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Abstract. In this article, a special type of orthogonalization is ob-
tained to construct a multiple input transfer function model. By using
this technique, construction of a transfer function model is divided to
sequential construction of transfer function models with less input time
series. Furthermore, based on real and simulated time series we provide
an instruction to adequately perform the stages of orthogonalization al-
gorithm.
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1 Introduction

Suppose {(yt, xt)′, t ∈ Z} is a jointly weakly stationary time series.
Then, a transfer function model in terms of input time series xt and
output time series yt is given by

yt =

∞∑
j=0

νjxt−j + ηt = ν(B)xt + ηt, (1)
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where ηt is second order stationary time series and assumed to be inde-
pendent of input time series xt, Box and Jenkins (1970). The coefficients
ν0, ν1, . . . are called impulse response weights, and ν(B) =

∑∞
j=0 νjB

j

where B stands for backward shift operator. Model (1) has two funda-
mental requirements, namely causality and stability.
Model (1) is said to be causal if the value of yt at the present time is
affected only by the values of xt at the current and past time. For no-
tational convenience, let us use ”yt C xt” to call causality of transfer
function model yt on xt. On the other hand, model (1) is said to be stable
if the sequence of impulse response functions is absolutely summable, i.e.∑∞

j=0 |νj | < ∞. Since, an infinity of parameters are included in model
(1), it is desirable to use the parsimonious form of this model, i.e.

yt =
ω(B)

δ(B)
Bbxt + ηt, (2)

where ω(B) = ω0 − ω1B − ω2B
2 − · · · − ωsB

s and δ(B) = 1− δ1B − δ2B
2 −

· · · − δrB
r. The stability of model (2) holds when all the roots of δ(B)

lie outside of unit circle. Also, positivity of parameter b guarantees the
causality of this form of transfer function model. Parameter b identifies
the lag in which the output and input time series have the most signif-
icant correlation. Note that by comparing models (1) and (2), we can

obtain the relation ν(B) = ω(B)
δ(B)B

b. Indeed this relation includes the
following set of linear equations between parameters of these models:

νh = 0 h < b

νh = δ1νh−1 + δ2νh−2 + · · ·+ δrνh−r + ω0 h = b

νh = δ1νh−1 + δ2νh−2 + · · ·+ δrνh−r − ωh−b h = b+ 1, . . . , b+ s

νh = δ1νh−1 + δ2νh−2 + · · ·+ δrνh−r h > b+ s.

(3)

The frequency transformation of model (1) is of crucial important in this
study. Define the frequency response functionH(λ) as Fourier transform
of impulse response weights, i.e.

H(λ) =

∞∑
j=0

νje
−iλj ,

then frequency transformations of model (1) can be obtained as

fxy(λ) = H(λ)fxx(λ), (4)

and
fyy(λ) = |H(λ)|2fxx(λ) + fηη(λ), (5)
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(Priestley, 1982), where fxy(λ) is cross-spectral density and fxx(λ) and
fyy(λ) are marginal spectral densities.
Generally, a transfer function model with m input time series is given
by

yt =

m∑
k=1

νk(B)xk,t + ηt =

m∑
k=1

∞∑
j=0

νkjxk,t−j + ηt. (6)

The parsimonious model relating to (6) has the following representation:

yt =
m∑
k=1

ωk(B)

δk(B)
Bbkxk,t + ηt. (7)

The causality and stability of model (6) and (7) hold whenever their
separated models with one input time series admire conditions of models
(1) and (2) respectively.
The frequency transformation of model (6) is given by

fxky = H1(λ)fxkx1+H2(λ)fxkx2(λ)+· · ·+Hm(λ)fxkxm(λ), k = 1, . . . ,m,
(8)

where Hk(λ) =
∑∞

j=0 νkje
−iλj , k = 1, . . . ,m. Specially for m = 2, the

system of linear equations (8) reduces to:
fx1y(λ) = H1(λ)fx1x1(λ) +H2(λ)fx1x2(λ)

fx2y(λ) = H1(λ)fx2x1(λ) +H2(λ)fx2x2(λ).
(9)

In this article, we propose a special type of orthogonalization ap-
proach to construct a multiple input transfer function model. There are
several achievements to construct a transfer function model both in time
domain and frequency domain. In their fundamental work, Box and
Jenkins (1970) studied the construction of single input transfer func-
tion models using time and frequency domain techniques. Also, they
proposed a frequency domain method for constructing transfer function
models with two input time series. Later, Pukkila (1982) extended the
frequency domain approach to construct multiple input transfer func-
tion models. There are also several proposed methods in time domain
to construct a transfer function model. Liu and Hanssen (1982) applied
AR polynomials as filtering tools to reduce the correlation among in-
put time series and transform a multiple input transfer function model
to separated models with one input time series. Edlund (1989) pro-
posed a two-step biased regression strategy to construct a transfer func-
tion model. Muller and Wei (1997) obtained an iterative least squares
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method to estimate parameters of a transfer function model.
The book by Wei (2006) cited some common methods to construct a
transfer function model both in time domain and frequency domain.
Recent developments in constructing a transfer function model are di-
rected toward finding more flexible transfer function models such as non-
linear models in the works Cai et al. (2000) and Fan and Yao (2003),
transfer function models with time-varying coefficients in the works Zho
and Chon (2004), Bibi (2006) and Moura et al. (2012), and transfer
functions with non-stationary time series such as locally stationary pro-
cesses in the work Nason et al. (2000).

Orthogonalization is one of the common techniques for dimension
reduction in model building. Dimension reduction for a model can be
made to achieve to different purposes including reduction in bias of pa-
rameters, simplifying the possible computational operations and obtain-
ing more accurate forecasts. Dimension reduction in time series models
either linear or nonlinear has been also used for the same purposes. To
receive general information on this issue, one may refer to the works of
Park et al. (2009, 2010). Specifically, Park (2011) applied an orthogo-
nalization approach for reduction in dimension of a single input transfer
function model.

One particular purpose of dimension reduction is transforming a
complex model to several models with relatively simpler structure. In
fact, by applying a dimension reduction plan, a model building divides
into step-by-step approach. Our main objective in this manuscript is
finding a dimension reduction algorithm to construct a multiple input
transfer function model.

In spite of significant achievements in constructing a multiple input
transfer function, complexities still exist even in the linear transfer func-
tion model (6). The complexity of constructing a transfer function model
with several input time series is mainly due to the correlation among
its input time series. If input time series are highly correlated, cross-
correlation can be seriously misleading. The main strategy to overcome
this obstacle has been reducing or removing the correlation among input
time series by some filtering approaches such as prewhitening. Unfortu-
nately, by using these filtering techniques, the information contained in
relation among input time series is completely ignored. Specially, those
applicable relations in practice that can be established by time-lagged
regression models.

By utilizing the orthogonalization approach, we can obtain a trans-
fer function model with orthogonal input time series, without any loss
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of information. Besides, because of simplicity of orthogonalization al-
gorithm provided in this paper, we recommend employing it in applied
fields.
The rest of the paper is organized as follows. In section 2, we present an
algorithm and its theoretical backgrounds to perform the orthogonaliza-
tion. Using this technique, we conduct a simulation study to construct a
multiple input time series in section 3. In section 4, we use the orthogo-
nalization approach to fit a transfer function model to a real hydrological
data set.

2 Orthogonalization Algorithm

Orthogonalization is a common technique in theory of linear model
to produce orthogonal explanatory variables. Consequently, by orthog-
onalizing explanatory variables of a linear model, the original model
transforms to more than one linear models with less explanatory vari-
ables. In this section, we show that this approach can be adequately used
to construct a transfer function model with several input time series.

First, we present this method for a transfer function model with two
input time series and then extend it to a multiple input transfer function
model.

2.1 Orthogonalization Algorithm for a Transfer Function
Model with Two Input Time Series

Let a transfer function model with two input time series be as follows

yt = ν1(B)x1,t + ν2(B)x2,t + ηt. (10)

In model (10), without loss of generality, we assume that ”x2,t C x1,t”.
According to the system of linear equations (9), it is plain to see that

H2(λ) =
fx2y(λ)fx1x1(λ)− fx1y(λ)fx2x1(λ)

fx2x2(λ)fx1x1(λ)− fx1x2(λ)fx2x1(λ)
(11)

and

H1(λ) =
fx1y(λ)−H2(λ)fx1x2(λ)

fx1x1(λ)
. (12)

The following algorithm describes the orthogonalization approach in de-
tail for constructing the transfer function model given in (10).
Step 1. Fit a transfer function model between two inputs

x2,t = νx1x2(B)x1,t + η1,t (13)
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and then compute the residual time series, i.e.

η1,t = x2,t − νx1x2(B)x1,t. (14)

To fit a single input transfer function model we will present a detailed
instruction in sections 3 and 4.

The frequency transformation related to (13) and (14) are given re-
spectively by

fx1x2(λ) = Hx1x2(λ)fx1x1(λ), (15)

fη1η1(λ) = fx2x2(λ)−
|fx1x2(λ)|2

fx1x1(λ)
, (16)

(Priestley, 1982). By replacing x2,t in the model (10) by η1,t we can
obtain a transfer function model with orthogonal input time series. Be-
cause of orthogonality, the frequency transformation of the exchanged
model reduces to

fx1y(λ) = Hx1y(λ)fx1x1(λ), (17)

fη1y(λ) = Hη1y(λ)fη1η1(λ). (18)

The relations (17) and (18) indicate that a transfer function model with
two or more orthogonal input time series can be decomposed into sep-
arated transfer function models with one input time series without loss
of any information. Therefore, it leads to the step 2.
Step 2. Fit separately the transfer function models

yt = νx1y(B)x1,t + η2,t and yt = νη1y(B)η1,t + η3,t. (19)

The frequency transformation of these models are given respectively in
(17) and (18). On the other hand, from (14) we can obtain

fη1y(λ) = fx2y(λ)−
fx2x1(λ)

fx1x1(λ)
fx1y(λ), (20)

(Priestley, 1982). By replacing (16) and (20) into (18), Hη1y can be
written as

Hη1y(λ) =
fη1y(λ)

fη1η1(λ)

=
fx2y(λ)fx1x1(λ)− fx1y(λ)fx2x1(λ)

fx2x2(λ)fx1x1(λ)− fx1x2(λ)fx2x1(λ)

= H2(λ), (21)



On Orthogonalization Approach to ... 141

where H2(λ) is given by (11). The equation (21) yields that νη1y(B)
operates identically as ν2(B) in (10). Also, from (12) it is plain to see
that

H1(λ) = Hx1y(λ)−Hη1y(λ)Hx1x2(λ). (22)

According to the properties of Fourier transform, we can obtain that

ν1(B) = (νx1y − (νη1y ∗ νx1x2))(B),

where ” ∗ ” is used for convolution. Therefore, it leads to the last step.
Step 3. Derive ν1(B) and ν2(B) in (10) from the following relations:

ν1(B) = (νx1y − (νη1y ∗ νx1x2))(B),

ν2(B) = νη1y(B).

2.2 Orthogonalization Algorithm for a Transfer Function
Model with Several Input Time Series

Assume a multiple input transfer function model with the following
form

yt =
m∑
k=1

νk(B)xk,t + ηt. (23)

By splitting input time series into two groups, model (23) can be restated
as

yt = ν ′
1(B)x1,t + ν ′

2(B)x2,t + ηt, (24)

where ν1(B) = (ν1(B), . . . , νp(B))′, ν2(B) = (νp+1(B), . . . , νm(B))′,
x1,t = (x1,t, . . . , xp,t)

′ and x2,t = (xp+1,t, . . . , xm,t)
′. Concerning to

frequency transformation of model (24), define F xixi(λ), i = 1, 2 as
marginal spectral density matrices of input time series and the matrix
F x1x2(λ) as their cross-spectral density matrix. Also, let fxiy(λ), i =
1, 2 be cross-spectral density vectors of the output and input time series.
In fact, model (24) is an analogues of model (10) in which its frequency
transformations can be given by

fx1y(λ) = F x1x1(λ)h1(λ) + F x1x2(λ)h2(λ),

fx2y(λ) = F x2x1(λ)h1(λ) + F x2x2(λ)h2(λ).
(25)

where h1(λ) = (H1(λ), . . . , Hp(λ))
′ and h2(λ) = (Hp+1(λ), . . . ,Hm(λ))′

are frequency response vectors relating to the groups of input time series
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respectively.
According to system of equations (25), we can derive

h2(λ) =
[
F x2x2(λ)− F x2x1(λ)F

−1
x1x1

(λ)F x1x2(λ)
]−1 [

fx2y(λ)− F x2x1(λ)F
−1
x1x1

(λ)fx1y(λ)
]

(26)

and

h1(λ) = F−1
x1x1

(λ)fx1y(λ)− F−1
x1x1

(λ)F x1x2(λ)h2(λ). (27)

In order to investigate the orthogonalization approach, at the first we as-
sume hypothetically that x2,t and x1,t are inherently orthogonal. There-
fore, the system of linear equations (25) reduces to

fx1y(λ) = F x1x1(λ)h1(λ),

fx2y(λ) = F x2x2(λ)h2(λ).
(28)

The relation (28) reveals that for two orthogonal groups of input time
series, model (24) can be split into two transfer function models with
less input time series, i.e.

yt = ν ′
1(B)x1,t + ε1,t and yt = ν ′

2(B)x2,t + ε2,t. (29)

However, for a multiple input transfer function model, several types of
causality relations may happen among input time series. As a special
case, suppose that ”x2,t C x1,t”. Then, orthogonalization algorithm can
be extended as follows:
Step 1. Construct m − p transfer function models separately between
each of the components of x2,t and all components of x1,t as their input
time series. In matrix form, we can formulate this step as

x2,t = νx1x2(B)x1,t + η1,t, (30)

where νx1x2(B) is an (m− p)× p matrix and η1,t is vector of residual
time series. The frequency transformations related to the model (30)
are

F x1x2(λ) = Hx1x2(λ)F x1x1(λ), (31)

F η1η1
(λ) = F x2x2(λ)− F x2x1(λ)F

−1
x1x1

(λ)F x1x2(λ), (32)

(Priestley, 1982). By replacing x2,t in (24) by η1,t we obtain a transfer
function model with two orthogonal groups of input time series. Thus,
it immediately follows that

fx1y(λ) = F x1x1(λ)hx1y(λ), (33)



On Orthogonalization Approach to ... 143

fη1y
(λ) = F η1η1

(λ)hη1y(λ). (34)

The relations (33) and (34) deduce the second step.
step 2. Construct the following transfer function models separately

yt = ν ′
x1y(λ)x1,t + η2,t, (35)

yt = ν ′
η1y

(λ)η1,t + η3,t. (36)

Also, the cross-spectral density vector fη1y
(λ) is given by

fη1y
(λ) = fx2y(λ)− F x2x1(λ)F

−1
x1x1

(λ)fx1y(λ). (37)

Hence, by replacing (32) and (37) into (34), we can obtain

hη1y(λ) = F−1
η1η1

(λ)fη1y
(λ)

= h2(λ), (38)

where h2(λ) is given by (26). Moreover, by using (31), (33) and (38),
h1(λ) in (27) can be represented as

h1(λ) = hx1y(λ)−Hx1x2(λ)hη1y(λ). (39)

The equations (38) and (39) lead to the last step.
step 3. Derive ν1(B) and ν2(B) in (24) from the following equations

ν1(B) = (νx1y − (νx1x2 ∗ νη1y))(B),

ν2(B) = νη1y(B),

where νx1x2 ∗νη1y is p× 1 vector with the components
∑m−p

j=1 (νx1ix2j ∗
νηjy), i = 1, 2, . . . , p.

3 Simulation

In this section, we conduct a simulation study to build a transfer
function model using orthogonalization approach. To achieve this pur-
pose, we first explain how to fit a single input transfer function model.
We follow the instruction given in Bowerman and O’Connell (1993) to fit
a parsimonious form of a single input transfer function model given by
(2). Consequently, the corresponding linear representation in terms of
impulse response weights can be constructed using the linear equations
(3).
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The parsimonious form of a transfer function is completely charac-
terized by a proper set of (r, s, b). These parameters can be estimated
based on the sample cross-correlation between input and output time
series. The last step to fit a transfer function model is finding an ade-
quate SARIMA model describing the noise series ηt. Two statistics are
used to verify whether a single input transfer function model has been
adequately constructed. These statistics are given by

Q1 = N(N + 2)
K∑

h=1

(N − h)−1ρ̂2xη(h), (40)

Q2 = N(N + 2)

K∑
h=1

(N − h)−1ρ̂2ηη(h), (41)

where ρ̂xη(h) is sample cross-correlation function between an input time
series xt and residual time series ηt, and ρ̂ηη(h) is the sample auto-
correlation function of the residual time series. These statistics both
have chi-square distribution. Small values of Q1 and Q2 or equivalently
high values of their corresponding p-values, say p1 and p2, indicate that
the model has been adequately constructed. The aforementioned model
fitting can be performed step by step in SAS. It is worth mentioning
that the statistics (40) and (41) may propose more than one adequate
models for a given data set. We will illustrate that under different
adequate models, the ultimate estimates of impulse response weights
are approximately identical.

In order to present numerical results for orthogonalization approach,
we simulate data from the following transfer function model

yt = (4 + 4B +B2)x1,t +
B

1 + 0.6B
x2,t + ηt, (42)

where
x1,t = (1− 0.4B)a1,t,

x2,t = (1− 0.3B)x1,t + η1,t,

η1,t = (1− 0.5B)a2,t.

The time series ηt, a1,t and a2,t are assumed to be white noise processes.
We follow the steps of orthogonalization approach given in section 2.1.

Step 1. Since the parsimonious form of the transfer function between
two input time series x1,t and x2,t is predetermined in (42), we just need
to obtain the corresponding linear representation in terms of impulse
response weights.
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Step 2. To perform this step, we need to construct two single input
transfer function models separately. Using the statistics (40) for a set
of N = 2000 simulated sequences from the model (42), we consider two
different adequate cases, namely case 1 and 2. These cases are given as
bellow:
Case 1.

yt =
3.924 + 7.620B + 3.326B2 + 0.437B3

1 + 0.668B − 0.020B2
x1,t + η2,t,

where p1 = 0.2705. Also

yt =
0.722− 0.957B

1− 0.094B − 0.458B2
Bη1,t + η3,t,

where p′1 = 0.3181.
Case 2.

yt =
3.923 + 7.346B + 2.631B2

1 + 0.597B − 0.108B2
x1,t + η2,t,

where p1 = 0.3338. Also

yt =
−0.113 + 0.645B − 0.310B2

1 + 0.598B
η1,t + η3,t,

where, p′1 = 0.3039.
To complete this step, we need to transform all constructed models to
their corresponding linear representation in terms of impulse response
weights.

Step 3. Using the impulse response weights produced in steps 1 and
2, we can compute the impulse response weights of the transfer function
model (42). Table 1 describes the last step of orthogonalization approach
in two mentioned cases. This table shows the impulse response weights
at initial lags relating to case 1 and case 2 separately. To compare to the
true values of impulse response weights, we define the following error of
estimate operators

err1(B) = νη1y(B)− ν2(B),

err2(B) = (νx1y − νη1y ∗ νx1x2) (B)− ν1(B).

Table 2 shows the errors of estimate at initial lags. This table demon-
strates that the impulse response weights of model (40) are adequately
estimated by orthogonalization algorithm in different cases. Note that
the more adequate models through the orthogonalization steps or equiv-
alently the higher p-values imply the less error of estimates.
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Lag
0 1 2 3 4 5 6 7 8 9

Case 1

νx1y 3.924 4.998 0.069 0.495 -0.329 0.230 -0.160 0.112 -0.078 0.054
νη1y 0.00 0.722 -0.889 0.247 -0.384 0.077 -0.169 0.019 -0.075 0.001
νx1x2 1.000 -0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

νx1y − (νη1y ∗ νx1x2) 4.140 4.010 1.032 0.132 0.078 0.102 0.014 0.070 -0.001 0.042

Case 2

νx1y 3.923 5.002 0.067 0.501 -0.292 0.228 -0.168 0.125 -0.093 0.069
νη1y -0.113 0.712 -0.736 0.440 -0.263 0.157 -0.094 0.056 -0.033 0.020
νx1x2 1.000 -0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

νx1y − (νη1y ∗ νx1x2) 4.250 4.068 0.936 -0.018 0.019 0.042 -0.056 0.058 -0.053 0.045

Table 1: Initial impulse response weights of model (40) estimated by the
orthogonalization algorithm.

Lag
0 1 2 3 4 5 6 7 8 9

Case 1
err1 0.000 -0.278 -0.289 -0.113 -0.168 -0.052 -0.092 -0.027 -0.048 -0.015
err2 0.140 0.010 0.032 0.132 0.078 0.102 0.014 0.070 -0.001 0.042

Case 2
err1 0.250 0.068 -0.064 -0.018 0.019 0.042 -0.056 0.058 -0.053 0.045
err2 0.000 -0.288 -0.136 -0.316 -0.047 0.028 -0.017 0.010 -0.006 0.004

Table 2: The error of estimates of impulse response weights in model
(40).

4 Modelling of Hydrological Data

In this section we present a study using hydrological data to illustrate
the methodology in this paper.

Hydrologists are interested to model the suspended sediment load
of a river in terms of some effective environmental parameters. The
information on sediment load is useful for designing reservoirs, dams and
stable channels, protection of fish and wildlife habitats and watershed
management. In practice, fitting a transfer function model with the
sediment load as output time series and, the flow discharge and rainfall
as input time series can be very useful for forecasting the amounts of the
sediment load. In this section we utilize the orthogonalization approach
to fit the mentioned transfer function model. To work with real data,
the logarithm of monthly amounts of sediment load, flow discharge and
rainfall for 25 years [1986-2012] were used from Kasgan river outlets, a
branch of the Karoon river located in south of Isfahan province, Iran.

To follow the 3 steps of orthogonolization approach, we first need to
fit a transfer function between flow discharge and rainfall, say x1,t and
x2,t respectively. It is obvious that ”x1,t C x2,t”. Therefore we assume
the flow discharge as output variable and rainfall as input variable. The
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fitted transfer function is as follows:

∇12x1,t = νx1x2(B)∇12x2,t + η1,t

=
0.066 + 0.0316B + 0.041B2

1 + 0.062B − 0.278B2
∇12x2,t + η1,t, (43)

where ”∇12” stands for seasonal difference with period 12. The p-value
associated with the statistic (40) is p1 = 0.74 that shows the adequacy of
the transfer function model. Note that we do not need to fit a SARIMA
model to the residual time series η1,t at this step. The initial impulse
response weights of νx1x2(B) are also depicted in table 3.

Lag 0 1 2 3 4 5 6 7 8 9

νx1x2 0.066 -0.027 -0.069 0.004 .0.017 0 -0.004 0 0.001 0

Table 3: The initial impulse response weights of νx1x2(B).

The next step is fitting two single input transfer function models
separately; the sediment load yt as output variable and, x2,t and the
residual time series η1,t, produced in step 1, as input variables. The
models are given respectively as follows:

∇12yt = νyx2(B)∇12x2,t + η2,t

= B12−0.039− 0.043B − 0.061B2

1 + 0.582B + 0.967B2
∇12x2,t + η2,t (44)

and

∇12yt = νyη1(B)η1,t + η3,t

= B12−0.279− 0.566B − 0.382B2 + 0.091B3

1− 1.956B + 0.961B2
∇12η1,t + η3,t.(45)

To confirm the adequacy of models (44) and (45) the p-value associated
with the statistic (40) is computed; the p-values are p1 = 0.86 and
p1 = 0.56 respectively. The initial impulse response weights of νyx2(B)
and νyη1(B) are also depicted in table (4).

Lag 0 1 2 3 4 5 6 7 8 9

νyx2 -0.039 0.021 0.035 0.040 0.057 0.000 0.000 0.000 0.000 0.000

νyη1 -0.082 -0.035 0.103 -0.156 0.258 0.000 0.000 0.000 0.000 0.000

Table 4: The initial impulse response weights of νyx2(B) and νyη1(B).

Therefore, the target transfer function with two inputs can be con-
structed as follows

∇12yt = νyη1(B)∇12x1,t+(νyx2(B)− νyη1 ∗ νx1x2(B))∇12x2,t+ηt, (46)
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where ηt is residual time series.
To finalize the model fitting, we fit a SARIMA model to the residual

time series ηt. An adequate model is (2, 0, 2) × (1, 1, 1)12. The p-value
associated to the statistic (41) for this model is p2 = 0.91. Thus, model
(46) can be rewritten as

∇12yt = νyη1(B)∇12x1,t + (νyx2(B)− νyη1 ∗ νx1x2(B))∇12x2,t

+
(1− 0.107B12)(1− 0.735B − 0.204B2)

(1− 0.922B12)(1− 0.561B − 0.438B2)
zt

5 Discussion

In this article, we provided an orthogonalization algorithm to con-
struct a multiple input transfer function model. The underlying theory
of this technique obtained in the frequency domain but the algorithm
was given directly in the time domain based upon convolution of im-
pulse response weights. Also, the numerical results strongly supported
the orthogonalization algorithm. In common methods of constructing a
multiple input transfer function model, some useful information about
the relation among associated time series is ignored. In order to receive
more information with a simple algorithm, we thoroughly recommend
utilizing the orthogonalization approach to construct a multiple input
transfer function model.
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