂β′

)
Thus,

L
f/g
n (α̂n, β̂n) = L

f/g
n (α∗, β∗)− n

2 (α̂n − α∗)
′Jfhybrid(α̂n − α∗)

+ n
2 (β̂n − β∗)

′Jghybrid(β̂n − β∗) + op(1)

It is known that
√
n(α̂n−α∗) and

√
n(β̂n−β∗) are Op(1). So, we have

√
n

(
1

n
Lf/g
n (α̂n, β̂n)− p̆Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
− (1− p̆) log

F
α∗
(ζ̆p)

G
β∗
(ζ̆p)

)
=

√
n

{
1

n
Lf/g
n (α∗, β∗) −p̆Eh∗

[
log

fα∗(Y )

gβ∗(Y )

]
− (1− p̆) log

F
α∗
(ζ̆p)

G
β∗
(ζ̆p)

}
+ op(1)

But from the multivariate central Theorem, the first term in the right
hand side converges in distribution to N(0, ω2

∗hybrid). It now suffices

to show that ω2
∗hybrid = V arh

(
log fα∗ (W )

gβ∗ (W )

)
+ (1− p̆)V arh∗

1

(
log fα∗ (Z)

gβ∗ (Z)

)
.

From missing information principle developed in Louis (1982), we can
write

R∑
i=1

log fα(yi) =

n∑
i=1

log fα(wi)−
n−R∑
i=1

log fα(zi |Y = y)

Where, w = (w1, ..., wn) and z = (z1, ..., zn−R) are defined as before
in (4). Note that, the sequences of random variables W ′s and Z ′s are
independent. For simplicity, we use fα(zi) instead of fα(zi | y ) in what
follows. Therefore, from (2) we can write

ω2
∗hybrid =

1

n
V ar

(
R∑
i=1

log
fα∗(Yi)

gβ∗(Yi)
+ (n−R) log

F
α∗
(U)

G
β∗
(U)

)

=
1

n
V ar

[(
n∑

i=1

log
fα∗(Wi)

gβ∗(Wi)
−

n−R∑
i=1

log
fα∗(Zi)

gβ∗(Zi)

+(n−R) log
F

α∗
(U)

G
β∗
(U)

)]
Now, If, n−R

n → 1− p̆ as n → ∞ such that U → ξ̆p in probability, then
using Continuous Mapping Theorem

ω2
∗hybrid = V arh

(
log

fα∗(W )

gβ∗(W )

)
+ (1− p̆)V arh∗

1

(
log

fα∗(Z)

gβ∗(Z)

)
.
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Hence, we propose the following statistics:

ω̂2
hybrid =

1

n

n∑
i=1

(
log

f α̂n(wi)

gβ̂n(wi)

)2

−

(
1

n

n∑
i=1

(
log

f α̂n(wi)

gβ̂n(wi)

))2

+(1− R

n
)

 1

n−R

n−R∑
i=1

(
log

f α̂n(zi)

gβ̂n(zi)

)2

−

(
1

n−R

n−R∑
i=1

(
log

f α̂n(zi)

gβ̂n(zi)

))2
 (5)

Thus, based on Vuong (1989), we consider the hypotheses as

H0 : Eh∗

[
log fα∗ (Y )

gβ∗ (Y )

]
= 0 ⇒

[
log

F
α∗ (ζ̆p)

G
β∗ (ζ̆p)

= 0

]
Hf : Eh∗

[
log fα∗ (Y )

gβ∗ (Y )

]
> 0 ⇒

[
log

F
α∗ (ζ̆p)

G
β∗ (ζ̆p)

> 0

]
Hg : Eh∗

[
log fα∗ (Y )

gβ∗ (Y )

]
< 0 ⇒

[
log

F
α∗ (ζ̆p)

G
β∗ (ζ̆p)

< 0

]
Thus, from (Vuong; Theorem 5.1),

under H0 : ℑ =
L
f/g
n (α̂n,β̂n)√
nω̂hybrid

D−→ N (0, 1)

under Hf : ℑ =
L
f/g
n (α̂n,β̂n)√
nω̂hybrid

a.s−→ +∞

under Hg : ℑ =
L
f/g
n (α̂n,β̂n)√
nω̂hybrid

a.s−→ −∞

If the value of the statistic ℑ is higher than Z1−α then one rejects the null
hypothesis that the model are equivalent in favor of Fα being better than
Gβ. If ℑ is smaller than −Z1−α then one rejects the null hypothesis in
favor of Gβ being better than Fα, finally if |ℑ| < Z1−α then one cannot
discriminate between the two rival models based on the given data. Also,
Z1−α is (1− α)th quantile of standard normal distribution.

3.1 Tracking Interval for a Difference of KL Divergences

In model selection context, selection the null hypothesis is not easy
and on the other hand we faced with many alternatives. Generally
in hypothesis testing when we decide about null hypothesis we do not
add more and more alternative hypothesis, in fact in hypothesis test-
ing we select the one best alternative to compare against. Confidence
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intervals are equivalent to encapsulating the results of many hypoth-
esis tests. Thus, we propose the new interval say tracking interval

for a difference of expected Kullback-Leibler risks, ∆hybrid(f
α̂n , gβ̂n) =

EKL(h, f α̂n) − EKL(h, gβ̂n), for two rival models. The proposed con-
fidence interval contains the difference of Kullbak-Leibler risks with a
fixed probability. This interval has another interpretation for the use of
AICs. In fact we are not in a situation to detect the best model but
we are in search for a model which has the relatively less risk compared
to other models. This interval is not a usual confidence interval be-
cause ∆hybrid(f

α̂n , gβ̂n) changes with n. Although it converges toward

∆hybrid(f
α∗ , gβ∗), we wish to approach ∆hybrid(f

α̂n , gβ̂n) for values of n
for which the Akaike correction is not negligible. Akaikes approach was
revisited by Linhart and Zucchini (1986) who showed that:

EKL (h, f α̂n) = KL (h, fα∗) +
1

2n
Tr (IfhybridJ

−1
fhybrid

) + o(n−1)

Where,

Jfhybrid = −Eh

(
∂2 ln fα(Y )

∂α ∂α′

)∣∣∣∣
α∗

and

Ifhybrid = Eh

(
∂ ln fα(Y )

∂α
.
∂ ln fα(Y )

∂α′

)∣∣∣∣
α∗

.

This can be nicely interpreted by saying that the risk EKL(h, f α̂n), is
the sum of the misspecification risk KL(h, fα∗) plus the statistical risk
1
2n Tr(IfhybridJ

−1
fhybrid

) . Note that if (f) is well-specified, we have

KL(h, fα∗) = 0 and EKL (h, f α̂n) =
p

2n
+ o(n−1).

Also based on Commenges et. al. (2008), we have

EKL(h, f α̂n) = −Eh(n
−1Lf

n(α̂n))+F (h)+
1

n
Tr(IfhybridJ

−1
fhybrid

)+op(n
−1)

(6)

Here we have essentially estimated Eh(log fα∗(X)) by Eh(
1
nL

f
n(α̂n)),

but because of the overestimation bias, the factor 1/2 in the last term

disappears. Akaike criterion (AIC(f α̂n) = −2Lf
n(α̂n) + 2p)follows from

(6) by multiplying by 2n, deleting the constant term, F (h) which we
cannot estimate that, and replacing the expected value of the normalized
version of maximized likelihood function by its empirical version. Thus,
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we can estimate the difference of risks ∆hybrid(f
α̂n , gβ̂n) as:

∆hybrid(f
α̂n , gβ̂n) =

Eh

{
− 1

n

[
Lf/g
n (α̂n, β̂n)− Tr(IfhybridJ

−1
fhybrid

) + Tr(IghybridJ
−1
ghybrid

)
]}

Now, using the Akaike approximation,Tr(IfhybridJ
−1
fhybrid

) ≈ p, the simple

estimator of ∆hybrid (f
α̂n , gβ̂n) is

Dhybrid (f
α̂n , gβ̂n) =

1

2n
[AIC(f α̂n)−AIC(gβ̂n)]

= − 1

n

[
Lf/g
n (α̂n, β̂n)− (p− q)

]
Where, p and q are the number of parameters in two rival models. Also

Eh

[
Dhybrid(f

α̂n , gβ̂n)−∆hybrid(f
α̂n , gβ̂n)

]
is an o(n−1). Thus, in con-

trast with AIC, Dhybrid(f
α̂n , gβ̂n) has an interpretation since its expec-

tation tracks the quantity of main interest ∆hybrid(f
α̂n , gβ̂n)with pretty

good accuracy. Now, we emphasis on the case where fα∗ ̸= gβ∗ . Thus
using theorem 3.1, we have

n1/2
(
Dhybrid(f

α̂n , gβ̂n)−∆hybrid(f
α̂n , gβ̂n)

)
D−→ N(0, ω2

∗hybrid)

From this, the tracking interval for ∆hybrid (f
α̂n , gβ̂n) is given by[

Dhybrid (f α̂n , gβ̂n)− n−1/2zα/2 ω̂hybrid , Dhybrid (f α̂n , gβ̂n) + n−1/2zα/2 ω̂hybrid

]
(7)

This interval has the property as

Ph

[
An < ∆hybrid (f

α̂n , gβ̂n) < Bn

]
→ 1− α

where,

An = Dhybrid (f
α̂n , gβ̂n)− n−1/2zα/2 ω̂hybrid

and

Bn = Dhybrid (f
α̂n , gβ̂n) + n−1/2zα/2 ω̂hybrid

and Ph represents the probability with density h. Tracking interval helps
us to evaluate proposed models in comparison with each other. In other
words, if the calculated distance includes zero, it can be concluded that
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based on the predetermined confidence, both proposed models are equiv-
alent. This interval could be useful in a wide variety of applications. For
example, in the dynamics models, we may use an information complexity
criterion and AIC to select between models. But, we could not quan-
titatively assess the difference between models. So, Commenges et. al.
(2008) considered the tracking interval between two models in two ap-
plications. The first is a study of the relationship between body-mass
index and depression in elderly people. The second is the choice be-
tween models of HIV dynamics, where one model makes the distinction
between activated CD4+T lymphocytes and the other does not.

4 Simulations and Data Analysis

4.1 Simulations

In this subsection we present some numerical experiments, mainly to
observe how the two rival models behave for different sample sizes, dif-
ferent parameter values of generated data and for different censoring
schemes. because of the application of the Burr distribution (Burr;
1942) in the study of biological, engineering, industrial, reliability and
life testing, and several industrial and economic experiments (see for ex-
ample, Panahi and Sayyareh (2012), Rastogi and Tripathi (2012), Abd-
Elfattah and Alharbey (2012), Raqab and Kundu (2012)),we generate
104 Monte-Carlo data sets of sample size n from Burr XII (hBXII =
αβ xβ−1(1 + xβ)−α−1) distribution (which plays the role of the true
model). The two rival models (misspecified models) are considered as

f
(p,b)
W = pbxb−1e−pxb

and g
(p,b)
BIII = pbx−b−1(1 + x−b)−p−1. We choose

different sample sizes, namely n=40 and 50, whereas (α, β) for dif-
ferent sample sizes are taken as (α, β) = (1.5, 1) , (2, 1) and (2.5, 1).
For each case, we estimate the unknown parameters of different rival
models using the maximum likelihood method. Then we compute the

Dhybrid (f
α̂n , gβ̂n), ω̂hybrid and construct a 0.95 tracking interval from

(7). The results are reported in Table 1. Some of the points are quite
clear from Table 1. It is observed that for r=n (complete sample), both
limits of tracking intervals are negative, which indicates that the Burr
III is better than the Weibull distribution to estimate the true model.
Note that, we say one model is better than the other one when the track-
ing interval does not contain zero. In other words, both limits of the
tracking intervals are negative or positive. For the censored observation,
the tracking intervals contain zero, which indicates that the Burr III and



200 Panahi and Sayyareh

Weibull are equal or observationally equal to estimate the true model.
Moreover, (i) for fixed r and T as n increases from 40 to 50 the length
of the tracking interval decrease, (ii) for fixed n and T as r increase,
the length of the tracking interval decrease, (iii) for fixed n, r and T
the length of the tracking interval decrease as parameter α increases.
Also, it is important to examine how well our proposed interval works
for comparing the two rival models under different censoring schemes.
So, we compared the tracking intervals in terms of coverage probabilities
in Table 1. It is observed that, the coverage probabilities of the tracking
intervals are all close to the desired level of 0.95.

Table 1: Choice between Burr III and Weibull models using tracking
interval.

n = 40 T = 1
Parameters r = 30 r = 35 r = 40

(α = 1.5, β = 1) (-4.02649,3.32243) (-1.960619,1.53603) (-0.05856,-0.03034)
(0.941) (0.945) (0.953)

(α = 2 , β = 1) (-1.26938,0.97791) (-0.66210,0.43669) (-0.02305,-0.01082)
(0.944) (0.946) (0.952)

(α = 2.5, β = 1) (-0.42545,0.39794) (-0.41227,0.40209) (-0.01864,-0.01007)
(0.944) (0.948) (0.952)

n = 40 (Continued) T = 2

(α = 1.5, β = 1) (-1.45283, 1.00837) (-1.23375, 1.12345) (-0.06436, -0.03537)
(0.942) (0.953) (0.952)

(α = 2 , β = 1) (-0.32106, 0.30367) (-0.31232, 0.25679) (-0.02104, -0.00995)
(0.944) (0.946) (0.949)

(α = 2.5, β = 1) (-0.12034, 0.04098) (-0.10622, 0.051583) (-0.01805, -0.00854)
(0.947) (0.952) (0.951)

n = 50 T = 1
Parameters r = 40 r = 45 r = 50

(α = 1.5, β = 1) (-2.12008, 1.61159) (-0.87032, 0.52300) (-0.05481, -0.03276)
(0.943) (0.945) (0.952)

(α = 2 , β = 1) (-1.22309, 0.93760) (-0.36080, 0.21071) (-0.02484, -0.01418)
(0.946) (0.948) (0.949)

(α = 2.5, β = 1) (-0.41308, 0.31154) (-0.19061, 0.13823) (-0.01399, -0.00641)
(0.947) (0.951) (0.949)

n = 50 (Continued) T = 2

(α = 1.5, β = 1) (-1.36443, 1.01692) (-0.25908, 1.04317) (-0.05591, -0.03461)
(0.944) (0.947) (0.952)

(α = 2 , β = 1) (-0.26457, 0.08886) (-0.23157, 0.15087) (-0.01512, -0.02558)
(0.953) (0.948) (0.950)

(α = 1.5, β = 1) (-0.10775, 0.03190) (-0.08056, 0.01870) (-0.00945, -0.001409)
(0.948) (0.951) (0.949)

The first and second rows represent the average tracking intervals and the corresponding

coverage probabilities.
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4.2 Real Data Analysis

In this subsection we consider one real data set to construct the tracking
interval proposed in the section 3. It is degree of micro-droplet splashing
data originally reported by Montavon et. al. (1997). The authors are
thankful to Dr. Asadi (2008; 2012), for providing the data. The degree
of splashing, D.S, is defined as

D.S =
1

4π
.
P 2

A

where, A is the area of the selected feature and P is the perimeter. The
degrees of splashing droplet data are reported in different spray angles.
We use the data of 90◦ spray angle (See, Montavon et. al.; 1997). First
we want to check whether the Burr XII distribution fits the data set or
not, and that we have use the complete data set. For this purpose, we
present the q-q plot of this data in Figure 2. This plot shows a strong
relationship supporting the appropriateness of the Burr XII distribution.

Figure 2: The q-q plot of droplet splashing data

Figure 3: Empirical survival function and the fitted survival functions
for droplet splashing data.

For comparison purposes, we fit Burr XII (BXII), Weibull (W), gen-
eralized Rayleigh (GR) and Burr III (BIII) distributions to the com-
plete observation. The plot of the empirical and the fitted cumulative
distribution functions for different distributions is presented in Figure
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3. The estimated parameter values, AIC values, Kolmogorov-Smirnov
(K-S) distances and the corresponding p-values are presented in Ta-
ble 2. From the K-S distances, AIC values and p-values of Table 2,
it is quite clear that the Burr XII model with estimated parameters
p = 0.89478 and b = 3.6601 provides much better fit than the other
distributions.

Table 2: Estimated parameters, K-S distances and AIC values for dif-
ferent distribution functions of droplet splashing data.
Distribution Estimated parameters K-S (p-value) AIC

W p = 0.56168, b = 1.85330 0.1134 (0.4237) 113.6794
BXII p = 0.89478, b = 3.66013 0.0744 (0.8944) 98.4622
BIII p = 1.12448, b = 3.38375 0.0756 (0.8825) 98.5607
GR p = 1.09763, b = 0.73915 0.1281 ( 0.2786) 167.5384

f
(p,b)
W = pbxb−1e−pxb

,f
(p,b)
BXII = pbxb−1(1 + xb)−p−1,f

(p,b)
BIII =

pbx−b−1(1 + x−b)−p−1, f
(p,b)
GR = 2pb2xe−(bx)2(1− e−(bx)2)p−1

Furthermore, we present the tracking intervals of two rival models
using (7). It is assumed the following four different cases of rival models
and censoring schemes (n=60):

Case 1: Burr III (misspecified model; (f)) and Weibull (misspecified
model;(g)) & r = 55, T =3 (R=58).

Case 2: Burr III (misspecified model; (f)) and Weibull (misspecified
model; (g)) & r = 38, T = 1 (R=38).

Case 3 : Burr XII (well-specified model;(f)) and Weibull (misspecified;
(g)) & r = 55, T =3 (R=58).

Case 4: Burr XII (well-specified model; (f)) and Weibull (misspecified;
(g)) & r = 38, T = 1 (R=38).
Note that, the true model (h) is Burr XII distribution. In all the cases
we have estimated the unknown parameters using the MLEs and then
constructed the tracking intervals. For cases 1, 2, 3 and 4, the track-
ing intervals are (-0.165910, -0.014091) and (-3.809721, 3.784794), (-
0.166438, -0.012277) and (-3.815360, 3.791280) respectively. For case
1, it is observed that both limits of the tracking interval are negative,
which indicates that the Burr III is better than the Weibull density to
estimate the true model for splashing data. We have plotted the differ-
ent estimated density functions and the relative histogram of this case
in Figure 4. For case 2, zero is well inside this interval, so there is no
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Figure 4: The two fitted ri-
val models (Case 1), Weibull
(dashed line) and Burr III (solid
line) for droplet splashing data.

Figure 5: The two fitted ri-
val models (Case 2), Weibull
(dashed line) and Burr III (solid
line) for droplet splashing data.

confidence that we incur a lower risk using Burr III rather than Weibull
distribution (see also Figure 5). As we expected, the Burr XII is better
than the Weibull density to estimate the true model for case 3. But with
decreasing the number of failures (R), the Burr XII and Weibull distri-
butions are equivalent to consider as an estimate for the true model.

For more comparison, we consider the Voung test (Voung; 1989) to
confirm the results of tracking interval. For cases 1-4, the Voung statis-
tics ℑ are (2.27215), (0.00621), (2.32380) and (0.00643) respectively. It
is observed that for cases 2 and 4, |ℑ| < Z1−α. Thus, we cannot discrim-
inate between the two rival models. Also, for cases 1 and 3, ℑ > Z1−α

and we can conclude that the Burr III and Burr XII are better than
Weibull density to estimate the true model for a given data respectively.

Another important problem in engineering experiments namely the
prediction interval of the future observation, based on the current avail-
able observation. So, we obtain the prediction interval of the Z =
Yd+R; d = 1, 2, ..., n − R using observed data y = (y1, ..., yR). From

Asgharzadeh et. al. (2013), the conditional distribution of (d + R)th

order statistic under Type II hybrid censoring scheme is given by

f(z
∣∣y , p, b) =

(n−R)!

(d− 1)!(n−R− d)!

(F (z)− F (U)) d−1(1− F (z)) n−R−df(z)

(1− F (U)) n−R

(8)

For Burr XII distribution, f(z
∣∣y , p, b) can be written as

f(z
∣∣y , p, b) ∝ pbzb−1 ×

[
(1 + U b)−p − (1 + zb)−p

] d−1

× (1 + U b)p (n−R) × (1 + zb)−p (n−R−d+1)−1

Now, we consider the pivotal quantity W = 1 − (1+Zb)−p

(1+Ub)−p to obtain the

prediction interval of Z under Type II hybrid censored sample. Obvi-
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ously, the distribution of W given Y = y is a Beta (d , n − R − d + 1)
distribution with pdf

f(w) =
wd−1(1− w)n−R−d

Beta(d, n−R− d+ 1)
; 0 < w < 1.

Therefore, the 100(1 − ℘)% prediction interval for the (d + R)th order
statistic Z is given by

{[(1−B℘/2)
−1/p(1 + U b)− 1]1/b, [(1−B1−℘/2)

−1/p(1 + U b)− 1]1/b}

where, B℘ is the ℘th percentile of the Beta distribution with parameters
d and n−R−d+1 respectively. Now, we replace the unknown param-
eters with their MLEs and then obtain the 95% prediction interval for
Z. The results for different censoring schemes are presented in Table 3.

Table 3: The %95 prediction intervals (PIs) for Z = Yd+R and their real
values (n = 60).
d Real Values PIs d Real Values PIs

1 1.35531 (1.31942 , 1.36752) 1 2.41025 (2.40494 , 2.52847)
9 1.57509 (1.47290 , 1.64380) 2 2.41758 (2.45509 , 2.78697)
12 1.66300 (1.58434 , 1.83109) 3 3.17948 (2.57347 , 3.21704)
8 2.41758 (2.04480 , 2.72187) 4 4.63004 (2.82505 ,4.55312)

5 Conclusion

In the present work, we examined how the two rival models behave un-
der Type II hybrid censoring scheme. We considered an interval, say,
tracking interval for differences of the expected KL of two rival mod-
els. Our approach enlightens the variability of any criterion based on
log-likelihood function, like AIC and their variants. To introduce the
tracking interval, we proposed a statistic which tracks the difference of
the expected KL risks between maximum likelihood estimators in two
non-nested rival models. When the models are nested minus two times
of the log-likelihood function is comparable with our idea. We compared
the behavior of two rival models using Monte Carlo simulation and us-
ing the tracking interval for different sample sizes and different censoring
schemes. The results of our simulation study were in agreement with the
theoretical results. For an application, we considered several statistical
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distribution functions to analyze the micro-droplet splashing data. Us-
ing several statistical criteria, like minimum Kolmogorov distance and
minimum AIC value, the Burr XII distribution with estimated param-
eters (0.89478, 3.66013) appears to be more appropriate statistical dis-
tribution for this data set. Also, we have obtained the tracking intervals
for comparing the two rival models based on different censoring schemes
and found that as R decreases, the tracking intervals for splashing data
contain zero which indicate that the two rival models are equivalent to
consider as an estimate for the Burr XII distribution. These results
have been observed using other criteria. One important problem in en-
gineering sciences is that the prediction of the future observations. So
we considered the prediction intervals of future droplet splashing obser-
vations based on Type II hybrid censored sample. It is observed that
these intervals work well. It may be mentioned although we have mainly
considered Type II hybrid censoring case, but this interval can be ex-
tended for other censoring schemes also. More work is needed in these
directions.
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