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Abstract. In this paper, based on a left censored data from the two-
parameter Pareto distribution, maximum likelihood and Bayes estima-
tors for the two unknown parameters are obtained. The problem of
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approaches. Two numerical examples and a Monte Carlo simulation
study are given for illustrative purposes.
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1 Introduction

The two-parameter Pareto distribution (denoted by P (α, β)) has the
cumulative distribution function (cdf)

F (x;α, β) = 1−
(
β

x

)α

, x ≥ β > 0, α > 0, (1.1)
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and the probability density function (pdf)

f(x;α, β) =
αβα

xα+1
, x ≥ β > 0, α > 0. (1.2)

This distribution is called Pareto type-I distribution (see, for example,
Johnson et al. (1994)) with parameters α and β.

The Pareto distribution was originated by Pareto (1897) as a model
for the distribution of income but is now used as a model in such widely
diverse areas as insurance, business, economics, engineering, hydrology
and reliability. In addition, the Pareto distribution has been found to
provide a good model in biomedical problems, such as survival time
following a heart transplant (Bain and Engelhardt, 1992). The origin
and other aspects of this distribution can be found in Johnson et al.
(1994). Estimations, predictions, and some inference concerning the
Pareto distribution were discussed by many authors. Among others, see
AL-Hussaini and Ahmad (2003), Madi and Raqab (2004), Ahmadi and
Doosparast (2006), Raqab et al. (2007), Soliman (2008) and Raqab et
al. (2010).

Censored sampling arises in a life testing experiment whenever the
experimenter does not observe (either intentionally or unintentionally)
the failure times of all units placed on a life test. The two most common
censoring schemes are termed Type-I and Type-II censoring. They can
be described as follows. Consider a sample of n units placed on a life-
test at time 0. In conventional Type-I censoring, a time T , independent
of the failure times, is pre-fixed so that beyond this time no failures will
be observed, that is, the experimentation terminates at time T . On the
other hand, in the case of conventional Type-II censoring, the number
of observed failures is fixed, say m (m ≤ n), so that at the time of
the mth failure, the experimentation terminates, leaving n−m partially
observed failure times. One of the drawbacks to the conventional Type-
I and Type-II censoring schemes is that they do not allow for removal
of units at points other than the terminal point of the experiment. A
more general censoring scheme known as progressive censoring scheme,
which has this advantage, has become very popular in the last few years.
For more details on progressive censoring scheme, see Balakrishnan and
Aggarwala (2000).

In this paper, we consider a left censoring scheme which can be
described as follows. Let us consider an experiment in which n com-
ponents are put to test simultaneously at time 0, and the failure times
of these components are recorded. Suppose some initial observations
are censored possibly due to failures during the time when checks and
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adjustments are being made on the devices. Suppose, for instance, that
out of n items put on life test, the largest n − r life times X(r+1) <
X(r+2) < · · · < X(n) have only been observed and the life times for the
first r components remain unobserved or missing. This type of censoring
is known as a left censoring scheme. There is a widespread application
and use of left censored data in survival analysis and reliability theory.
For more details and some applications of left censoring scheme, see Bal-
akrishnan (1989), Balakrishnan and Varadan (1991), Bagger (2005) and
Mitra and Kundu (2008).

If X(r+1) < X(r+2) < · · · < X(n) is the available left censored sample
from a random sample of size n from a life-time distribution with cdf
F (x; θ) and pdf f(x; θ). Then, the joint pdf of X = (X(r+1), X(r+2), · · · ,
X(n)) is given by

f(x; θ) =
n!

r!
[F (x(r+1); θ)]

r
n∏

i=r+1

f(x(i); θ), x(r+1) < x(r+2) < · · · < x(n),

(1.3)
where x = (x(r+1), x(r+2), · · · , x(n)) is the vector of observations.

Reconstruction of the past failure times in the left censored setup
is an interesting topic, especially in the viewpoint of actuarial, medical
and engineering sciences. Suppose that we observe the largest n− r life
times X(r+1) < X(r+2) < · · · < X(n) from Pareto distribution. Our main
aim is to reconstruct the past failure times X(1) < X(2) < · · · < X(r)

based on the n − r observed order statistics X = (X(r+1), · · · , X(n)).
We study this problem via non-Bayesian and Bayesian approaches and
present several reconstructors of Y = X(s), (1 ≤ s ≤ r).

In the recent years, several authors have considered reconstruction
problems involving order statistics. Balakrishnan et al. (2009) have
addressed the problem of reconstructing past records from the known
values of future records when the underlying distributions were expo-
nential and Pareto distributions. Razmkhah et. al. (2010) have derived
point and interval reconstructors for the missing order statistics from
two parameter exponential distribution. Recently, Asgharzadeh et al.
(2012) have discussed reconstructors of times to failure of units cen-
sored in a left-censored sample from the proportional reversed hazard
rate models.

In this paper, various reconstructors of times to failure of units cen-
sored in a left-censored sample from the Pareto distribution are dis-
cussed. The paper is organized as follows. Section 2 presents the maxi-
mum likelihood and Bayes estimators for the two unknown parameters.
In Section 3, different point reconstructors are derived for the past fail-
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ure times. We also provide two types of reconstruction intervals (RI’s)
for the past failure times. Finally in Section 4, the analysis of two data
sets and a Monte Carlo simulation study are presented for illustrative
purposes.

2 Estimation of the Parameters

Let X(r+1) < X(r+2) < · · · < X(n) be the available left censored sample
from a random sample of size n from a Pareto distribution, with cdf and
pdf given, respectively, by equations (1.1) and (1.2). In this section, we
consider the problem of estimation with both Bayesian and non-Bayesian
approaches for the unknown parameters α and β. From equations (1.1),
(1.2) and (1.3), the joint pdf of X = (X(r+1), X(r+2), · · · , X(n)) is given
by

f(x;α, β) =
n!

r!
αn−rβα(n−r)

[
1−

(
β

x(r+1)

)α]r
×(

n∏
i=r+1

x(i))
−α−1, β ≤ x(r+1), α > 0. (2.1)

From (2.1), we note that (
∑n

i=r+1 lnX(i), X(r+1)) is a jointly sufficient
statistic for (α, β).

2.1 Maximum Likelihood Estimation

The log-likelihood function is given by

lnL(x;α, β) ∝ (n− r) lnα+ α(n− r) lnβ + r ln

[
1−

(
β

x(r+1)

)α]
−(α+ 1)

n∑
i=r+1

lnx(i). (2.2)

From (2.2), we drive the log-likelihood equation for β as

∂ lnL(x, α, β)

∂β
=
α(n− r)

β
−

αr
(

β
x(r+1)

)α
β
[
1−

(
β

x(r+1)

)α] = 0. (2.3)

Thus, we obtain the maximum likelihood estimator (MLE) of β as a
function of α as

β̂(α) =

(
n− r

n

)1/α

X(r+1).
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Substituting β̂(α) in (2.2), we obtain the profile log-likelihood of α and
we can obtain the MLE of α by maximizing the profile log-likelihood of
α with respect to α. The profile log-likelihood equation for α is

∂ lnL(x, α, β)

∂α
=
n− r

α
−

n∑
i=r+1

ln
x(i)

x(r+1)
= 0. (2.4).

From (2.4), we obtain the MLE of α as

α̂ =
(n− r)∑n

i=r+1 ln
X(i)

X(r+1)

. (2.5)

Now, the MLE of β can be obtained as β̂(α̂).

2.2 Bayes Estimation

Under the assumption that both of the parameters of α and β are un-
known, we can consider the following joint prior density function

π(α, β) ∝ αaβαb−1c−α, α > 0, 0 < β < d, (2.6)

for α and β, where a, b, c, d are positive constants and db < c. This prior
was first suggested by Lwin (1972) and later generalized by Arnold and
Press (1983, 1989). Such a prior specifies π(α) as a gamma distribution
with parameters a and log c − b log d and π(β|α) as a power function
distribution of the form

π(β|α) ∝ b α βbα−1d−bα, 0 < β < d.

Note that the noninformative prior

π(α, β) ∝ 1

αβ
, α > 0, β > 0,

is specified by letting a = −1, c = 1, b = 0 and d→ ∞.
Now, the posterior density function of α and β given the data, de-

noted by π(α, β | x), can be obtained using (2.1) and (2.6) as

π(α, β | x) = 1

R(x)
αa+n−rβα(b+n−r)−1(c

n∏
i=r+1

x(i))
−α

×
[
1−

(
β

x(r+1)

)α]r
, α > 0, 0 < β < M, (2.7)
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where M = min(d, x(r+1)) and

R(x) = Γ(a+ n− r)
r∑

j=0

(
r
j

)
(−1)j

(n− r + j + b)

×

[
ln

(
cxj(r+1)M

r−b−n−j
n∏

i=r+1

x(i)

)](r−a−n)

.

Therefore, the Bayes estimator of α under a squared error loss (SEL) is

α̂B = E(α | x)

=

∫ ∞

0

∫ M

0

1

R(x)
αa+n−r+1βα(b+n−r)−1c−α

×
[
1−

(
β

x(r+1)

)α]r n∏
i=r+1

x
−(α+1)
(i) dβdα

=
1

R(x)
Γ(a+ n− r + 1)

r∑
j=0

(
r
j

)
(−1)j

(n− r + j + b)

×

[
ln

(
cxj(r+1)M

r−b−n−j
n∏

i=r+1

x(i)

)](r−a−n−1)

. (2.8)

Similarly, the Bayes estimator of β can be obtained as

β̂B = E(β | x)

=

∫ ∞

0

∫ M

0

1

R(x)
αa+n−rβα(b+n−r)c−α

×
[
1−

(
β

x(r+1)

)α]r n∏
i=r+1

x
−(α+1)
(i) dβdα

=
M

R(x)

r∑
j=0

(
r

j

)
(−1)j [Sj(x)]

r−a−n

×
∫ ∞

0

1

((n− r + b+ j)z + Sj(x))
za+n−re−zdz,

where

Sj(x) = ln c+ j lnx(r+1) − (n− r + b+ j) lnM +

n∑
i=r+1

lnx(i).
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Note that the Bayes estimator of β can be written as

β̂B =
M

R(x)

r∑
j=0

(
r
j

)
(−1)j [Sj(x)]

r−a−n

n− r + b+ j
ψ

(
a+ n− r,

Sj(x)

n− r + b+ j

)
,

(2.9)
where

ψ(x, y) =

∫ ∞

0

tx

t+ y
e−tdt.

A partial tabulation of ψ(x, y) is provided by Arnold and Press (1989).

3 Reconstruction of the Past Failure Times

Suppose X = (X(r+1), ..., X(n)) be the n− r left censored sample from a

population with pdf f(x; θ) with parameter θ ∈ Rk. Our objective is to
reconstruct the sth past failure time Y = X(s) (1 ≤ s ≤ r) based on the
observed censored sample X = (X(r+1), · · · , X(n)).

Due to Markovian property of order statistics, the conditional dis-
tribution of Y = X(s), given X = (x(r+1), · · · , x(n)) is equal to the
conditional distribution of Y given X(r+1) = x(r+1) which is given by

f(y|x(r+1); θ)

= s

(
r

s

)
f(y; θ) [F (y; θ)]s−1 [F (x(r+1);θ)− F (y; θ)

]r−s [
F (x(r+1);θ)

]−r
,

y ≤ x(r+1). (3.1)

For the Pareto distribution with cdf and pdf given, respectively, in (1.1)
and (1.2), (3.1) becomes

f(y|x(r+1);α, β) = s

(
r

s

)
α

β

(
β

y

)α+1 [
1−

(
β

y

)α]s−1

×
[(

β

y

)α

−
(

β

x(r+1)

)α]r−s

×
[
1−

(
β

x(r+1)

)α]−r

, β ≤ y ≤ x(r+1). (3.2)

In this section, we obtain several reconstructors of Y = X(s) (1 ≤
s ≤ r), either point or interval, on the basis of X = (x(r+1), · · · , x(n))
via classical and Bayesian approaches.
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3.1 Likelihood Reconstruction Method

In likelihood reconstruction method, the principle of maximum likeli-
hood is applied to the joint reconstruction and estimation of a past
random variable and an unknown parameter. We assume dependence
between present and past, and the approach is non-Bayesian. Let X =
(X(r+1), ..., X(n)) and Y = X(s) (1 ≤ s ≤ r) have the joint pdf f(x, y; θ)

indexed by the parameter θ ∈ Rk. The problem here will be to recon-
struct the past random variable Y , having observed X. Thus, viewed
as a function of y and θ, we define

L(y, θ;x) = f(x, y; θ)

to be the reconstructive likelihood function (RLF) of y and θ. Note that
the RLF can be rewritten as

L(y, θ;x) = f(y|x; θ)f(x; θ).

Suppose Ŷp = u(X) and θ̂ = v(X) are statistics for which

L(u(x), v(x);x) = sup(y,θ)L(y, θ;x),

then u(X) is said to be the maximum likelihood reconstructor (MLR) of
Y and v(X) the reconstructive maximum likelihood estimator (RMLE)
of θ.

For the Pareto distribution, using (2.1) and (3.2), the RLF of Y and
θ = (α, β) can be written as

L(y, α, β;x) = f(y|x(r+1);α, β)f(x;α, β)

= c

(
α

β

)n−r+1(β
y

)α+1 [
1−

(
β

y

)α]s−1

×
[(

β

y

)α

−
(

β

x(r+1)

)α]r−s

×
n∏

i=r+1

(
β

x(i)

)α+1

, β ≤ y ≤ x(r+1), (3.3)

where c denotes a constant factor.
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The reconstructive log-likelihood function of Y and (α, β) is

lnL(y, α, β;x) ∝ (n− r + 1) ln(
α

β
) + (α+ 1) ln(

β

y
)

+ (s− 1) ln

[
1−

(
β

y

)α]
+ (r − s) ln

[(
β

y

)α

−
(

β

x(r+1)

)α]
+

n∑
j=r+1

(α+ 1) ln(
β

x(i)
). (3.4)

From (3.4), the reconstructive likelihood equation (RLE) for β is given
by

∂ lnL(y, α, β)

∂β
=
α(n− s+ 1)

β
−
α(s− 1)(βy )

α

β
(
1− (βy )

α
) = 0. (3.5)

From (3.5), we obtain the RMLE of β as a function of y and α, say
β̂(y, α), as

β̂(y, α) =

(
n− s+ 1

n

) 1
α

y. (3.6)

Substituting β̂(y, α) in (3.4), the MLR of Y (say ŷMLR) and the
RMLE of α (say α̂RML) can be obtained by maximizing the profile log-
likelihood lnL(y, α, β̂(y, α);x) with respect to y and α, respectively. The
reconstructive likelihood equations (RLEs) for Y = X(s) (1 ≤ s ≤ r) and
α are given by

∂ lnL(y, α, β̂(y, α);x)

∂y
=

(
y

x(r+1)

)−α

− α(n− s)− 1

α(n− r)− 1
= 0, (3.7)

∂ lnL(y, α, β̂(y, α);x)

∂α
=

n− r + 1

α
−

(r − s)
(

y
x(r+1)

)α
ln( y

x(r+1)
)

1−
(

y
x(r+1)

)α
+

n∑
i=r+1

ln(
y

x(i)
) = 0. (3.8)

Equations (3.7) and (3.8) do not yield explicit solutions for y and α
and hence must be solved numerically to obtain ŷMLR and α̂RML. Once
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ŷMLR and α̂RML are obtained from (3.7) and (3.8), the RMLE of β, say
β̂RML, can be obtained from (3.6) as

β̂RML = β̂(ŷMLR, α̂RML).

For a special case, when s = r, it is easy to show that

ŷMLR = x(r+1),

α̂RML =
n− r + 1∑n

i=r+1 ln(
x(i)

x(r+1)
)
,

β̂RML =

(
n− r + 1

n

)1/α̂RML

ŷMLR.

3.2 Conditional Reconstruction Method

In conditional reconstruction method, the conditional distribution of
Y = X(s) (1 ≤ s ≤ r) given X = (X(r+1), · · · , X(n)) is applied to derive
point and interval reconstructors of Y .

A statistic Ŷ which is used to reconstruct Y = X(s) is called a best

unbiased reconstructor (BUR) of Y , if E(Ŷ ) = E(Y ) and its reconstruc-
tor error variance Var(Ŷ − Y ) is less than or equal to that of any other
unbiased reconstructor of Y . Since the conditional distribution of Y
given X = (X(r+1), · · · , X(n)) is just the distribution of Y given X(r+1),
therefore the BUR of Y is

ŶBUR = E(Y |X(r+1)).

By (3.2), we have

ŶBUR =

∫ x(r+1)

β
yf(y|x(r+1), α, β)dy

=

∫ 1

0
β

[
1− u

(
1− (

β

xr+1
)α
)]− 1

α us−1(1− u)r−s

Beta(s, r − s+ 1)
du. (3.9)

If the parameters α and β are unknown, they have to be estimated in
this integral. Thus one would replace α and β by their corresponding
MLEs and obtain an approximate BUR of Y .

The median Y givenX is called the conditional median reconstructor
(CMR). So, a reconstructor Ŷ is called the CMR of Y , if we have

Pα,β(Y ≤ Ŷ |X = x) = Pα,β(Y ≥ Ŷ |X = x).
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Using the relation

Pα,β(Y ≥ Ŷ |X(r+1) = x(r+1))

= Pα,β

 1− ( βY )α

1− ( β
x(r+1)

)α
≥

1− ( β
Ŷ
)α

1− ( β
x(r+1)

)α
|X(r+1) = x(r+1)

 ,

and by the fact that , 1− ( βY )α

1− ( β
x(r+1)

)α

 | X(r+1) = x(r+1) ∼ Beta(s, r − s+ 1), (3.10)

we obtain the CMR of Y as

ŶCMR = β

[
1−Med(U)

(
1− (

β

x(r+1)
)α
)]− 1

α

, (3.11)

where U is a beta random variable with parameters s and r − s+ 1. If
α and β are unknown, as recommended by Balakrishnan et al. (2009),
one method is substituting α and β by their corresponding MLEs.

For the special case s = r, we have Med(U) = r
√

1/2, and hence we
obtain

ŶCMR = β

[
1− (

1

2
)
1
r

(
1− (

β

x(r+1)
)α
)]− 1

α

.

Now, we consider two approaches to obtain reconstruction intervals
(RIs) for Y = X(s) (1 ≤ s ≤ r) based on the left censored sample
X = (X(r+1), X(r+2), ..., X(n)). Let us take the random variable Z as

Z =

 1− ( βY )α

1− ( β
x(r+1)

)α

 .

As mentioned in (3.10), Z given X(r+1) = x(r+1) has a Beta(s, r− s+1)
distribution with pdf

g(z|x(r+1)) = s

(
r

s

)
zs−1(1− z)r−s, 0 < z < 1.

So, we can consider Z as a pivotal quantity to obtain the reconstruction
interval for Y . By noting that the Beta(s, r − s + 1) distribution is
unimodal, then a 100(1− γ)% two sided RI for Y is(
β

[
1− b1− γ

2

(
1− (

β

x(r+1)
)α
)]− 1

α

, β

[
1− b γ

2

(
1− (

β

x(r+1)
)α
)]− 1

α

)
,

(3.12)
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where bγ stands for 100γth percentile of Beta(s, r− s+1). When α and
β are unknown, we can replace them by their corresponding MLEs.

Now let us consider another reconstruction interval for Y = X(s).
By substituting α and β in (3.2) by their MLEs, we can obtain the
approximate density of Y given X(r+1) = x(r+1) as

f̂(y|x(r+1)) = f(y|x(r+1), α̂, β̂)

= s

(
r

s

)
α̂

β̂

(
β̂

y

)α̂+1
1−( β̂

y

)α̂
s−1

×

( β̂
y

)α̂

−

(
β̂

x(r+1)

)α̂
r−s

×

1−( β̂

x(r+1)

)α̂
−r

, y ≤ x(r+1). (3.13)

We can easily observe that this conditional density is a unimodal func-
tion of

Ẑ =

 1− ( β̂Y )α̂

1− ( β̂
x(r+1)

)α̂

 ,

for s > 1 and r > s (i.e; s = 2, ..., r− 1). Then, the 100(1− γ)% highest
conditional density (HCD) RI for Y isβ̂ [1− w1

(
1− (

β̂

x(r+1)
)α̂

)]− 1
α̂

, β̂

[
1− w2

(
1− (

β̂

x(r+1)
)α̂

)]− 1
α̂

 ,

where w1 and w2 are the simultaneous solution of the following equa-
tions:

1− γ =

∫ w2

w1

g(z|x(r+1))dz, (3.14)

and
g(w1|x(r+1)) = g(w2|x(r+1)). (3.15)

Now, we simplify the equations (3.14) and (3.15) as

Bw2(s, r − s+ 1)−Bw1(s, r − s+ 1) = 1− γ, (3.16)

and (
1− w2

1− w1

)r−s

=

(
w1

w2

)s−1

, (3.17)
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where

Bt(a, b) =
1

B(a, b)

∫ t

0
xa−1(1− x)b−1 dx,

is the incomplete beta function.
Note that for special case s = r, we find a simple expression for

100(1− γ)% HCD RI for Y , which is β̂

[
1− γ

(
1− (

β̂

x(r+1)
)α̂

)]− 1
α̂

, x(r+1)

 .

3.3 Bayesian Reconstruction Method

Suppose that we have observed the n − r left censored sample X =
(X(r+1), · · · , X(n)) from a Pareto distribution with pdf (1.2). In this
section, on the basis of such a sample, we consider the problem of re-
construction Y = X(s) (s < r) based on Bayesian approach. The Bayes
reconstructive density function of Y = X(s) given X(r+1) = x(r+1) is
given by

f∗(y | x(r+1)) =

∫ ∞

0

∫ M

0
f(y | x(r+1), α, β)π(α, β | x)dβdα. (3.18)

By substituting (2.7) and (3.2) into (3.18) and applying the binomial
expansion, we get

f∗(y | x(r+1)) =

∫ ∞

0

∫ M

0

s
(
r
s

)
R(x)

αa+n−r+1βα(b+n−s+1)−1c−α

×
[
1−

(
β

y

)α]s−1 n∏
i=r+1

x−α
(i)

×
(
y−α − x−α

(r+1)

)r−s
y−(α+1)dβdα

=
s
(
r
s

)
R(x)

s−1∑
k=0

(
s− 1

k

)
(−1)k

∫ ∞

0
αa+n−r+1c−α

n∏
i=r+1

x−α
(i)

×
(
y−α − x−α

r+1

)r−s
y−(α(k+1)+1)

×
∫ M

0
βα(n−s+b+1+k)−1dβdα
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=
s
(
r
s

)
R(x)

s−1∑
k=0

r−s∑
l=0

(
s− 1

k

)(
r − s

l

)
(−1)k+r−s−l

(n− s+ b+ 1 + k)

×
∫ ∞

0
αa+n−rc−α

n∏
i=r+1

x−α
(i)

×y−(α(k+l+1)+1) x
−α(r−s−l)
r+1 Mα(n−s+b+1+k)dα

= s

(
r

s

)
Γ(a+ n− r + 1)

yR(x)

s−1∑
k=0

r−s∑
l=0

(
s−1
k

)(
r−s
l

)
(−1)k+l

(n− s+ b+ 1 + k)

×

[
ln

(
c

n∏
i=r+1

x(i) x
r−s−l
(r+1) y

k+l+1 M s−b−n−k−1

)](r−a−n−1)

where β < y ≤ x(r+1).
Bayesian prediction bounds for Y are obtained by evaluating

P (Y ≥ λ | x(r+1)) =

∫ x(r+1)

λ
f∗(y | x(r+1))dy,

for some positive λ. The probability P (Y ≥ λ | x(r+1)) can be shown to
be

s

(
r

s

)
Γ(a+ n− r + 1)

(a− n− r)R(x)

s−1∑
k=0

r−s∑
l=0

(
s− 1

k

)(
r − s

l

)
× (−1)k+l−1

(n+ k − s+ b+ 1)(k + l + 1)

×

[(
ln(c

n∏
i=r+1

x(i) M
s−b−n−k−1 xr+k−s+1

(r+1) )

)r−a−n

−

(
ln(c

n∏
i=r+1

x(i) M
s−b−n−k−1 xr−s−l

(r+1) λ
k+l+1)

)(r−a−n)
 (3.19)

Now, the 100(1 − γ)% Bayesian reconstruction interval for Y = X(s) is
given by (LB(x(r+1)), UB(x(r+1))) where LB(x(r+1)) and UB(x(r+1)) are
the lower and upper reconstruction bounds, respectively, satisfying

P [Y ≥ LB(x(r+1)) | x(r+1)] = 1− γ

2
,

and
P [Y ≥ UB(x(r+1)) | x(r+1)] =

γ

2
.
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Numerical methods are required to obtain the lower and upper 100(1−
γ)% reconstruction bounds for Y .

Note that Bayesian point reconstructors can be also obtained from
f∗(y | x(r+1)), the Bayes reconstructive density function of Y = X(s)

given X(r+1) = x(r+1), and the given loss function. Under a abso-
lute error loss (AEL) function , the Bayesian point reconstructor of
Y = X(s) (denoted by ŶAEL) is the median of the Bayes reconstructive
function f∗(y | x(r+1)). That is a number m satisfies the relation

P (Y ≥ m | x(r+1)) =

∫ x(r+1)

m
f∗(y | x(r+1))dy =

1

2
,

which is obtained numerically using (3.19).
Under the squared error loss (SEL) function, the Bayesian point re-

constructor of Y = X(s) is the mean of the Bayes reconstructive function
f∗(y | x(r+1)). It is

ŶSEL =

∫ x(r+1)

β

yf∗(y | x(r+1))dy

= s

(
r

s

)
Γ(a+ n− r + 1)

R(x)

s−1∑
k=0

r−s∑
l=0

(
s−1
k

)(
r−s
l

)
(−1)k+l

(n− s+ b+ 1 + k)

×
∫ x(r+1)

β

[
ln

(
c

n∏
i=r+1

x(i) x
r−s−l
(r+1) yk+l+1 Ms−b−n−k−1

)](r−a−n−1)

dy.

As we can see, the Bayesian point reconstructor under SEL function is
difficult to obtain. Moreover, since the parameter β is unknown, it has
to be estimated in this integral.

4 Numerical Examples and Simulations

In this section, two numerical examples are given to illustrate the re-
construction methods proposed in this paper. We apply the proposed
methods to one of simulated data set and another practical data set.
Further, a Monte Carlo simulation is conducted to compare the perfor-
mance of the point reconstructors as well as the reconstruction intervals
(RIs). The performance of the point reconstructors are based on their
biases and mean square reconstruction errors (MSREs) while the perfor-
mance of the RIs are based on their average lengths and their coverage
probabilities. All of the computations are performed using the Mathe-
matical Package Maple 13.
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4.1 Example 1 (Simulated Data):

The following ordered data has been generated from the Pareto distri-
bution (1.1) with parameters α = 2.5 and β = 1.

1.0139 1.0149 1.0445 1.0712 1.0715 1.0869 1.1045 1.1875

1.2185 1.3485 1.3734 1.3780 1.4685 1.7171 1.7698 1.9566

2.0276 2.1614 2.2861 2.7478

We assumed that here the parameters of of prior density in (2.6) are
as a = 3, b = 1, c = 4 and d = 2. For this example, we suppose that the
first (r = 5) observations are not observed. The MLEs of the parameters
α and β are obtained as α̂ = 2.621 and β̂ = 0.9739. Using (2.8) and
(2.9), the Bayes estimates of α and β are computed as α̂B = 2.562 and
β̂B = 0.9577. The different point reconstructors MLR, BUR, CMR and
Bayesian point reconstructor (BPR) of Y = X(s) (s ≤ 5) and also the
95% RI’s are displayed in Table 1. The BPR is obtained using AEL
function.

Table 1. The values of point reconstructors and 95% RIs for the
simulated data.

Exact value MLR BUR CMR BPR Pivotal method HCD method Bayesian method
X(1) 1.0139 0.8422 0.9902 0.9862 1.0822 (0.9743, 1.0272) (—,—) (.146180, 1.08517)

X(2) 1.0149 0.8959 1.0070 1.0050 1.0730 (0.9788, 1.0500) (0.9763, 1.0444) (.229425, 1.07296)

X(3) 1.0445 0.9543 1.0260 1.0250 1.0868 (0.9878, 1.0672) (0.9878, 1.0672) (.146209, 1.08686)

X(4) 1.0712 1.0180 1.0440 1.0460 1.0868 (1.0016, 1.0796) (1.0064, 1.0832) (.146224, 1.08686)

X(5) 1.0715 1.0870 1.0650 1.0690 1.0868 (1.0223, 1.0861) (0.9785,1.0868) (.229465, 1.08686)

4.2 Example 2 (Real Data):

Here we analyze one real data set to illustrate the reconstruction pro-
cedure proposed in Section 3. The following data represent the time
to breakdown of a type of electronic insulating material subject to a
constant-voltage stress. These data are taken from Nelson (1970) and
has been used earlier by Tiku and Akkaya (2004).

0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.90 3.67

3.99 5.35 13.77 25.50

We checked the validity of the Pareto model based on the parameters
α = 0.51 and β = 0.35. We used the Kolmogorov-Smirnov (K-S) test
for this data set. It is observed that the K-S distance between the fitted
and the empirical distribution functions, and the corresponding p-value
are respectively

K − S = 0.2869, and p− value = 0.1393.
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So, the fit of Pareto distribution to the above data set is reasonable.

In order to analyze these data, we took r = 4, and for s = 1, 2, 3, 4 we
reconstructed X(s) (s ≤ 4) using different methods discussed in Sections
3. The different point reconstructors of Y = X(s) (s ≤ 4) and also the
95% RI’s are displayed in Table 2. To compute the Bayes reconstructors,
since we do not have any prior information, we assumed that the prior
is noninformative, i.e., a = −1, b = 0, c = 1, d = ∞.

Table 2. The values of point reconstructors and 95% RIs for the real
data.

Exact value MLR BUR CMR BPR Pivotal method HCD method Bayesian method
X(1) 0.35 0.2402 0.4564 0.4191 1.6803 (0.3524, 0.7732) (—,—) (0.1173, 1.6878)

X(2) 0.59 0.4838 0.6091 0.5597 1.6242 (0.3770, 1.1098) (0.3672, 1.0405) (0.1173, 1.6246)

X(3) 0.96 1.4930 0.8326 0.7884 1.5765 (0.4371, 1.4446) (0.4554, 1.5244) (0.1174, 1.5767)

X(4) 0.99 1.6900 1.1050 1.1900 1.5404 (0.5689, 1.6645) (0.3697,1.6900) (0.1174,1.5407)

From Tables 1 and 2, we observe that the BUR and CMR work well.
They are close to the realized observation. We observe that the RIs
obtained by pivotal method are close to those provided by the HCD
method. Bayesian method does not work well to obtain the Bayesian
point reconstructor and the 95% RIs. The RIs intervals obtained by
Bayesian method are wider than the other RIs. It is also observed that
all of the RIs proposed contain the realized observation.

4.3 Simulations

Since the performance of the different methods cannot be compared the-
oretically, we present here a Monte Carlo simulation study to compare
the performances of the different reconstructors proposed in the previ-
ous sections. We compare the performances of the point reconstructors
MLR, BUR and CMR in terms of their biases and mean square recon-
struction errors (MSREs). We also compare the performances of the
RIs obtained by using pivotal and HCD methods in terms of the aver-
age confidence lengths, and coverage probabilities. In this simulation, we
randomly generated 1000 left-censored sample X(r+1), X(r+2), · · · , X(n)

from P (α, β) distribution for n = 20, 30 with (α, β) = (0.5, 1), (2.5, 0.5),
(2.5, 1). We then obtained the different point reconstructors MLR, BUR,
and CMR for the sth past failure time Y = X(s), where 1 ≤ s ≤ r. We
also computed the 95% RIs for Y = X(s) by using the results given
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in Section 3. All the computations are performed using Visual Maple
(V13) package.

For various choices of r and s, Tables 3 and 5 present the biases
and MSREs of point reconstructors obtained from this simulation study.
Table 3 is for n = 20 and Table 5 is for n = 30. The average confidence
lengths and the corresponding coverage probabilities of 95% RIs are also
reported in Tables 4 and 6.

From Tables 3 and 5, we observe that the BUR and the CMR are
the best point reconstructors. They compare very well with the MLR.
The likelihood reconstruction method does not work very well. It pro-
vides the highest biases and MSREs. It is also observed that for fixed
r, the biases and MSREs are decreasing as s is increasing, which is rea-
sonable as we move away from available censored sample. For better
understanding, the average MSREs of the different reconstructors are
presented in Figures 1 and 2 for different sample sizes. From Figures 1
and 2, it is observed that for fixed r and s, the MSREs are decreasing
as n is increasing.

Now we compare the different RIs obtained by pivotal and HCD
methods. From Tables 4 and 6, we observe that the HCD RIs work
better than the pivotal RIs in terms of confidence lengths in most of the
cases considered. Also, the confidence lengths decrease as n increases. It
should be mentioned here that unlike HCD method, the pivotal method
is computationally easy.
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Table 3. Biases and MSREs of point reconstructions for n = 20.
parameter r s MLR BUR CMR

α = 2.5, β = 1 1 1 0.02200(0.001408) 0.001437(0.0008989) 0.01181(0.001055)

2 1 -0.009757(0.001604) 0.01886(0.001818) 0.01715(0.001757)
2 -0.03722(0.002984) -0.07280(0.006806) -0.05002(0.004073)

3 1 -0.02987(0.003223) 0.03741(0.003672) 0.03450(0.003468)
2 0.0002708(0.002603) 0.02690(0.003223) 0.02685(0.003222)

4 1 -0.07380(0.008874) 0.03159(0.004357) 0.02792(0.004153)
2 -0.05291(0.006053) 0.01454(0.003366) 0.01278(0.003321)
3 -0.05478(0.006004) -0.02955(0.003740) -0.02813(0.003661)
4 0.04920(0.005501) -0.01504(0.002982) 0.03271(0.004070)

5 1 -0.09642(0.01354) 0.04889(0.006663) 0.04475(0.006301)
2 -0.05611(0.007466) 0.05340(0.007111) 0.05067(0.006843)
3 -0.01064(0.004693) 0.05760(0.007706) 0.05677(0.007613)
4 0.04533(0.006626) 0.07000(0.009263) 0.07271(0.009662)
5 -0.01372(0.004389) -0.09262(0.01230) -0.03181(0.005138)

α = 0.5, β = 1 1 1 -0.08667(0.05366) -0.1577( 0.06598) -0.1460( 0.06325)

2 1 0.3111(0.1877) 0.1998(0.1105) 0.1882( 0.1050)
2 0.285(0.1622) 0.1665(0.09622) 0.2028( 0.1134)

4 1 0.5839(0.6938) 0.3016(0.2851) 0.2770( 0.2655)
2 0.6181(0.6748) 0.3651(0.3162) 0.3497(0.3022)
3 0.4456(0.4243) 0.2374(0.2221) 0.2391(0.2235)
4 0.6941(0.7614) 0.4733(0.4393) 0.5674(0.5635)

α = 2.5, β = 0.5 1 1 0.4881(0.2410) 0.006327(0.0002951) 0.01152(0.0003930

2 1 0.4624(0.2283) 0.01493(0.0006206) 0.01408(0.0005960)
2 0.4727(0.2325) 0.01018(0.0004560) 0.02153(0.0008313)

3 1 0.3802(0.1904) 0.007309(0.0006374) 0.005850(0.0006202)
2 0.4055(0.1979) 0.02085(0.001024) 0.02083(0.001023)

4 1 0.01605(0.01751) 0.01785(0.001174) 0.01603(0.001115)
2 0.2300(0.1226) -0.02381(0.001311) -0.02469(0.001354)
3 0.3087(0.1459) 0.01202(0.001026) 0.01272(0.001045)
4 0.3496(0.1564) -0.004858(0.0007253) 0.01896(0.001124)

5 1 -0.09069(0.04633) 0.02058(0.001517) 0.01850(0.001440)
2 -0.06154(0.01639) 0.01329(0.001247) 0.01191(0.001216)
3 0.04995(0.06838) -0.04766(0.003340) -0.04806(0.003380)
4 0.2179(0.1037) 0.03189(0.002086) 0.03327(0.002178)
5 0.2675(0.1120) 0.005421(0.0009476) 0.03578(0.002302)
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Table 4. Means of the lengths and coverage probability of 95% RIs for
n = 20.

parameter r s Pivotal method HCD method

α = 2.5, β = 1 1 1 0.01904(0.5600) –(–)

2 1 0.03432(0.4860) –(–)
2 0.03476(0.7450) –(–)

3 1 0.04359(0.4150) –(–)
2 0.05223(0.6760) 0.05223(0.6760)

4 1 0.05042(0.3930) –(–)
2 0.06489(0.5710) 0.06346(0.5600)
3 0.06723(0.7410) 0.06694(0.7390)
4 0.05737(0.8620) –(–)

5 1 0.05450(0.3610) –(–)
2 0.07282(0.5050) 0.06966(0.4820)
3 0.08317(0.6480) 0.08318(0.6480)
4 0.08014(0.7520) 0.07895(0.7570)
5 0.06635(0.8310) 0.08198(0.3570)

α = 0.5, β = 1 1 1 0.1085(0.5610) –(–)

2 1 0.2046(0.5100) –(–)
2 0.2132(0.7500) –(–)

4 1 0.3211(0.4200) –(–)
2 0.4292(0.5870) 0.4155(0.5790)
3 0.4577(0.7090) 0.4603(0.7060)
4 0.4076(0.8360) –(–)

α = 2.5, β = 0.5 1 1 0.009599(0.5720) –(–)

2 1 0.01696(0.4590) –(–)
2 0.01730(0.7600) –(–)

3 1 0.02195(0.4690) –(–)
2 0.02612(0.6450) 0.02612(0.6450)

4 1 0.02512(0.3630) –(–)
3 0.03232(0.5710) 0.03161(0.5600)
3 0.03371(0.7150) 0.03356(0.7260)
4 0.02847(0.8430) –(–)

5 1 0.02730(0.3400) –(–)
2 0.03640(0.5220) 0.03482(0.5110)
3 0.04071(0.6520) 0.04071(0.6520)
4 0.04087(0.7680) 0.04026(0.7770)
5 0.03282(0.8690) 0.04057,(0.3290)
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Table 5. Biases and MSREs of point reconstructions for n = 30.
parameter r s MLR BUR CMR

α = 2.5, β = 1 1 1 0.02203(0.0009280) 0.004957(0.0004561) 0.01522(0.0006718)

2 1 0.003465(0.0006477) 0.02147(0.001092) 0.02041(0.001049)
2 0.002959(0.0006416) -0.02708(0.001333) -0.005297(0.0006523)

3 1 -0.02083(0.001422) 0.02078(0.001393) 0.01890(0.001320)
2 -0.003523(0.0009923) 0.01230(0.001116) 0.01246(0.001121)

4 1 -0.04086(0.002910) 0.02515(0.001841) 0.02283(0.001732)
2 -0.02529(0.001889) 0.01543(0.001441) 0.01439(0.001409)
3 0.01166(0.001390) 0.02643(0.001910) 0.02763(0.001976)
4 0.03177(0.002226) -0.02283(0.001626) 0.02186(0.001680)

5 1 -0.06146(0.005423) 0.02779(0.002382) 0.02510(0.002245)
2 -0.04204(0.003378) 0.02409(0.002174) 0.02246(0.002101)
3 0.003327(0.001620) 0.04430(0.003524) 0.04397(0.003493)
4 0.006315(0.001667) 0.01956(0.001944) 0.02183(0.002043)
5 0.02782(0.002267) -0.03911(0.002843) 0.01714(0.001755)

α = 0.5, β = 1 1 1 0.1231(0.03086) 0.07409(0.02001) 0.08535(0.02210)

2 1 0.1866(0.06006) 0.1213(0.03633) 0.1147(0.03458)
2 0.02481(0.02528) -0.05370(0.02465) -0.02349(0.02343)

3 1 0.2300(0.09870) 0.1226(0.04972) 0.1114(0.04658)
2 0.1723(0.07519) 0.08275(0.04485) 0.08124(0.04455)

4 1 0.2982(0.1551) 0.1486(0.06718) 0.1347(0.06247)
2 0.2392(0.1241) 0.1026(0.05970) 0.09501(0.05775)
3 0.2819(0.1452) 0.1718(0.08280) 0.1748(0.08404)
4 0.3394(0.1828) 0.2014(0.09620) 0.2728(0.1362)

5 1 0.3039(0.1851) 0.1034(0.06662) 0.08749(0.06249)
2 -0.02344(0.09528) -0.2121(0.1102) -0.2237(0.1145)
3 0.3560(0.2203) 0.1883(0.1025) 0.1839(0.1005)
4 0.07220(0.09753) -0.06283(0.07762) -0.05589(0.07748)
5 0.2821(0.1753) 0.1115(0.08828) 0.2062(0.1289)

α = 2.5, β = 0.5 1 1 0.4943(0.2445) 0.0001875(0.0001032) 0.005317(0.0001335)

2 1 0.4918(0.2439) 0.008570(0.0002464) 0.008040(0.0002378)
2 0.4896(0.2402) -0.003201(0.0001575) 0.007686(0.0002125)

3 1 0.4863(0.2418) 0.01059(0.0003623) 0.009653(0.0003435)
2 0.4666(0.2204) -0.009566(0.0003034) -0.009488(0.0003021)

4 1 0.4438(0.2136) -0.008255(0.0003617) -0.009426(0.0003832)
2 0.4574(0.2232) 0.007949(0.0003732) 0.007435(0.0003654)
4 0.4635(0.2244) -0.002791(0.0002806) 0.01952(0.0006772)

5 1 0.3908(0.1955) 0.004442(0.0004301) 0.003115(0.0004211)
2 0.4053(0.2010) 0.008676(0.0004951) 0.007842(0.0004817)
3 0.4249(0.2041) 0.003783(0.0003600) 0.003620(0.0003589)
4 0.4220(0.2002) 0.009945(0.0004841) 0.01107(0.0005087)
5 0.4145(0.1891) -0.02574(0.001022) 0.002426(0.0004053)
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Table 6. Means of the lengths and coverage probability of 95% RIs for
n = 30.

parameter r s Pivotal method HCD method
α = 2.5, β = 1 1 1 0.01280(0.5760) –(–)

2 1 0.02229(0.4930) –(–)
2 0.02275(0.7680) –(–)

3 1 0.02896(0.4450) –(–)
2 0.03412(0.6770) 0.03412(0.6770)

4 1 0.03259(0.4160) –(–)
2 0.04229(0.6350) 0.04149(0.6290)
3 0.04242(0.7520) 0.04210(0.7490)
4 0.03541(0.8410) –(–)

5 1 0.03601(0.3950) –(–)
2 0.04717(0.5370) 0.04536(0.5240)
3 0.05191(0.6950) 0.05192(0.6950)
4 0.05060(0.7920) 0.04957(0.7890)
5 0.04042(0.8860) 0.05241(0.3250)

α = .5, β = 1 1 1 0.06999(0.5760) –(–)

2 1 0.1246(0.4930) –(–)
2 0.1291(0.7680) –(–)

3 1 0.1652(0.4450) –(–)
2 0.1982(0.6770) 0.1982(0.6770)

4 1 0.1880(0.4160) –(–)
2 0.2504(0.6350) 0.2440(0.6290)
3 0.2591(0.7520) 0.2588(0.7490)
4 0.2262(0.8590) –(–)

5 1 0.2064(0.3900) –(–)
2 0.2858(0.5660) 0.2719(0.5450)
3 0.3265(0.6880) 0.3266(0.6880)
4 0.3231(0.7860) 0.3198(0.7810)
5 0.2712(0.8910) 0.3199(0.3030)

α = 2.5, β = .5 1 1 0.006382(0.5760) –(–)

2 1 0.01137(0.5230) –(–)
2 0.01132(0.7830) –(–)

3 1 0.01441(0.4580) –(–)
2 0.01718(0.6790) 0.01718(0.6790)

4 1 0.01646(0.4230) –(–)
3 0.02103(0.6100) 0.02063(0.6020)
4 0.01764(0.8670) –(–)

5 1 0.01781(0.3900) –(–)
2 0.02390(0.5340) 0.02298(0.5250)
3 0.02599(0.7120) 0.02599(0.7120)
4 0.02493(0.7760) 0.02443(0.7750)
5 0.02036(0.8860) 0.02639(0.3130)
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Figure 1: MSREs of the different reconstructors for different sample size
n when r = 5, s = 3.

Figure 2: MSREs of the different reconstructors for different sample size
n when r = 5, s = 4
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