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Abstract. One of the main problems in credit risk management is the
correlated default. In large portfolios, computing the default depen-
dencies among issuers is an essential part in quantifying the portfolio’s
credit. The most important problems related to credit risk management
are understanding the complex dependence structure of the associated
variables and lacking the data. This paper aims at introducing a new
methodology for credit risk management based on Bayesian copulas. In
this paper, the focus is specifically on a new method of simulating the
joint distribution of default risk. This methodology joins the use of cop-
ulas and Bayesian models. Using copulas, the joint multivariate prob-
ability distribution of a random vector can be separated into individ-
ual components characterized by marginal distributions. The model is
based on a jump diffusion process for the intensities. Another important
problem in credit risk management is the lack of data, which influences
the parameter estimation. Considering this drawback, the employment
of Bayesian methods and simulation tools could be a natural solution
to the problem. This suggests the use of Bayesian models, computed
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via simulation methods and in particular, Markov chain Monte Carlo.
Bayesian methods in Student’s t copula are efficient enough for heavy
tail distribution. Moreover, our main outcome is that the application of
Bayesian methodology causes a reduction of measure while that copula
is Student’s t. Finally, the conclusion of Bayesian copulas with classic
copulas was compared through a simulation study.
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1 Introduction

Financial management systems especially credit risk is one of the main
issues in today’s world. Credit risk is the risk of changes in value asso-
ciated with unexpected changes in credit quality (Duffie and Singleton
[11]). To measure the credit risk, the probability of default is one of
the usual methods. The history of financial institutions has shown that
many failures of banking associations were due to dependent defaults.
As a result, the analysis of dependency among defaults in risk investiga-
tion of loan portfolio will be very important. The complex structure of
the credit losses critically depends on the dependencies between default
events. To estimate default risk in the portfolio, both the individual
default rates of each firm and dependency structure probability of de-
faults across all firms need to be considered (more about the financial
importance of default dependence see, Giesecke [15] and Lucas [19]).

Rating agencies now play a crucial role in determining the return on
bonds and the cast for issuers. Issuer ratings ( PD (Probability of De-
fault) ratings) focus on the ability of a borrower to honor its obligations
promptly. Many popular approaches exist to compute PDs in the mar-
ketplace, developed by firms such as KMV Corporation, Moodys Risk
Management Systems (MRMS), CreditMetricsTM model etc.

There are three main approaches to simulate the joint distribution
of dependent probability of defaults: using credit market historical data
(Lucas [19]), using Structural models (Das and Tufano [8]) and using
reduced form models (also called Intensity-based models). For more
details see Jarrow and Turnbull [17], Madan and Unal [20] and Das
and Sundaram [7]. There are several settings for intensity. One simple
setting is the Poisson process with constant positive intensity that was
extended by Jarrow and Turnbull [17]. These traditional generalizations
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allow the default intensities to be time dependent and these became
stochastic default intensities. In reduced models, it is assumed that the
default intensities are exponential distribution. To generalize the basic
models, Duffie and Singleton [10] developed a basic model in that it was
assumed default intensities varies randomly during the time that it is
called doubly stochastic intensity. There are various stochastic processes
for intensities such as CIR processes (Cox, Ingersoll and Ross [2]).

There are several ways to investigate the intensity approach of credit
risk: models of contagion, doubly stochastic correlated default intensity
process and copula functions. In the simplest approach it is assumed that
there is a dependency among defaults because of dependency among the
probability of defaults in various firms. This dependency is the result of
common economic factors that affect on these probabilities. One of the
usual approaches in the analysis of dependent probability of defaults is
the copula function approach.

Das and Geng [6] simulated joint probabilities of ”default for the
U.S.” corporations using credit ratings data for copula functions, which
has been developed less in this paper. For more details about this ap-
proach see Schonbucher and Schubert [24], Yu [25] and Frey et al. [13].

In reduced form models, default probabilities are usually expressed
as intensities, which we show as λi(t), i = 1, . . . , N . The intensities for
all N issuers vary over time. The survival probabilities over a horizon

T are shown as si (T ) = E

{
exp

[
−

T∫
0

λi (t) dt

]}
and the probability of

default is therefore PDi(t) = 1 − si(t). At the rating level, a jump-
diffusion model is chosen for the average intensity of the class. This
approach has been suggested by Das and Geng [6], that their focus is
on the classical method to estimate parameters of copulas. But we ex-
tended it to a mixture of Gaussian marginal distributions for the residual
of default processes and moreover, to estimate parameters of copulas we
used classical and Bayesian methods. In many cases there is a depen-
dency between two stochastic processes X(t) and Y (t). To study these
processes, simulation is inevitable. So using some alterations, first we
changed the residuals to time independent ones and second using copula
we simulated the residuals of these processes and at last using simulated
residuals, we studied the behavior of processes.

This paper aims to show the efficiency of the copula method in mod-
eling correlated default. There are some useful features of the analysis for
modelers of portfolio credit risk. For instance simulation model, based
on estimating the joint system of over 200 issuers is able to replicate the
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empirical joint distribution of default. Also the simulation approach is
fast, efficient and allows the rapid generation of scenarios to assess risk
in credit portfolios. For more details about copulas, see Joe [18], Nelsen
[22], Denuit et al. [9] or Mari and Kotz [21], and for more on the use
of copulas in credit risk modeling, see Schonbucher and Schubert [24],
Frey et al. [13], Cherubini et al. [1] and Durante and Sempi [12].

So it was shown that the application of Bayesian methodology causes
a great reduction of measure when copula is Student’s t. But the defi-
ciency of the Bayesian method in normal copula compared to the obvious
advantage in Student’s t is that the reduction of measure is negligible.

The rest of the paper was organized as follows: Section 2 describes
the dataset and Section 3 focuses on copula functions. Section 4 de-
scribes the model proposed, Section 5 reports the results of correlated
defaults simulation and comparisons, and the last section expresses con-
clusion.

2 Data Description

Our study on default risk is in hundreds active corporations in Tehran
Stock Exchange. The Tehran Stock Exchange database was used to
develop a parsimonious numerical method of modeling and simulating
correlated default processes for hundreds of issuers. The empirical ex-
amination of the joint stochastic process of default risk was carried out
during the period of 1999-2011, and for each issuer, we had PDs based
on their econometric models for every semester. The algorithm of Har-
tigan and Wong [16] was used for partitioning the data into resembling
classes to produce an operational assortment. This method was run us-
ing R software (k-means function). Firms were clustered by the k-means
method, which aims to partition firms into six groups such that the sum
of squares from firms to the assigned cluster centers is minimized. Some
issuers fall into rating class 7, which comprises unrated issuers, and the
PDs within this class range from high to low. PDs from rating class 7
were not considered. Table 1 reports empirical averages and standard
deviations of our data from the first rating class to the sixth rating class.
It is obvious from Table 1 that the mean increases from the first rating
class to the sixth rating class, as the standard deviation. According to
Table 2, Kendall’s τ of default probability of each rating class shows the
dependence between rating classes, therefore it needs to joint distribu-
tion function of rating classes.
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Table 1: The results of the time series of average PDs for each rating
class. Mean and standard deviation (StdDev) of default probability
explained by the common component of default probability are reported
both for default probability levels and changes ( PD in changes(t)=PD
in levels(t + 1)-PD in levels(t)=�PD in levels(t) ).

PD in levels PD in changes
Rating class Mean Std Dev Mean Std Dev

1 0.0034 0.0104 0.0002 0.0301
2 0.0081 0.0609 0.0008 0.0405
3 0.0201 0.0928 0.0011 0.0479
4 0.0410 0.1131 0.0034 0.0718
5 0.0514 0.1975 0.0079 0.0914
6 0.0792 0.2160 0.0149 0.0259

Table 2: Computed Kendall’s τ for default probability of each rating
class. Note that the upper right triangle shows the dependence for PD
levels. Moreover, the lower left triangle expresses the dependence for
PD changes.

Rating class 1 2 3 4 5 6

1 1.0000 0.3125 0.4532 0.2133 0.1963 0.3210
2 -0.2097 1.0000 0.3209 0.1960 0.3317 0.2809
3 -0.1232 -0.2019 1.0000 0.3294 0.1006 0.5919
4 -0.0194 0.0109 -0.3648 1.0000 0.4510 0.3918
5 -0.0930 0.3385 0.4534 0.3289 1.0000 0.3973
6 -0.0978 0.1094 0.1931 0.3893 0.4103 1.0000

3 Copula Functions

Now we define a statistical tool widely and especially used in the finan-
cial field, that allows us to express the dependence structure of a vector
of variables: the copula. A copula is a statistical tool which has been
recently used in finance and engineering to build flexible joint distribu-
tions in order to model a high number of variables. Consider X1, . . . ,Xr
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to be random variables and H as their joint distribution function. Then
we have the following definition.

Definition 3.1. A r-dimensional copula is a function C : [0, 1]r →
[0, 1] with the following properties:

1. For all (u1, . . . , ur) ∈ [0, 1]r , then C(u1, . . . , ur) = 0 if at least one
coordinate of (u1, . . . , ur) is 0;

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui, for all ui ∈ [0, 1], (i = 1, . . . , r);

3. C is r-increasing, (see Nelsen [22], Definition 2.10.2).

Sklar’s theorem clarifies the role that copulae play in the relation-
ship between multivariate distribution functions and their univariate
margins.

Theorem 3.1 (Sklar’s theorem). Let H be a joint distribution
function with margins F and G. Then there exists a copula C such that
for all x, y in R̄,

H(x, y) = C(F (x), G(y)). (1)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on RanF ×RanG. Conversely, if C is a copula and F and
G are distribution functions, then the function H defined by (1) is a
joint distribution function with margins F and G (Nelsen [22]).

Hence, if C is a copula, then it is the distribution of a multivariate
uniform random vector, as it was stated in Sklar’s theorem and in the
corollary derived by Nelsen in 1999, see Nelsen [22]. A copula is thus a
function that, when applied to marginal distributions, results in a proper
multivariate probability distribution function. Since this pdf embodies
all the information about the random vector, it contains all the infor-
mation about the dependence structure of its components. Hence by
implementing this technique, we split the distribution of a random vec-
tor into individual components (marginal) with a dependence structure
(the copula) without losing any information. In this paper, the nor-
mal and the Student’s t copula are applied. These two types of copulas
belong to the class of elliptical copulas. Elliptical copulas are the cop-
ulas of elliptical distributions. Archimedean copulae are an alternative
to Elliptical copulae . However, to model only positive dependence (or
only partial negative dependence), they present the serious limitations
while their multivariate extension involve strict restrictions on bivariate
dependence parameters. This is why we do not focus on them here.
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4 Model Description

Our data were comprised of firms that were categorized into six classes.
After using the clustering method for categorizing the data in six rat-
ing classes, an attempt was made to study the dependency structure
of default for these classes. We averaged across firms within a rating
class to obtain a time series of the average intensity λk for each k rating
class. We assumed that the stochastic processes for the six averages λks
are drawn from a joint distribution characterized by a copula, which
establishes the joint dependence between rating classes. For the inter-
pretation of the model and simulation of the joint default process, we
also needed the following structure. The rest of the section was orga-
nized as follows: Subsection 4.1 introduces a jump diffusion process and
Subsection 4.2 explains parameter estimation of marginal distributions
and copulas.

4.1 Estimation of the average of each rating class using a
Jump Diffusion process

We computed the individual intensity as:

λkj(t) = −log(1− PDkj(t)), j = 1, . . . ,Mk, k = 1, . . . , N, t = 1, . . . , T.

The component Mk describes the total number of issuers within the rat-
ing class for which data are available in the kth rating class. Moreover,
we assume that N = 6 and data size of sample is T (41 sample). Let
λk(t) be the average intensity across rating class k at time t. Therefore,

λk(t) =
1

Mk

Mk∑
j=1

λkj(t), t = 1, . . . , T.

We are now prepared to compute the λk. Let λk(t) follows the stochastic
process below:

Δλk(t) = κk(θk − λk(t))Δt+Xk(t), (2)

where
Xk(t) = εk(t) + Jk(t)Lk(qk, t),

εk ∼ N(0, σ2
k), Jk ∼ N(μk, δ

2
k),

and

Lk (qk(t), t) =

{
1 with probability qk
0 with probability 1− qk
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Parameters of the jump diffusion process were estimated via Maximum
Likelihood Estimation. The jump-sizes were considered to be normal
distributed (mean μk and variance δ2k). Here, κk is a parameter con-
trolling the speed of mean- reversion of λk. Moreover θk is the level of
mean reversion. It was also assumed that Jk, Lk and εk are independent.
Then residuals Xk(t) had a mixture of two normal components. We can
depict density function for the residual term Xk(t) into the following:

f [xk(t)] = qkf [xk(t)|Lk = 1] + (1− qk)f [xk(t)|Lk = 0],

f [xk(t)] = qkfN(μk ,σ
2
k+δ2k)

+ (1− qk)fN(0,σ2
k)
.

As we mentioned to simulate (λ1, . . . , λ6) in the first step, we simulated
(x1, . . . , x6), and then according to (2) the average of the intensities
of each rating class, it can be obtained. When all parameters were
estimated, the residuals can be simulated using the copula and marginal
distributions of (X1, . . . ,X6). For more details about the simulation of
intensities see the Appendix.

4.2 Parameter estimation of marginal distributions and
copulas

In this step, parameters of the marginal distributions of Xk (residuals)
were estimated by the maximum-likelihood method for each rating class.
The results of parameter estimation were shown in Table 3. Note that
the standard deviation (i.e. δk) increases with declining credit quality. θk
and κk were estimated using data (Das and Geng [6]). After estimating
the parameters, residuals for each rating class were computed.

Table 3: Estimated parameters by the maximum likelihood method for
the average of the intensities of each rating class.

Rating class
Parameter 1 2 3 4 5 6

qk 0.0134 0. 1577 0.1899 0.1731 0.2163 0.3455
σk 0.0021 0.0029 0.0751 0.0190 0.0899 1.3921
μk 0.0023 -0.0019 -0.0201 -0.0045 -0.0036 0.0360
δk 0.0289 0.0312 0.1901 0.2011 0.7039 0.9187

This approach has been suggested by Das and Geng [6] that their
focus is on the classical method, but in this paper two methods were used
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to estimate parameters of copulas: the classical and Bayesian method, in
addition we have extended it to a mixture of Gaussian distributions for
marginal distributions of the residuals of default processes in the classical
and Bayesian methods. In order to apply the Bayesian methods for
estimation of parameters of copula, we need the posterior distribution,
calculated by multiplying the likelihood function to the prior distribution
(see the B).

In order to generate a random vector from the copula, first, the dis-
tributions of marginal are used, deriving from the residual distributions
(a mixture of Gaussian). Second, a lot of correlation matrices of copu-
las were used (i.e. 100000), simulated from the posterior distribution.
These matrices were obtained from the MCMC (Markov chain Monte
Carlo) method instead of using a fixed parameter estimate of correlation
matrices of copulas (see Dalla Valle [4]).

5 Simulating Correlated Defaults

In this section the results of the measure calculated with the classical
and Bayesian methods would be shown. Parameters of Student’s t and
normal copula according to both the classical and the Bayesian methods
are estimated then Student’s t and normal copula are simulated (see the
A) for comparing them with measures in Table 4 in which dk,t is defined
as an element of matrix d as follows:

dk,t = |Rk,t+1 − Sk,t+1|, k = 1, . . . , 6, t = 1, . . . , 40,

and measure d̄

d̄ =

6∑
k=1

40∑
t=1

dk,t

240
,

where Rk,t+1 is denoted as the element in the kth rating class and time
t + 1 of our real data and Sk,t+1 is the element in the kth rating class
and the time t + 1 of matrix S that is obtained from simulated data.
Since four methods were applied for these simulations, there are four
matrix S. It is obvious that if the measure d̄ is small and it tend to zero,
the related simulation of the copula is effective because of two reasons:
first, parameter estimation is efficient. Second, in comparison with other
copulas, the related copula fits well.
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6 Conclusions

As it is shown in Table 4, Bayesian method in Student’s t copula leads
to an improvement of simulation, but it does not in normal copula. This
verifies the fact that Bayesian method is not always more efficient than
classic one. In this case it is efficient enough for heavy tail distribution.
Moreover, our main outcome is that the application of Bayesian method-
ology causes a great reduction of measure when copula is Student’s t,
but the drawback of the Bayesian method in normal copula compared to
the obvious advantage in Student’s t is that the reduction is negligible.

Table 4: Results of calculating measures with the classical and Bayesian
copulas.

Classic
Measure Normal Copula Student’s t Copula

d̄ 0.1541 0.1972

Bayes
Measure Normal Copula Student’s t Copula

d̄ 0.1587 0.1136

As in Table 5 is illustrated, the Student’s t copula is applied with the
same correlation matrix and two different degrees of freedom in order
to calculate measures. Although calculating measures show that the
small degree of freedom improves the simulation, it’s not tangible. The
Student’s t copula with high degrees of freedom approximates to the
normal copula, therefore according to Table 5, heavy tail distribution
fits well on our data.

Table 5: Results of calculating measures using Student’s t copula with
the same correlation matrix and two differences degrees of freedom.

Measure Student’s t Copula(ν = 13, Σ0) Student’s t Copula(ν = 43, Σ0)

d̄ 0.1934 0.1972
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A

We report below the main steps in order to simulate from a multivariate
default process with a given copula. For a detailed review of copula
simulation see Dalla Valle et al. [5]. To generate random variables from
multivariate default processes, the following algorithm is suggested.

1. Estimate parameters (κk and θk) using real intensities;

2. Determine residuals using equation (2) and step 1;

3. Estimate parameters of the marginal distributions of residuals with
numerical method (maximum likelihood method for a mixture of
Gaussian);

4. Estimate the parameters of copulas by calculating residuals from
step 2;

5. Simulate (x1, . . . , x6) using copula and marginal distributions resid-
uals (for more details see Dalla Valle et al. [5]);

6. Finally determine (λ1, . . . , λ6) using simulated (x1, . . . , x6) and
equation (2).

B

The copula of the multivariate normal distribution is the normal copula:

C (u1, . . . , ur) = Φr

(
Φ−1 (u1) , . . . ,Φ

−1 (ur)
)

where C shows the normal copula, Φr implies the joint distribution
function of the r-variate standard normal distribution and Φ−1 shows
the inverse of the distribution function of the univariate standard normal
distribution.

Let x = (Φ−1(u1), . . . ,Φ
−1(ur))

′ named the vector of univariate nor-
mal inverse distribution functions, where ui = Φ(xi) for i = 1, . . . , r, and
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let Σ named the correlation matrix, then the normal copula probability
density function is presented in the following form

c (Φ (x1) , . . . ,Φ (xr)) =
1

|Σ|1/2 exp
(
− 1

2
x′ (Σ−1 − Ir

)
x

)
(3)

using equation (3), the normal copula probability density, we calculate
the product over t to get the likelihood function using residuals of in-
tensity processes, which has the following form:

f (x|Σ) = 1

|Σ|T/2 exp
(
−

T∑
t=1

1

2
x′

t

(
Σ−1 − Ir

)
xt

)
.

The parameter to be estimated is Σ and we selected the Inverse Wishart
distribution as a conjugate prior:

Σ ∼ InverseWishart (α,B) .

Then the posterior distribution is computed using Bayes’ theorem:

π (Σ|x) ∼ InverseWishart

(
T

2
+ α;B +

1

2

T∑
t=1

xtx
′
t

)
.

We applied the Gibbs sampler algorithm to simulate the correlation
matrix’s estimate. We used the 100,000 matrices simulated by the pos-
terior distribution obtained with the MCMC method. For more details
about parameter estimation of copulas see Dalla Valle [4], Dalla Valle
[3], Dalla Valle et al. [5], Genest and Favre [14], Bayesian method see
Robert and Casella [23].


