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Abstract. Suppose that a geometrically distributed number of obser-
vations are available from an absolutely continuous distribution function
F , within this set of observations denote the random number of records
by M . This is called geometric random record model. In this paper,
characterizations of F are provided in terms of the subsequences en-
tropies of records conditional on events {M ≥ n} or {M = n} in a
geometric random record model. Characterization results for symmetric
distributions are also presented based on entropies of upper and lower
records in a random record model.
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1 Introduction

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed
(iid) random variables with an absolutely continuous cumulative distri-
bution function (cdf) F (x) and probability density function (pdf) f(x).
An observation Xj is called an upper record value if it exceeds all previ-
ous observations, i.e., Xj is an upper record if Xj > Xi for every i < j.
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An analogous definition can be given for lower record values. For nota-
tional convenience, we shall denote the i-th upper record and the j-th
lower record values by Ui and Lj, respectively. The zero-th upper and
lower records are set as U0 = L0 ≡ X1, which is referred to as the ref-
erence value or the trivial record. Interested readers may refer to the
book by Arnold et al. (1998) and the references contained therein for an
elaborate treatment on theory, methods and applications of record val-
ues. In some situation, instead of assuming the availability of an infinite
sequence of observations, we have to consider a sequence X1,X2, ...,XN

where N is a positive integer-valued random variable independent of the
Xi-sequence. Such a situation arises, for instance, when the observations
arrive at time points determined by an independent point process ob-
served over a finite time, see Arnold et al. (1998, Chapter 7) and also
see job search models in labor economics considered by Nagaraja and
Barlevy (2003). Then, record values are observed from the sequence
with random length X1,X2, ...,XN , in this case the model is called ran-
dom record model. We refer the reader to Arnold et al. (1998, Chapter
7) for more pertinent details on random record models. Let X be a
random variable having an absolutely continuous cdf FX with pdf fX ,
and M denote the number of non-trivial records. If N has a geometric
probability mass function (pmf) with parameter p, i.e.

P (N = k) = qk−1p, k = 1, 2, ..., 0 < p < 1, q = 1− p, (1)

then the joint likelihood of U0, U1, ..., Un and the event {M ≥ n} is given
by

f(u0, u1, ..., un;M ≥ n) = fX(un)
n−1∏
i=0

qfX(ui)

1− qFX(ui)
, u0 < u1 < ... < un,

(2)
where q = 1− p, see Arnold et al. (1998, p. 229). It may be noted that
when N is infinite with probability one, then the classical record model
is deduced.
The problem of characterizing a probability distribution based on record
values in the context of classical record model have been studied by sev-
eral researchers. For example, see Chapter 4 of Arnold et al. (1998)
and references therein which contain most of the results on characteri-
zations based on record values in classical model up to 1998. For recent
works, see for example, Balakrishnan and Stepanov (2004), Gupta and
Ahsanullah (2004) and Su et al. (2008). In the context of random record
model, Nagaraja and Barlevy (2003) proved that appropriately chosen
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subsequences of E(Un|M ≥ n) or E(Un|M = n) characterize F , for N
with a geometric random variable with pmf (1). In this paper, we intend
to develop their results in terms of Shannon entropy of record statistics,
it was originally introduced by Shannon (1948). Let X be a random
variable having an absolutely continuous cdf FX with pdf fX , then the
basic uncertainty measure for distribution FX is defined as

H(X) = −
∫

fX(x) log fX(x) dx, (3)

provided the integral exists. In the literature, H(X) is often referred
to as the entropy of X or Shannon information about FX . We refer
the reader to Cover and Thomas (1991) for more details and references
therein. Entropy properties of record values have been studied by several
authors. See, for example, Baratpour et al. (2007a) and Razmkhah et
al. (2012). Recently, some works have been done in the subject of
characterization based on Shannon’s entropy of records for the classical
record model, see, Baratpour et al. (2007b), Raqab and Awad (2000,
2001), Ahmadi and Fashandi (2009) and Ahmadi (2009). No previous
work has been done on entropy properties of records in random record
model.

The rest of this paper is organized as follows. Section 2 contains
some preliminaries, the basic definitions and calculations which will be
used in the next sections. In Section 3, we prove that appropriately
chosen subsequences of H(Un|M ≥ n) or H(Un|M = n) characterize F
up to a location shift. In Section 4, we obtain characterization results
for symmetric distributions.

2 Basic Tools

In this section, we present some preliminaries and basic tools to establish
the new characterization results. From (2) and also equations (6) and
(9) in Nagaraja and Barlevy (2003), it follows that

f(un;M ≥ n) =
(− log(1− qFX(un)))

n

n!
fX(un), (4)

and

f(un;M = n) =
p

1− qFX(un)

(− log(1− qFX(un)))
n

n!
fX(un). (5)
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Using (4), for a geometric random record model, we derive a relation
between the entropy of records from an arbitrary absolutely continuous
cdf F and the entropy of records from standard uniform distribution,
which are stated in the next lemma.

Lemma 2.1. Let Un and Ln be the n-th upper and lower records,
respectively, in a geometric random record model. Then we have:

H(Un|M ≥ n) = H(U∗
n|M ≥ n)− E

[
log(fX(F−1

X (U∗
n)))|M ≥ n

]
(6)

and

H(Ln|M ≥ n)

= H(L∗
n|M ≥ n)−E

[
log(fX(F−1

X (L∗
n)))|M ≥ n

]
= H(U∗

n|M ≥ n)− E
[
log(fX(F−1

X (1− U∗
n)))|M ≥ n

]
, (7)

where U∗
n and L∗

n stand for the n-th upper and the n-th lower records
from uniform distribution, respectively.

Proof. From (4) and (3), we have

H(Un|M ≥ n) = −
∫

fn(u|M ≥ n) log fn(u|M ≥ n) du

= −
∫

(− log(1− qFX(x)))n

n!P (M ≥ n)
fX(x)

× log

(
(− log(1− qFX(x)))n

n!P (M ≥ n)
fX(x)

)
dx

= −
∫ 1

0

(− log(1− qu))n

n!P (M ≥ n)
log

(
(− log(1− qu))n

n!P (M ≥ n)

)
du

−
∫ 1

0

(− log(1− qu))n

n!P (M ≥ n)
log

(
fX(F−1

X (u))
)
du.

The above expression is equal to the right hand side of (6). Similarly,
for lower record values, we have

H(Ln|M ≥ n) = −
∫

(− log(1− qF̄X(x)))n

n!P (M ≥ n)
fX(x)

× log

(
(− log(1− qF̄X(x)))n

n!P (M ≥ n)
fX(x)

)
dx
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= −
∫ 1

0

(− log(1− q(1− u)))n

n!P (M ≥ n)

× log

(
(− log(1− q(1− u)))n

n!P (M ≥ n)

)
du

−
∫ 1

0

(− log(1− q(1− u)))n

n!P (M ≥ n)
log

(
fX(F−1

X (u))
)
du

= H(L∗
n|M ≥ n)− E

[
log(fX(F−1

X (L∗
n)))|M ≥ n

]
.

The second equality in (7) follows by the use of the fact that U∗
n is iden-

tical in distribution with 1−L∗
n and the location shift does’t change the

entropy. �

We will use the completeness property to obtain the results, so let
us recall the basic definition of a complete sequence.

Definition 2.1. A sequence {φn}n≥1 in a Hilbert space H is called
complete if the only element of H which is orthogonal to every φn is the
null element, that is

< f, φn >= 0, (n ≥ 1) ⇒ f = o,

here o stands for the zero element of H.

Now, we recall the following theorem, which is well-known as Müntz-
Szász Theorem and is used in the proofs of the results in this paper.

Theorem 2.1. (Higgins, 2004, pp. 95-96) The set {xλ1 , xλ2 , ... : 1 ≤
λ1 < λ2 < ...} forms a complete sequence in L2(0, 1) if and only if

+∞∑
j=1

λ−1
j = +∞, where 1 ≤ λ1 < λ2 < · · · . (8)

See for example, Higgins (2004) and Michel (2013) for more details
about complete sequences in the Hilbert space. In what follow, we pro-
vide some characterization results.

3 Characterization results

Nagaraja and Barlevy (2003) proved that in the geometric random
record model the sequence E(Unj |M ≥ nj), where

∑
j n

−1
j = ∞, char-

acterizes F in the family of continuous distributions. Here, we show
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that similar characterizations hold based on entropies of records in a
geometric random record model.

Theorem 3.1. Let X1,X2, ...,XN be a sequence of iid random vari-
ables from continuous cdf FX(x) and pdf fX(x), and N be a geometric
random variable independent of Xi-sequence with pmf (1). Moreover,
denote the number of upper observed non-trivial records in X1,X2, ...,XN

by M . Then, the sequence H(Unj |M ≥ nj), where
∑

j n
−1
j = ∞, with

n1 < n2 < ..., characterizes FX in the family of continuous distributions
but for a location shift.

Proof. Let Y1, Y2, ..., YN be a sequence of iid random variables from
continuous cdf GY and pdf gY . Suppose that for two sequences X1,X2,
...,XN and Y1, Y2, ..., YN , we have

H(UX
n |M ≥ n) = H(UY

n |M ≥ n), (9)

where UX
n and UY

n stand for the n-th upper record from X- and Y -
sequences, respectively. Then, using Lemma 2.1 and by (6) and (9) it is
deduced that

E
[
log(f(F−1(U∗

n)))|M ≥ n
]
= E

[
log(g(G−1(U∗

n)))|M ≥ n
]
. (10)

Using (4), the identity (10) is equivalent to saying that

∫ 1

0

(− log(1− qu))n

n!P (M ≥ n)
log

(
f(F−1(u))

)
du

=

∫ 1

0

(− log(1− qu))n

n!P (M ≥ n)
log

(
g(G−1(u))

)
du. (11)

Then, from (11), we have

∫ 1

0
(− log(1− qu))n

[
log

(
f(F−1(u))

) − log
(
g(G−1(u))

)]
du = 0. (12)

By taking z = log(1−qu)
log p , the equation (12) can be rewritten as

∫ 1

0

[
log

(
f

(
F−1

(
1− pz

q

)))
− log

(
g

(
G−1

(
1− pz

q

)))]
pzzn dz = 0.

(13)

If (13) holds for any increasing sequence {n = nj, j ≥ 1}, such that∑
j n

−1
j = ∞, then by appealing the Müntz-Szász Theorem, see Theorem

2.1, it follows that

f

(
F−1

(
1− pz

q

))
− g

(
G−1

(
1− pz

q

))
= 0, (14)
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for almost all z ∈ (0, 1). As in Nagaraja and Barlevy (2003), the identity
(14) is equivalent to

f(F−1(u)) − g(G−1(u)) = 0, for almost every u ∈ (0, 1). (15)

From (15), it follows that

F−1(u) = G−1(u) + c,

where c is a constant. This means F and G belong to the same family
of distributions, but for a location shift. �

For the classical record model, it may be mentioned that Baratpour
et al. (2007) proved that X and Y have the same distribution with
common lower boundary, if and only if H(UX

n ) = H(UY
n ), for all n ≥ 1.

Nagaraja and Barlevy (2003) also proved that in the geometric random
record model the sequence E(Unj |M = nj), where

∑
j n

−1
j = ∞, char-

acterizes F . Here, we show that similar characterizations hold based on
entropy.

Theorem 3.2. By the assumptions of Theorem 3.1, the sequence
H(UX

nj
|M = nj), where {nj, j ≥ 1} satisfied in (8), characterizes FX in

the family of continuous distributions but for a location shift.

Proof. To prove the Theorem, first from (5) we find

H(Un|M = n) = −
∫ 1

0

p(− log(1− qu))n

n!P (M = n)(1− qu)

× log

(
p(− log(1− qu))n

n!P (M = n)(1− qu)

)
du

−
∫ 1

0

p(− log(1− qu))n

n!P (M = n)(1− qu)
log

(
fX(F−1

X (u))
)
du

= H(U∗
n|M = n) (16)

−E
[
log(fX(F−1

X (U∗
n)))|M = n

]
.

Next, suppose for two cdfs F and G

H(UX
n |M = n) = H(UY

n |M = n). (17)

Then, from (16) and (17), we have∫ 1

0

(− log(1− qu))n

1− qu

{
log

(
f(F−1(u))

) − log
(
g(G−1(u))

)}
du = 0.

(18)
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Similar to the proof of Theorem 3.1, let z = log(1−qu)
log p , then from equation

(18), we have

∫ 1

0

[
log

(
f

(
F−1

(
1− pz

q

)))
− log

(
g

(
G−1

(
1− pz

q

)))]
zn du = 0.

By proceeding as in the proof of Theorem 3.1, the required result fol-
lows. �

Results similar to those in Theorems 3.1 and 3.2 hold in terms of
lower records, which are stated in the next result.

Theorem 3.3. Under the assumptions of Theorem 3.1, either of the
sequences
(i) H(LX

nj
|M ≥ nj) and

(ii) H(LX
nj
|M = nj),

where
∑

j n
−1
j = ∞, with n1 < n2 < ..., characterizes FX in the family

of continuous distributions but for a location shift.

Proof. (i) The result follows from equation (7) and proceeding similarly
to the proof of Theorem 3.1. To prove part (ii), first note that, we have

H(Ln|M = n) = H(L∗
n|M = n)− E

[
log(fX(F−1

X (L∗
n)))|M = n

]
= H(U∗

n|M = n) (19)

−E
[
log(fX(F−1

X (1− U∗
n)))|M = n

]
.

The rest of proof is similar to the proof of Theorem 3.2. �

4 Characterization of Symmetric Distributions

For the classical record model, Fashandi and Ahmadi (2012) have proved
that the equality of the entropy of upper and lower records is a char-
acteristic property of symmetric distributions. In this section, we show
that the same result holds for the the geometric random record model.
First, we recall the following lemma.

Lemma 4.1. (Fashandi and Ahmadi, 2012) Let X be a continuous
random variable with cdf FX and pdf fX with support SX . Then, the
identity

fX(F−1
X (u)) = fX(F−1

X (1− u)), for almost all u ∈ (0, 1), (20)
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implies that there exists a constant c such that FX(c−x) = 1−FX (c+x)
for all x ∈ SX .

The identity (20) is equivalent to the fact that FX is symmetric about
c.

Theorem 4.1. Suppose the assumptions of Theorem 3.1 hold, in
addition assume that M1 and M2 are the number of upper and lower
observed nontrivial records in X1,X2, ...,XN . Then, the following two
statements are equivalent:
(i) X has a symmetric distribution;
(ii) H(Unj |M1 ≥ nj) = H(Lnj |M2 ≥ nj), where the sequence {nj , j ≥ 1}
satisfied in (8).

Proof. When X has a symmetric distribution about zero (without loss
of generality), then it is obvious that Un is identical in distribution with
−Ln. Thus, (i) implies (ii). We shall prove that also (ii) ⇒ (i) holds.
From (6) and (7)

H(Un|M ≥ n)−H(Ln|M ≥ n)

= H(U∗
n|M ≥ n)− E

[
log(fX(F−1

X (U∗
n)))|M ≥ n

]
−H(L∗

n|M ≥ n) + E
[
log(fX(F−1

X (L∗
n)))|M ≥ n

]
= E

[
log(fX(F−1

X (1− U∗
n)))|M ≥ n

]
−E

[
log(fX(F−1

X (U∗
n)))|M ≥ n

]
. (21)

So by (21), Part (ii) is equivalent to

E
[
log(fX(F−1

X (U∗
n)))|M ≥ n

]− E
[
log(fX(F−1

X (1− U∗
n)))|M ≥ n

]
= 0.

Then from (4), we find
∫ 1

0
(− log(1− qu))n

[
log

(
f(F−1(u))

) − log
(
f(F−1(1− u))

)]
du = 0.

(22)

As in the proof of Theorem 3.1, by taking z = log(1−qu)
log p , the identity

(22) can be written as
∫ 1

0

[
log

(
f

(
F−1

(
1− pz

q

)))
− log

(
f

(
F−1

(
1− 1− pz

q

)))]
pzzn dz = 0.

(23)

By appealing the Müntz-Szász Theorem, if (23) holds for any increasing
sequence {nj , j ≥ 1}, such that

∑
j n

−1
j = ∞, then,

f

(
F−1

(
1− pz

q

))
− f

(
F−1

(
1− 1− pz

q

))
= 0,
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for almost every z ∈ (0, 1) or

f
(
F−1 (u)

)− f
(
F−1 (1− u)

)
= 0, for almost every u ∈ (0, 1). (24)

Thus, by Lemma 4.1 the proof is completed. �

The equalityH(Unj |M1 = nj) = H(Lnj |M2 = nj) is also a character-
istic property of symmetric distributions which is stated in the following
theorem. The proof is similar to that of Theorem 4.1 and is omitted for
the sake of brevity.

Theorem 4.2. Suppose the conditions of Theorem 4.1 hold, then, the
following two statements are equivalent:
(i) X has a symmetric distribution;
(ii) H(Unj |M1 = nj) = H(Lnj |M2 = nj), where {nj, j ≥ 1} satisfied in
(8).

5 Summary

It is well-known that characterization problems in mathematical statis-
tics are statements in which the description of possible distributions of
random variables follows from properties of some functions in these vari-
ables. In this work, we have tackled the characterization problems of
distribution F in terms of the subsequences entropies of records condi-
tional on two different events in a geometric random record model. We
proved that the equality of entropy of the sequence of upper and lower
record values in the setup of random record model implies the symme-
try of the parent distribution. The obtained results are useful in testing
goodness-of-fit and symmetry. Because, as pointed out in Chapter 4 of
Arnold et al. (1998), a characterization can be of use in the construction
of goodness-of-fit tests and in the examination of the consequences of
modeling assumptions made by an applied scientist.
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