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Abstract. This study introduces a new approach to problem of esti-
mating parameter(s) of a given copula. More precisely, using the con-
cept of the generalized linear models (GLM) accompanied with least
square method, we introduce an estimation method, say GLM-method.
A simulation study has been conducted to provide a comparison among
the inversion of Kendal’s tau, the inversion of Spearman’s rho, the PML,
the Copula-quantile regression with (¢ = 0.25,0.50,0.75), and the GLM-
method. Such simulation study shows that the GLM-method is an ap-
propriate method whenever the data distributed according to an ellipti-
cal distribution.
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1 Introduction

Copula is used to model the relationship between random variables. It
can capture the interdependency that cannot be exhibited by other as-
sociation measures such as the well-known correlation coefficient. One
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step in copula modeling is the estimation of parameters. The most ef-
ficient method is the maximum likelihood estimator (MLE), which is
used to evaluate the parameter of any kind of models. It can also be
applied to copula, but the problem becomes complicated as the number
of parameters and dimension of copula increases, because the parame-
ters of the margins and copula are estimated simultaneously. Therefore,
MLE is highly affected by misspecification of marginal distributions. A
rather straightforward way at the cost of lack of efficiency is inference-
functions for margins (IFM), which is put forward by Joe (2005). The
idea of this method came from psychometrics literature for latent models
based on the multivariate normal distributions. Similar to MLE in this
method the margins of the copula are important, because the parame-
ter estimation is dependent on the choice of the marginal distributions.
First the margins’ parameters are estimated and then the parameters
of copula will be evaluated given the values from the first step.The ef-
ficiency of this method is 1 for product copula under some conditions.
Efficiency decreases with strong dependence. IFM is not a good estima-
tion technique due to its efficiency for extreme dependence near Fréchet
bounds. Both MLE and IFM are placed in the category of parametric
methods. Genest et. al. (1995) introduce a semiparametric method,
known as maximum pseudolikelihood estimation (mpl), similar to MLE.
The only difference between this method and MLE is that the data
must be converted to pseudo observations. The consistency, asymptotic
normality of this method is established in their paper. They established
that this method is efficient for independent copula. Two nonparametric
methods based on the rank of observations are inversion of Kendall’s tau
(itau) and Spearman’s rho (irho). These moment estimations are applied
to one parameter copula when it is exchangeable (Kojadinovic & Yan,
2010). Kojadinovic & Yan (2010) found that when 7 < 0.4, the inversion
of Spearman’s rho is a good approach for estimating the parameter of
Gumbel-Hougaard copula. They compared mpl, irho and itau by look-
ing at their mean square error, for different sample sizes and dependency
level. It turns out that for n = 50 and 7 < 0.2 i.e. weak dependency,
two methods of moment estimation seem to be better than the esti-
mation based on pseudo likelihood. However, as dependency increases
and sample size gets larger, mean square error for mpl will reduce. The
estimation based on mpl is more biased than the methods of moment
estimators, but the biasedness will decrease as n gets larger. The esti-
mation based on the inversion of Spearman’s rho performs well for the
Gumbel-Hougaard copula. In general, the estimation based on Kendall’s



A GLM-Based Method to Estimate a Copula’s Parameter(s) __ 323

tau is better than the Spearman’s rho. Tsukahara (2005) introduced a
semiparametric estimator, known as “rank approximate Z-estimator”.
He also proved the asymptotic normality of this estimator. Through
a Monte Carlo simulation, he compared 7-inversion, p-inversion, PML,
minimum Cramér-von Mises distance, minimum Kolmogorov-Smirnov
distance and rank approximate Z-estimators. He concluded that PML
has the lowest MSE and Z-estimator has the lowest bias. Vandenhende
& Lambert (2005), showed that it was possible to form a univariate
distribution from any Archimedean copula (see Theorem 1) by writing
the generating function in linear form. They used least square esti-
mation to evaluate the copula parameters. Brahimi & Necir (2012),
evaluated the parameters of copula using method of moments. They
particularly focused on Archimedean copulas. Consistency and asymp-
totic normality of their procedures have been verified. They concluded
that their method is practically faster and easier. Qu et al. (2009) used
the fact that a multivariate Archimedean copula is the same as survival
copula of multivariate Li-norm symmetric distributions and proposed
a method for parameter estimation and model selection concentrating
on Archimedean families. They established the consistency of the esti-
mator and applied Radia Information Criteria (RIC) for selecting the
well-fitted Archimedean copula. Kim et al. (2007) compared two para-
metric estimation methods i.e. MLE and IFM with PML. They showed
that misspecification of margins had significant impact on parameter
estimation when the methods used were IFM and MLE. But PML is ro-
bust against margins misspecification, therefore it is preferred to other
two methods. However, MLE is the most efficient method and at the
same time the most efficient one when dealing with multivariate multi
parameter copulas. They advised on using PML method. de Haan et
al. (2008) calculated the parameter of extreme value copula for censored
data using pseudo-sample based on MLE. The asymptotic distribution of
this method was established in their paper. They also proposed a test
statistic for selection of the appropriate copula and found its critical
values using bootstrap methods.

This study uses the concept of the generalized linear model (GLM)
along with the least square method and introduces a new estimation
method, namely GLM-method, for estimating parameter(s) of a given
copula. Performance of such GLM-method is compared with perfor-
mance of other estimation methods through a simulation study. Cramér-
von Mises distance is employed as a criteria for such comparison. This
article is organized as follows: Section 2 provides a brief review on pa-
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rameter estimation methods and considers copula quantile regression.
GLM-method introduces in Section 3. Section 4 compares different
methods of calculating copulas’ parameters through a simulation study,
and Section 5 concludes.

2 Methods of Parameter Estimation

This section reviews some most applicable methods used for parameter
estimation of a given copula. As explained above although MLE is
misspecified by the margins, it is the most efficient method, which can
be implemented by

T T d
L(©) = Inc(Fi(z), Fa(zar), .., Falwar) + YD In f(xje),

t=1 t=1 j=1

where © is the vector of all parameters of both the marginals and the
copula, and ¢ is 66{;;}5’115(11%)1),8 };5‘1 ta)) - Another parametric method is IFM,
where first the parameter of tile margins are estimated and then the

parameters of the copula, namely

L(a,01,...,0,) =Y log f(xi;1,...,0n,0).

i=1

The point estimation methods i.e. itau and irho are two nonparametric
methods, which are applied given the relationship between the parame-
ter of the copula and the Kendall’s tau and Spearman’s rho association
measures viz. § = g~!(7). Such relationship is presented in Table 5 .

Table 1: Two dimensional Copulas, the relations between parameters and
Kendall’s tau, 7.

Copula Functional form Parameter
Gaussian O (ur,u2) = O(@  (ur), @ (u2)) R = sin(Z&))
t (df= v) Ch(ur,u2) = to,r(ty * (ur),t;* (uz2)) R= Sm(ﬂ;))
Gumbel  CF*™ ! (yy, us) = exp(—[(—Inu1)? + (—1In ug)e]%) 0= ﬁ
Clayton CS1O (yy ug) = (uy® +uy® — 1) 7 0= 2=

The nonparametric version of MLE, which seems to perform better than
other methods when the sample size and level of dependence increases
is PML, in which the data must be converted to pseudo observations.
Suppose X; = (Xj1,...,X;p) are random vectors and R;; the rank
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of X;;. Then by applying Uij = :;ﬁ the pseudo observations can be

calculated. Therefore, the pseudo log-likelihood is given by

log L(0) = Z log cp (1),
i=1

A~

where 4; = (U; 1,. .., U;p). For a bivariate copula this simplifies to

n+1'n+1

L() =) _log{co( )}-
1=1

2.1 Copula-Quantile Regression

When the distribution function of the variables is not normal, the con-
ditional expectation E(Y|X) and conditional variation Var(Y|X) does
not suffice to give full information on the conditional distribution func-
tion. In such cases, the quantile regression is used. To estimate the
parameters of the quantile regression LSE can be applied, however as
opposed to standard mean regression, the loss function is not square
error, instead it is the absolute error loss function, hence the sign of
the error terms is important (Alexander, § 7, 2008). Copula-quantile
regression, which is introduced by Bouyé & Salmon (2009) is a non-
linear form of quantile regression. To apply quantile regression, one
needs to know the conditional copula distribution which is given by
Cyp (ulv) = %C(u, v), Cy(vlu) = a%C(u,v). The copula-quantile
regression is defined as the following.

Definition 2.1. If C(.,.,0) is a parametric copula with parameter 6,
the pth quantile curve of v conditional on u is defined by

~ 0C(u,v;0)
p - 8'[,[, 9
and rearranging with respect to v the copula-quantile regression is given
by

v =r(u,p;0).

They studied properties of copula-quantile regression and showed its
application on the interdependency between foreign exchange markets,
which are skewed. They also compared their findings with tail depen-
dency measure at different . They noted that tail dependency at differ-
ent « is not corresponding to copula regression at different quantiles and
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the results are different. They expressed that their results were more
reliable. The following lemma utilized from Bouyé & Salmon (2009)’s
finding and established the expression of quantile regression for 5 most
applicable copulas, i.e., Clayton, Frank, Gumbel, Normal, and t copulas.

Lemma 2.1. (Bouyé & Salmon, 2009) The copula-quantile regression
for different class of copulas is given by

(i) Clayton copula v = ((p~¢/(+0) — 1)y~ 4+ 1)1/,
(ii) Frank copula v = *71 In(1—(1-— 6—9)(1 + G—Gu(p—l _ 1))—1);

(iii) Normal copula v = ®(p®~1(u) + m@_l(p)ﬁ

(iv) t-copulav = ty(pt;l(u)—&—\/(l - v+ 1) v+ t;l(u)Q)t;il(p)).

To employ the above lemma, one has to set u := Fx(x) and v :=
Fy (y). It should be worthwhile to mention that the Gumbel copula
does not have a closed form for the copula-quantile regression method.
Therefore, its copula-quantile regression has to be found numerically.

3 GLM Approach to Parameter Estimation

The idea of using the GLM method for estimating parameter(s) of a
given copula has been suggested roughly by several authors, see Genest
(1987) and Frees & Valdez (1998) for Frank copula; Parsa & Klugman
(2011) for Gaussian copula.

The following theorem uses the GLM method along with the least
square method and provides a particle algorithm to estimate copula’s
parameter(s).

Theorem 3.1.  Suppose C(.,.,#) is a bivariate copula function with
parameter §. Then, based upon continuous random sample (X1, Y7), (Xo,
Ya),++,(Xn,Yn), copula parameter 6 can be estimated by minimizing
the following least square function in 6.

Q(0) = zn; <V ~1+ /01 /Ok ce(Ui,t)dtdk)Q, (1)

where V; := Fy(Y;) and U; := Fx(X;).
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Proof. The GLM expression on two uniform random variables V' and
U can be stated as

EVIU=u) = /00(1 —FV|U(v|u))dU—|—/

0

0
1
. 1—/ Fy o (kfu)dk
0

Lok fUV(uvt)
= — =~ dtdk
! /o o Jfu(u) !

1 1 k
— _ colu dtdk
1 /0 /O oy ) fi (1)t

Coy (u)

1k
= 1—/ / co(u, t)dtdk.
0o Jo

The second and last equations arrived from the fact that V and U are two
uniform random variables and the forth equation arrives from identity
fltr,. - ta) = co(Fitr), ..., Fa(ta)) I, fi(ti).

Now the least square expression can be written as Eqution 1. [

In most cases the above theorem has to be employed numerically.
The following corollary explores a situation that the GLM-method has
explicit solution.

Corollary 3.1.  Suppose c¢(-,-) is a Farlie-Gumbel-Morgenstern cop-
ula function. Then, using random sample (X1, Y1), (X2, Y2), -+, (Xpn, Ya),
copula parameter 6 is

3 (yi — ) (@i — 3)
> i (@i — %)2

Proof. The PDF of Farlie-Gumbel-Morgenstern copula is

0

co(u,v) = 14+0(1—2u)(1—2v).

Substituting cy(u, v) is least square function given by Theorem 3.1 leads
to

n

Q) =~ 1+ 5 + 001 —20:))”
=1

The desire proof arrives after solving %Q(Q) =0in 6. O
The copula’s PDF, ¢y(-,-), plays a crucial role in calculation of

1 rk
EVIU=u)=1 —/ / co(u, t)dtdk,
0 JO
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in Theorem 3.1. Table 2 provides the copula’s PDF, ¢y(-, ) for some well
known class of copulas.

4 Simulation Study

Now a simulation study compares these five estimation methods numer-
ically. For this propose five different distributions normal, t, Cauchy,
and two extreme value distributions, logistic and Hiisler-Reiss distri-
butions are selected. The first three distributions are symmetric and
appropriate for financial data and the last two are appropriate distribu-
tions for insurance and reinsurance portfolios, which involve losses with
high severity and low frequency. The distribution of insurance claims
data are normally skewed and heavy-tailed (Embrechts et el., 2002, and
Kotz & Nadarajah, 2000). The data are simulated from these distribu-
tions with high dependence level at 0.9. All data are transformed into
pseudo-observations. First, they are ranked and then multiplied by n%rl
to avoid problem that may arise at boundary [0, 1]d. Five copulas, which
are mostly used, viz, Gumbel, Frank, Clayton, normal and t copulas are
selected. The parameters are estimated with 5 approaches: (i) Inver-
sion of Kendal’s tau; (ii) Inversion of Spearman’s rho; (iii) PML; (iv)
Copula-quantile regression with (¢ = 0.25,0.50,0.75), and (v) GLM-
method. It is expected that each method is suitable for a particular
distribution. To compare the results, the cramér-von Mises distance is
used. It is defined by

/_OO /_Oo (Fxy (2,y) = Co(Fx (x), Fy (4)))* fxy (x, y) dwdy.

This criteria measures how far is the distance of the real data from the
data generated by copula; in other words, this is the weighted average
of the errors. Normally the lower this distance, the better would be
the results. The simulation is carried out on sample size 1000 with 100
iterations using the packages copula, fCopulae, quantreg, and evd in R.
The calculation for elliptical copulas and distributions take longer than
others. The results are presented in the tables below.

The tables present the mean and standard deviation for parameters
of different copulas and their corresponding Cramér distance. The first
table is based on the data generated from Logistic distribution, which
is an extreme value distribution function. For this distribution, when
the copulas are Clayton and Gumbel, PML gives better result. For
other copulas, quantile regression method dominates other approaches.



A GLM-Based Method to Estimate a Copula’s Parameter(s) __ 329

Copula-quantile regression at 50%, 25% and 50% performs better than
other methods when the underlying copulas are Frank, Normal and t
(df=4), respectively. However, the results obtained by different meth-
ods is not significantly different when copulas are elliptical. The second
table shows the results for Hiisler-Reiss distribution, which is another
extreme value distribution function under study. Similar to Logistic
distribution, the performance of PML is better than other approaches
when the copulas are Clayton and Gumbel. Moreover, when the copula
is Frank, quantile regression at 25% gives better result. Although not
significantly different, the Cramér distance given by irho is lower than
copula-quantile regression at 75% when the copula is normal. GLM per-
forms well when copula is t. Three other distributions from which the
data are simulated are elliptical. The third table belongs to the data
generated from Cauchy distribution, which is also a heavy-tailed distri-
bution function. Inverse of Spearman’s rho with Clayton copula does
better than other estimation methods. Inverse of Kendall’s tau performs
well when the copula is Gumbel. GLM supersedes other approaches
when the copulas are Frank and t. The Cramér distance obtained by
different methods is roughly the same when the copula is normal. For
two other elliptical distributions i.e. normal and t distributions, the
performance of the estimation methods with the corresponding copulas
is the same. The only difference is that for normally distributed data,
itau performs better than irho when the copula is Clayton. In general,
the copula-quantile regression is a better approach when the data are
heavy-tailed and the GLM gives rise to better result when the data are
elliptically distributed. However, with the latter the performance is the
worst when copula is Gumbel regardless of the type of data.Finally, one
can conclude that the estimation methods are more dependent on the
type of data than the chosen copula. Therefore, it is suggested to check
the data and their distributions and then pick a method that is supposed
to perform better than other methods.

5 Conclusion

Copulas’ parameter estimation is the first step in copula modeling. In
this study, for the first time, to the best of the authors’ knowledge,
the copula-quantile regression is included in a simulation study that
compares different approaches for parameter evaluation. As is expected
such method is only a good approach when data are from extreme value
distributions. Also a new method which is based on GLM is proposed
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for estimating the parameters of copulas. The results indicate that GLM
performs better than other methods when data have an elliptical distri-
bution. Therefore, it is suggested to check the distribution of data be-
fore selecting a particular estimation method. An extensive simulation
study that contains more distributions , say, heavy-tailed, mixed distri-
butions and more copulas must be carried out to assert this suggestion
more firmly. Moreover, based on the findings of the simulation study,
in spite of the performance of copula quantile regression and the GLM
method which is relatively better than others for different distributions,
the PML performs relatively well in all situations. This approach turn
out to be the preferred method according to Kojadinovic & Yan (2010),
Tsukahara (2005) and Kim et el. (2007).
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