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Abstract. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z, re-
spectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying the
following conditions,

(a) f(λ, x, ζ) > 0 and f is TP2 in each pairs of variables when the
third variable is held fixed; and

(b) g(λ, ζ) is TP2.

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is TP2 in (λ, x). The aim of this note is to use a new
stochastic ordering argument to prove the above result and simplify it’s
proof given by Karlin (1968). We also prove some other new versions of
this result.
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1 Introduction

Karlin (1968) introduced the concept of Sign-Regular of order 2, which
is of great importance in various fields of Mathematics and Statistics
with many applications.

Definition 1.1. (Karlin (1968)). We say that a function h(x, y) is
Sign-Regular of order 2 (SR2) if ε1h(x, y) ≥ 0 and

ε2

∣∣∣∣ h(x1, y1) h(x1, y2)
h(x2, y1) h(x2, y2)

∣∣∣∣ ≥ 0, (1.1)

whenever x1 < x2 , y1 < y2 for ε1 and ε2 equal to +1 or -1.

If the above relations hold with ε1 = +1 and ε2 = +1, then h is said
to be Totally Positive of order 2 (TP2); and if they hold with ε1 = +1
and ε2 = −1 then h is said to be Reverse Regular of order 2 (RR2).

Karlin (1968) proved the following theorem which is well known as
Basic Composition Theorem. In the following µ represents a σ-finite
measure.

Theorem 1.1. Let A, B and C be subsets of the real line and let
L(x, z) be SR2 for x ∈ A, z ∈ B and M(z, y) be SR2 for z ∈ B, y ∈ C.
Then

K(x, y) =

∫
L(x, z)M(z, y) dµ(z) (1.2)

is SR2 for x ∈ A, y ∈ C and εi(K) = εi(L)× εi(M) ∀ i = 1, 2.

That is, if the functions L and M both are either TP2 or RR2, then
the function h is TP2 and if one of the functions L or M is TP2 and the
other is RR2, then the function h is RR2.

The following theorem was also proved by Karlin (1968)

Theorem 1.2. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z,
respectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying
the following conditions,

(a) f(λ, x, ζ) > 0 and f is TP2 in each pairs of variables when the
third variable is held fixed; and

(b) g(λ, ζ) is TP2.

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is TP2 in (λ, x).
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The aim of this note is to use a new stochastic ordering argument
to prove Theorem 1.2 and simplify the proof of this theorem given by
Karlin (1968). We also prove some other new versions of these theorems.

Now, we need to recall some definitions of stochastic orderings that
we use later in this note.

Let X and Y be two random variables with distribution functions F
and G and density functions f and g, respectively.

Definition 1.2. X is said to be stochastically smaller than Y (denoted
by X ≤st Y ) if for all x, F (x) ≤ G(x). It is well known that X ≤st Y is
equivalent to that

E[ϕ(X)] ≤ (≥ )E[ϕ(Y )] (1.3)

for all increasing ( decreasing ) functions ϕ : R → R, for which the
expectations exist.

A stronger notion of stochastic dominance is that of likelihood ratio
ordering.

Definition 1.3. X is said to be smaller than Y in the likelihood ratio
ordering (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x.

For a more comprehensive review and details on the above stochastic
orderings, see Chapter 1 of Shaked and Shanthikumar (2007).

2 Main Results

We first give the new proof of Theorem 1.2.

Theorem 2.1. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z,
respectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying
the following conditions,

(a) f(λ, x, ζ) > 0 and f is TP2 in each pairs of variables when the
third variable is held fixed; and

(b) g(λ, ζ) is TP2.

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is TP2 in (λ, x).
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Proof. Let x1 ≤ x2. Then

h(λ2, x2)

h(λ2, x1)
=

∫
Z f(λ2, x2, ζ)g(λ2, ζ)dµ(ζ)∫
Z f(λ2, x1, ζ)g(λ2, ζ)dµ(ζ)

=

∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ2, x1, ζ)g(λ2, ζ)∫
Z f(λ2, x1, u)g(λ2, u)dµ(u)

dµ(ζ)

≥
∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.4)

≥
∫
Z

f(λ1, x2, ζ)

f(λ1, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.5)

=
h(λ1, x2)

h(λ1, x1)
.

Let Θ∗(λ) be a random variable having density function given by

f(λ, x1, ζ)g(λ, ζ)∫
Z f(λ, x1, u)g(λ, u)dµ(u)

with respect to µ. Then the assumptions that f and g are TP2 in (λ, ζ)
implies the fact that for λ1 ≤ λ2, Θ∗(λ1) ≤lr Θ∗(λ2), which in turn
implies that Θ∗(λ1) ≤st Θ∗(λ2). On the other hand the assumption

that f is TP2 in (x, ζ) is equivalent to that f(λ2,x2,ζ)
f(λ2,x1,ζ)

is increasing in ζ.

Combining these observations, the inequality (2.4) follows from (1.3).
The second inequality follows from the assumption that f is TP2 in
(λ, x). This completes the proof of the required result.

Next, we prove a new version of Theorem 2.1 which covers Lemma
A.1 of Khaledi and Kochar (2000) as special case.

Theorem 2.2. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z,
respectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying
the following conditions,

(a) f(λ, x, ζ) > 0, f is TP2 in (λ, x), RR2 in (x, ζ) and (λ, ζ).

(b) g is RR2 in (λ, ζ)

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is TP2 in (λ, x).
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Proof. Let x1 ≤ x2. Then

h(λ2, x2)

h(λ2, x1)
=

∫
Z f(λ2, x2, ζ)g(λ2, ζ)dµ(ζ)∫
Z f(λ2, x1, ζ)g(λ2, ζ)dµ(ζ)

=

∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ2, x1, ζ)g(λ2, ζ)∫
Z f(λ2, x1, u)g(λ2, u)dµ(u)

dµ(ζ)

≥
∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.6)

≥
∫
Z

f(λ1, x2, ζ)

f(λ1, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.7)

=
h(λ1, x2)

h(λ1, x1)
.

Let Θ∗(λ) be a random variable having density function given by

f(λ, x1, ζ)g(λ, ζ)∫
Z f(λ, x1, u)g(λ, u)dµ(u)

with respect to µ. Then the assumptions that f and g are RR2 in (λ, ζ)
implies that for λ1 ≤ λ2, Θ

∗(λ2) ≤lr Θ
∗(λ1), which in turn implies that

Θ∗(λ2) ≤st Θ
∗(λ1). On the other hand the assumption that f is RR2

in (x, ζ) is equivalent to that f(λ2,x2,ζ)
f(λ2,x1,ζ)

is decreasing in ζ. Combining

these observations, the inequality (2.6) follows from (1.3). The second
inequality follows from the assumption that f is TP2 in (λ, x). This
completes the proof of the required result.

Next two theorems deal with conditions under which the function
h(λ, x) is RR2 in (λ, x).

Theorem 2.3. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z,
respectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying
the following conditions,

(a) f(λ, x, ζ) > 0, f and g are RR2 in (λ, ζ).

(b) f(λ, x, ζ) is RR2 in (λ, x) and is TP2 in (x, ζ).

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is RR2 in (λ, x).
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Proof. Let x1 ≤ x2. Then

h(λ2, x2)

h(λ2, x1)
=

∫
Z f(λ2, x2, ζ)g(λ2, ζ)dµ(ζ)∫
Z f(λ2, x1, ζ)g(λ2, ζ)dµ(ζ)

=

∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ2, x1, ζ)g(λ2, ζ)∫
Z f(λ2, x1, u)g(λ2, u)dµ(u)

dµ(ζ)

≤
∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.8)

≤
∫
Z

f(λ1, x2, ζ)

f(λ1, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.9)

=
h(λ1, x2)

h(λ1, x1)
.

Let Θ∗(λ) be a random variable having density function given by

f(λ, x1, ζ)g(λ, ζ)∫
Z f(λ, x1, u)g(λ, u)dµ(u)

with respect to µ. Then the assumptions that f and g are RR2 in (λ, ζ)
implies that for λ1 ≤ λ2, Θ

∗(λ2) ≤lr Θ
∗(λ1), which in turn implies that

Θ∗(λ2) ≤st Θ
∗(λ1). On the other hand the assumption that f is TP2

in (x, ζ) is equivalent to that f(λ2,x2,ζ)
f(λ2,x1,ζ)

is increasing in ζ. Combining

these observations, the inequality (2.8) follows from (1.3). The second
inequality follows from the assumption that f is RR2 in (λ, x). This
completes the proof of the required result.

Theorem 2.3 was also proved in Khaledi and Kochar (2001) in a
different complicated way.

Next, we prove another new version of Theorem 2.1.

Theorem 2.4. Suppose λ, x, ζ traverse the ordered sets Λ, X and Z,
respectively and consider the functions f(λ, x, ζ) and g(λ, ζ) satisfying
the following conditions,

(a) f(λ, x, ζ) > 0, f and g are TP2 in (λ, ζ).

(b) f(λ, x, ζ) is RR2 in (λ, x) and (x, ζ).

Then the function

h(λ, x) =

∫
Z
f(λ, x, ζ)g(λ, ζ)dµ(ζ),

defined on Λ×X is RR2 in (λ, x).
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Proof. Let x1 ≤ x2. Then

h(λ2, x2)

h(λ2, x1)
=

∫
Z f(λ2, x2, ζ)g(λ2, ζ)dµ(ζ)∫
Z f(λ2, x1, ζ)g(λ2, ζ)dµ(ζ)

=

∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ2, x1, ζ)g(λ2, ζ)∫
Z f(λ2, x1, u)g(λ2, u)dµ(u)

dµ(ζ)

≤
∫
Z

f(λ2, x2, ζ)

f(λ2, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.10)

≤
∫
Z

f(λ1, x2, ζ)

f(λ1, x1, ζ)

f(λ1, x1, ζ)g(λ1, ζ)∫
Z f(λ1, x1, u)g(λ1, u)dµ(u)

dµ(ζ) (2.11)

=
h(λ1, x2)

h(λ1, x1)
.

Let Θ∗(λ) be a random variable having density function given by

f(λ, x1, ζ)g(λ, ζ)∫
Z f(λ, x1, u)g(λ, u)dµ(u)

with respect to µ. Then the assumptions that f and g are TP2 in (λ, ζ)
implies that for λ1 ≤ λ2, Θ

∗(λ1) ≤lr Θ
∗(λ2), which in turn implies that

Θ∗(λ1) ≤st Θ
∗(λ2). On the other hand the assumption that f is RR2

in (x, ζ) is equivalent to that f(λ2,x2,ζ)
f(λ2,x1,ζ)

is decreasing in ζ. Combining

these observations, the inequality (2.10) follows from (1.3). The second
inequality follows from the assumption that f is RR2 in (λ, x). This
completes the proof of the required result.

Remark 2.1. The results of Theorem 1.1 are special cases of Theorem
2.1 - 2.4.

We end this note by proving a result given in Kirmani and Kochar
(1995), using a similar argument used to prove Theorem 2.1.

Theorem 2.5. Let ψ1(x, u) and ψ2(x, u) be two positive real-valued
functions such that

(i) for each u1 ≤ u2,
ψ2(x,u2)
ψ2(x,u1)

is increasing in x,

(ii) for each x, ψ1(x,u)
ψ2(x,u)

is increasing in u and

(iii) for each fixed u, ψ1(x,u)
ψ2(x,u)

is increasing in x.
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Then, X ≤lr Y implies that the ratio

E[ψ1(x, Y )]

E[ψ2(x,X)]

is increasing in x, provided that the expectations exist.

Proof. Let x1 ≤ x2 and denote the density functions of X and Y by F
and G, respectively. Then

E[ψ1(x2, Y )]

E[ψ2(x2, X)]
=

∫
ψ1(x2, u)g(u)du∫
ψ2(x2, u)f(u)du

=

∫ (ψ1(x2, u)

ψ2(x2, u)

)( g(u)
f(u)

) ψ2(x2, u)f(u)∫
ψ2(x2, u)f(u)du

du

≥
∫ (ψ1(x2, u)

ψ2(x2, u)

)( g(u)
f(u)

) ψ2(x1, u)f(u)∫
ψ2(x1, u)f(u)du

du

≥
∫ (ψ1(x1, u)

ψ2(x1, u)

)( g(u)
f(u)

) ψ2(x1, u)f(u)∫
ψ2(x1, u)f(u)du

du

=

∫
ψ1(x1, u)g(u)du∫
ψ2(x1, u)f(u)du

=
E[ψ1(x1, Y )]

E[ψ2(x1, X)]
.

The proof of the above inequalities follows from the similar kind of ar-
guments used to prove inequalities (2.4) and (2.5).

Remark 2.2.

(a) If in Theorem 2.5, X ≥lr Y ,

(i) for each u1 ≤ u2,
ψ2(x,u2)
ψ2(x,u1)

is decreasing in x,

(ii) for each x, ψ1(x,u)
ψ2(x,u)

is decreasing in u and

(iii) for each fixed u, ψ1(x,u)
ψ2(x,u)

is decreasing in x,

then
E[ψ1(x, Y )]

E[ψ2(x,X)]

is increasing in x.

(b) If in Theorem 2.5, X ≤lr Y ,
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(i) for each u1 ≤ u2,
ψ2(x,u2)
ψ2(x,u1)

is decreasing in x,

(ii) for each x, ψ1(x,u)
ψ2(x,u)

is increasing in u and

(iii) for each fixed u, ψ1(x,u)
ψ2(x,u)

is increasing in x,

then
E[ψ1(x, Y )]

E[ψ2(x,X)]

is decreasing in x.

(c) If in Theorem 2.5, X ≥lr Y ,

(i) for each u1 ≤ u2,
ψ2(x,u2)
ψ2(x,u1)

is increasing in x,

(ii) for each x, ψ1(x,u)
ψ2(x,u)

is decreasing in u and

(iii) for each fixed u, ψ1(x,u)
ψ2(x,u)

is decreasing in x,

then
E[ψ1(x, Y )]

E[ψ2(x,X)]

is decreasing in x.

Concluding Remark

In this paper, using a new stochastic ordering arguments, we could prove
two main theorems (Theorems 2.1 and 2.5) in a simpler way that have
been used by several authors to establish some stochastic ordering re-
sults. We also prove some new versions of these theorems that can
effectively be used and applied to establish more stochastic inequalities
among mixture distributions and among some useful statistics such as
order statistics and spacings.
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