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Abstract. Wind as a resource of renewable energy has obtained an
important share of the energy market already. Therefore simulation and
prediction of wind speeds is essential for both, for engineers and energy
traders.

In this paper we analyze the surface wind speed data from three pro-
totypic locations: coastal region (Rotterdam), undulating forest land-
scape few 100 m above sea level(Kassel), and alpine mountains about
3000 m above sea level (Zugspitze).

Rather than matching the conventional Weibull distribution to the
wind speed data, we investigate two alternative models for wind speed
prediction, both being refinements of a log-normal model, but with very
different approaches and capability for capturing the extremal events.

In both models deterministic effects such as trend and seasonality are
separated. The first (structural stochastic) model predicts wind speeds
exponentially from a linear combination of separate mean-reverting jump
processes for the high and low wind speed regimes, and the regular (dif-
fusive) wind speed regime. The second (neuro-stochastic) model is a
prediction with volatility-enhanced trend, with parameters dynamically
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learned by the middle-layer neurons of an MLP-type neural network
operating on dynamically updated and re-weighted history.

The numerical results suggest that, for a coastal region (e.g. Rot-
terdam) the R?-determination is higher, while for the undulating forest
regions (e.g. Kassel) and even more the higher mountain regions (e.g.
Zugspitze) the structural stochastic model yields higher determination.

The neuro-stochastic algorithm opens a new path within statistical
learning: feature space and kernel functions are completely defined by
the parameters of the stochastic process.

Keywords. Alternative energy, jump-diffusion processes, neural net-
work, Weibul distribution.
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1 Introduction

For many natural energy resources, particularly renewable ones such as
wind or solar radiation, their availability is subject to stochastic fluctu-
ations. The reason behind, in this case usually are physical processes
which are themselves best described only by stochastic models. E.g. the
stochastic fluctuation of wind speed is important, both, as a challenge
for engineering and operation of wind turbines and as an economic risk
factor for the operator which has direct impact on the cost of production.

How much of each stochastic component can be viewed as a kind of
macro-description of some more underlying non-linear chaotic dynamics,
is an open question beyond our current investigation.

It is common practice to fit (surface) wind speeds by a particular
extremal value distribution, namely a Weibull distribution with shape
not too far away from a Rayleigh distribution (shape parameter b =
2). Notably, the core of such a distribution is similar to a log-normal
distribution. Therefore we investigate two alternative models for wind
speed prediction, both being refinements of a log-normal model.

In both models deterministic effects such as trend and seasonality
are separated in advance.

The first model is purely structural and based on stochastic jump and
diffusion processes. It predicts wind speeds exponentially from a linear
combination of separate Ornstein Uhlenbeck (OU) processes, namely
mean-reverting jump processes for the high and low wind speed regimes,
and for the regular (diffusive) wind speed regime. All parameters of all
the processes are calibrated by convention nonlinear regression methods.
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The second model is based on a stochastic model with a volatility-
enhanced trend (corresponding to a transformed normal prediction) com-
bined with a supervised neural net predicting its parameters dynami-
cally. Considering in our case a target, unsupervised neural nets like in
[2] are not of interest. We consider a multi-layer perceptron (MLP) net-
work with just one intermediate layer. The neurons of latter are learning
the parameters of the stochastic process from a flexible weighted history
of historical wind speeds. The update rule applied is daily on-line.

Extremely high or low wind speeds are modeled geometrically as
exponential transforms of jump processes. The latter are like the spikes
in the additive model of [3]. Hence, even more than the diffusive core
process, the jump processes are subject to mean-reversion.

In the first model the parameter calibration for the stochastic pro-
cesses employs usually a version of maximum likelihood estimation or
least square nonlinear regression methods. These methods are neglecting
the fact, that not all historical data points should be weighted equally,
but rather different weights should be given to different points of the
history, due to their different importance, due to structures (e.g. Elliott
waves) of the time series, and even more due the different strength of
memory impact, roughly decaying with the size of the time lag.

For the standard nonlinear regression methods based on the Leven-
berg-Marquardt method [24], [26] there exists a well-elaborated theory,
including proofs of convergence in sufficiently well-behaved local regions
of the parameter space. Nevertheless, in larger regions of the parameter
they usually fail to detect the correct minimum among several local
ones. Therefore, simulated annealing [7] or adaptive lattice algorithms
[29] have been proposed as alternatives for global calibration of nonlinear
functions.

As we will see below, learning neural perceptron layers may provide
a method to calibrate stochastic asset models with more realistic and
dynamical weights on the historical input data.

Neural networks as mathematical methods have been developed in
particular in the context of pattern recognition (see e.g. [5]). their
applications in this context have a wide range including such differ-
ent topics like corporate decision planning and business processes [22],
recruiting [23], criminal profiling [31], [10], energy consumption [4], elec-
tronic noses for odour detection and classification [19][11], oncology [1],
tumor shape analysis [12], [14], weather [25] and many more. For appli-
cation of mathematical models on real data, the general remarks in [§]
should be considered. Also in mathematical finance, neural networks of
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multilayer perceptron (MLP) type have been investigated as a serious
alternative to conventional statistical estimation (see e.g. [28]).

In [13] a new synthesis of neural networks and stochastic processes
for the purpose of forecasting was proposed. In [16] a method was in-
troduced to find (by a stepwise procedure) an optimal length of mem-
ory. The new neural network calibration was demonstrated to provide
a serious alternative to conventional nonlinear calibration of stochastic
processes.

Below we apply a neural network calibrated stochastic model in the
spirit of [13] to simulate and predict daily wind speeds.

We proceed as follows. First, we review the stochastic processes and
calibration methods, applied for our first stochastic wind speed model.

Then we review the MLP neural network methodology.

Following the approach of [13] we then combine stochastic process
and neural network, calibrating the parameters of our second stochastic
wind speed prediction. This approach can be an advancement to a pure
neural network approach like in [32], [18] or in [17].

2 Framework for the Stochastic Model

In the following we present a general modeling framework for stochastic
modeling of time series data from regular observations of some process
in environment, climate and energy.

2.1 Independent Increment RCLL Semimartingale Drivers

In this section we review the general setting for the underlying stochastic
processes.

A semimartingale consists from two terms, one from the finite vari-
ation class F'V and one from the local martingale class Mj,.. Simi-
lar as proposed in Benth et al. (2008), we consider a special type of
semimartingale independent increment RCLL (cadlag) process I, with
R"-valued random paths ¢ — I(t), with It6 representation according to
[20]

I(t) = 'y(t)—i—M(t)—i—/Ot /|Z|<1zj\7(ds,dz)+/0t/lz>l zN(ds, dz)

= ’Y(t)—’_ZAI(S)lAI(S)Zl—’_M(t)+/0 /|<1 ZN(dS,dZ) (1)

s<t
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where -y is of finite variation on finite intervals, M is a local continuous
martingale with finite quadratic variation C, N(-) is a random jump
measure and N(-) := N(:) — E[N(-)] is the compensated random jump
measure. In the special case when [ is stationary, the compensator
0(dt,dz) := E[N(dt,dz)] factorizes,

(dt,dz) = dtl(dz) (2)

Here I is a Lévy process with Lévy measure /() and characteristic triplet
(7,C,4(+)). In order to admit a time-dependent frequency of jumps, one
also has to consider the more general case

U(dt,dz) = dtg(t)e(dz) (3)

where ¢ is a continuous, strictly positive function. Here t +— £;(-) :=
g(t)¢(-) defines a time-dependent, continuous functional into a set of
Lévy measures being equivalent to ¢(-) modulo a positive scale-factor.
In this case, I is a non-stationary semimartingale.

The class Z of infinitely divisible laws has two important subclasses,
the class SD of self-decomposable laws, and the class of a-stable laws
Sa, a €]0,2],

SaCSDCT (4)

If increments of I are distributed in a self-decomposable manner, then
k

(dz) = ‘(j)dz (5)

with a function k increasing on | — 0o, 0] and decreasing on [0, co[. If the
distribution of increments of I is a-stable, then

1
g(dZ) = W (C+1Z>O + C—]-Z<0) dz (6)

i.e. the function k of the self-decomposable measure represents a power
law decay,

k(z) = |z[7" (4150 + c-12c0) (7)
The asymmetry parameter of this stable distribution is
Cy —C—
= — 8
B ey T (8)

Within the full dynamical model, the process I is assigned the role of
an ingredient stochastic driver. While [ is assumed to have independent
increments, the stochastic processes S may have correlated increments.

For wind speeds particularly, two particular types of stochastic drivers
are investigated, and also applied in practice.
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2.1.1 Jump-Diffusion Processes

In this case, we will consider the following stochastic semimartingale
drivers I:

Let Iy(t) be a continuous jump-diffusion with increments dIy =
o(t)(dW + dL), where W be a standard Brownian motion, and L be
a compound Poisson process with Lévy measure ¢(dz) = Ao Fz(dz) with
jump-intensity Ag, and a jump-size distribution F with non-trivial sup-
port on R.

Further, let 11 (t) be two (not necessarily time-homogeneous) com-
pound Poisson processes with increments given respectively by J+ (t)dNt+
for the positive jumps (i.e. J7(t) having support on R only), and
J7(t)dN; for the negative jumps (i.e. J~(¢) having support on R~
only).

We assume that a common seasonality 7(t) for positive and negative
jump sizes can be factorized as

TE(t) = n(t)J* (9)

For the deseasonalized jump sizes J*, let us assume a generalized gamma
distribution:

4+ z bifl _(Z)p
Frpp* ;:ibb/ <Zi) e 5 dz (10)
piT (3) /o

As important special cases, this includes the gamma distribution for p =
1, the Weibull distributions for p = b, and the log-normal distributions
in a limit ]% — 00. The Weibull distribution reads

+ 2z bE—1 2 ot
Frp*t o= bi/ (1) e (E) dz (11)
Hy Jo \Hjy

Moreover, for b = 1 it reduces to the common exponential distribution,
which is our particular choice for this study. On the other hand, for b > 1
the probability density vanishes for vanishing jump sizes. Parameter b
is sometimes called the Weibull modul. If small jumps are very rare, a
Weibull module of b > 1 may be desirable. In this case, a Weibull or a
generalized gamma distribution provide an alternative to the log-normal
distribution. This is actually the case for wind speeds, where the shape
parameter under normal conditions differs only little from b = 2 (the
Rayleigh distribution).
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Seasonality of the jump frequency could, eg, be modeled as

2 d
ME) = Amas <1 ey Ty 1) (12)

for positive/negative jumps each according to [9]. In practice, however,
to model seasonality makes only sense if the frequency of jumps suffices
to detect the seasonality, if any, from the data.

The compensator measure of the expected jumps reads

N b\ )

(dt,dz)™ = dtX=(t)—7 | —= e "7 dz (13)
Ky \Hj

Below the continuous diffusion as well as each compound Poisson

process will drive its own autoregressive process. The latter will be

denoted by Y* for the positive and negative jumps, whereas the former

by X.

2.1.2 Stable Lévy Processes

In this case, stochastic drivers are given by stable Lévy processes I :=
Loy

After normalization w.r.t. location p and scale ¢, such a process is
characterized by its stability index a €]0,2]. The weighted sum of n
combined increments satisfies

widly + ... +wpdl, = wdl (14)

where w = |W|q, W = (w1, ...,my,)!. A symmetric stable Lévy process is
self-affine, with fractional Hurst scale H = a~!. The class of stable prob-
ability distributions for increments of stable processes forms a subclass
of the self-decomposable probability distributions, which themselves are
a subclass of the infinitely divisible distributions.

For a = 2, the process is normally distributed, i.e. it is equivalent
to a Brownian diffusion with volatility o = v/2c.

For a < 2, the variance (i.e. the second moment) is infinite. The
width of the distribution then is described by the scale ¢ rather than the
sample volatility.

For aw < 1, the mean (i.e. the first moment) is infinite. The location
u of the distribution is rather determined by the median than the sample
mean.

For a > 1, from a Lévy process Z, one could construct stationary
processes with memory, as certain integrals of Z,, with H-dependent
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integrand, where o > % > 1. Corresponding process increments are no
longer independent, and the processes themselves are no longer semi-
martingales. Therefore, below we will use some semimartingale I with
independent increments as an input driver of an autoregressive processes
exhibiting memory. This approach has the advantage that semimartin-
gale methods will suffice to handle the stochastic process.

2.2 CAR Processes with Semimartingale Drivers

Given a semimartingale driver I having independent increments, a

CAR(n) process X in R™ is defined as

dXy, = Xgp1dt g=1,...,n—1

X, —= - Zn:aq(t)Xq dt + o(t)dI(t) (15)
q=1

which can be written in a compact matrix form as

dX = A)Xdt+ o(t)e,dI(t) (16)
with n X n matrix
0 1 0 0
0 0 1 0
A(t) = : : : . : (17)
0 0 el 1

The CAR(n) case above is still a special case of a more general CARMA
(n,m) process, which can be defined generally similar as in [6]. There
it was introduced for the case of I being a second-order Lévy processes
with E[L(1)?] < oo.

Nevertheless, here we restrict just to a very simple CAR process. Its
component X7 exhibits all autoregressive features.

Below we will use the component X of the CAR processes, defined
as

dXq = Xgp1dt g=1,...,n—-1 (18)

X, = - Zn:aq(t)xq dt + o (t)dI(t) (19)
q=1
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with given semimartingale driver I. Discretization of the CAR(n) pro-
cess X with dt; :=t;41 — t; yields

Xq(tiv1) — Xq(ti)

Xq+1(ti) = dt q = 1,...,71—1, (20)
n—1
Xt = ( (- @) Xu(t) = X a6 | an
7 =1
= U(ti)é‘i (21)

where ¢; is a random number distributed according to the pdf of dI(t;).
According to (21) the coefficient functions ag4(t), ¢ = 1,...,n, can be
determined by regression. For time-independent constants oy, the re-
gression becomes linear. Recursion of (20), inserting into (21), and then
resolving for X7 show that the discretized CAR(n) process is in fact an
AR(n) process,

X1(tns1) = Z’Yq Xl(tq) (22)
q=1

with parameters v, depending linearly on the original reversion coeffi-
cients ay.

The assumption that there is no autoregression beyond mean rever-
sion leads to our special case where X is CAR(1), a mean-reverting OU
process

dX = —a(t)Xdt+o(t)dI(t) . (23)

Such an OU process is known to have the unique strong solution
t
X(t) = e Joal)ds [Xo + / o(u)elo ¥ qr(y) (24)
0

In the special case where X is CAR(1), it is a mean reverting Ornstein-
Uhlenbeck (OU) process

dX = —a(t)Xdt+o(t)dI(t) . (25)
Such an OU process is known to have the unique strong solution

t ¢ u
X(t) = e Jool)ds [Xo—i—/ o(u)elo *Baru)| . (26)
0

The general Ito-formula for semimartingales, can be applied to S =
f(X), in order to yield an explicit form of the dynamics of S(t).
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2.3 Transformation of the Stochastic Process

The process S in R here will be modeled on the basis of the first com-
ponent X7 of the CAR process X as stochastic input.

Apart from the trivial transformation, typically, non-linear trans-
formations X; — S are used in order to model the dynamical process
S.

We will use the generalized additive representation,
St X1(t) = g(A(t) + X1(1)) (27)

where g is assumed to be invertible and at least twice differentiable (i.e.
C?). Let us consider the following special case:

Geometric Model

g(x) = e*. This model admits only positive wind speeds. It intro-
duces additional nonlinearity to the wind speed S.

With any of these models, the wind speed .S can be modeled as

St X(1) = g(A()+ Xu(D))
dXy = Xga(t)dt ¢=1,....n—1

X, = - zn:aq(t)Xq(t) dt + o (t)dI(t)
q=1

for given semimartingale driver I.
The general 1t6 formula for semimartingales can be applied to S =
g(X) in order to yield an explicit form of the dynamics of S(¢).

3 A Multi-OU Model Describing for Spikes

For the numerical analysis below, we propose a spike-jump-diffusion
model which is composed of multiple OU processes with independent
semimartingale drivers, namely

Sit) = g(A)+X(@E)+Y () +Y (1))
dX = —aXdt+o(t)(dW +dL) (28)
dy® = —pFY*dt £q(t)JEANT(t)

where W is a continuous Brownian motion and L a pure jump process,
e.g. a compound Poisson process. J* is the random variable for the
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heights of positive and negative spiky jumps, N* are the Poisson subor-
dinators with spike intensity A*(¢), which is assumed to be a continuous
function of time ¢.

The distributions of positive and negative spiky jump heights are
modeled commonly by two symmetric exponential distributions, i.e.

T z x
Fy+ = :l:L ejF(“Ji )dz =1- ejF("JT)
By Jo

respectively, where pj+ is the expected size of the positive and negative
spiky jumps. The corresponding semimartingale (compensator) measure
is

(29)

AE(H) F(E)
o(dt,d)* = dt i)e 5 dz (30)
K

4 Model Calibration

4.1 Calibration Methodology

We describe the steps of a realistic calibration procedure applicable to
any process S given as an It6 transform g of an input process. For this
purpose, we investigate the inverse-transform of the historical data,

g S)(t) = AD)+XO)+YT () +Y (1) (31)

and calibrate the parameters of the ingredient processes. Calibration is
performed with respect to a given history. Usually standard regression
methods are applied. However, alternative approaches, such as calibra-
tion via neural networks (see [13] and [15]) will be considered below. In
detail, we proceed as follows:

4.1.1 Identifying Spiky and Non-Spiky Jumps

We first filter separately the following 3 possible jump types: positive
spikes, negative spikes, and non-spiky jumps. As filtering tool we use a
running sample-volatility of n days (eg, n = 30), and a detect jumps as
outliers out of the 97.5 confidence level.

A jump will be detected as a spike, if within 2 days! it is followed
by a jump in the opposite direction.

!The selection of 2 days is based on the strong evidence that, other than the spike
formations of two consecutive jumps in opposite directions, there are few jumps that
are followed on the next day by a small drift and then offset by another jump in the
opposite direction
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Next, the mean reversion 8% and the distribution parameters of the
spike OU-processes Y+ are calibrated by regression over available spikes.
Spike processes Y+ with exactly the same jump times and jump heights,
but with the calibrated reversion after each jump are subtracted, and
the resulting processes then corresponds to A(t) + X (t).

Non-spiky jumps are left untouched until the seasonal behavior is
removed.

4.1.2 Subtracting Deterministic Patterns

We subtract the deterministic function
A(t) = Ao+at+Ay(t) + Ag(t) + Ap(t) + Aw(t) (32)

Here Ag+at is the linear part. Ay (t), Apm(t), Ag(t), and Ay(t) are weekly,
monthly, quarterly, and annual periodic functions.
We calibrate A by the following steps:

1. The linear part is fitted to the data, it should be subtracted yield-
ing

y(t)
w(t)

+ Ag(t) + A ()

+ X)) +YT()+Y (1) (33)

2. Periodic corrections Ap(t) for p = w, m, ¢ are calibrated as follows.
First the averages over days of equal period phase t € [1,..., ¢p],
with ¢, equal to one week, month, and quarter respectively, are
determined as an estimate

) = 3 Xt - joy) (34)
0

pj:

over a sufficiently large number n,(t) of averaging periods. Note
that, n, may depend on ¢t. Considering the weighted period average

T 221 ”p(t)AP(t) (35)
P Etil np(t)

it should be approximately zero, since the linear trend was removed
before. However finite sample effects may result in slight deviations
from zero. Hence,

Ay = Ay(t) = Ky(0) (36)
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3. The yearly cycle A,(t) is calibrated to annual and semiannual pe-
riodical functions.

The whole deterministic part is then subtracted from the de-spiked
process, yielding the spikeless mean-reverting process

g - (YT +Y () —Al) = X(2) (37)

4.1.3 Core Process Parameters

We calibrate the mean reversion of the remaining core process X, i.e.
the reversion rate a by linear regression.
We substract the reversion part from the core process, yielding

dX + aXdt = o(t)(dW +dL) (38)

If there are non-spiky jumps, these will be substracted thereafter,
yielding the diffusive part o(t)dW. We may calibrate o(t) as a rolling
volatility. The jumps rescaled by 1/0(t) yield the process L. Assuming
it to be a compound Poisson process, its intensity )\Oi is obtained from
the frequency of these jumps. The empirical distribution of jump heights
is used to calibrated the shape of the jump size distribution with support
on R.

5 Stable Processes with Independent Increments

A special type of stationary processes I(t) are the stable processes, where
the probability distribution of the independent increments is given by a
characteristic function

o, e, B) = ertlet*(1—isan(t) § ¢(a)
pla) = tan(%)’ a#1
2
#(a) —lnft], « :

with stability index « €]0, 2], skew 3 € [—1, 1], localization p, and scale

¢ (proportional to the width of the distribution at half max value).
While the variance is infinite for oo < 2, the scale ¢ is always finite.
For 5 = 0, the symmetric stable distributions are simply given by

elp,c,a) = ertlt®
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with o = 2 corresponding to the normal distribution with volatility
o = v/2¢. Note that only in this case the variance can be used a measure
of the width of the distribution. In the cases o« < 2, rather the scale ¢ is
the appropriate measure for the width of the distribution.

The index « of a symmetric stable processes may be estimated to-
gether with the other more convenient parameters p and c.

Due to ergodicity, a r.v. of symmetric stable increments X, satisfies

n

1 ) )
lim — "™ 0 Ele] = p(u,c,a)

n—oo N
k=1

Hence, the empirical characteristic function,

n

Su(t) = %ZeitX" , (39)

k=1
may be used to estimate « for given p and ¢, as regression value

0~ Infiut — In Sy, (¢)] (40)
In |ct|

over different values of the Fourier parameter ¢. In practice, (40) is used
most efficiently for u = 0, i.e. after substraction of the localization.

6 Time-Series with Weighted Observations

Below we will consider a neural network operating on the weights given
to the data points of a time-series. Hence, for observation at time ¢ with
value X (t) a weight w(t), will be introduced. Practically we will use the
discrete version w; := w(t;) on a discrete time series. Using the average
weight

- 1 n .
Wi =yl wp
the weights have are normalized according to
; wi

w; =
(] w;

Weighting a series of observation values X; with weights w; implies that,
the stochastic assumptions will not be made for the process of X (), but
for the modified process X (t) := w(t)X(¢). A normal assumption for
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the distribution of random increments dX of the stochastic process X ,
implies

. - 1
dX(t) ~ Normal(y,0) < dY(t) ~ Levy(0, —) ,
o

where the processes Y is inferred from a corresponding time-series of
random increments

; -
(dX; — p)?
The latter has to be used then, in order to infer the empirical character-

istic function, according to (39) with Y replaced by Y. In the following
we again omit the *-symbol over the random variables.

7 Multi-Layer Perceptrons

In general a given target may be reached only up to a certain error.
Given a certain measure E(y, y) for the distance between the given target
state y and the state § computed by the neural network, learning of the
neural network corresponds to minimization of E(g,y).

The following training algorithm is inspired by Rumelhart, Hinton
and Williams [30]. The total error measure over all states of a given
layer is defined as

—_

N
Etota (7 Y) Z gk — ) (41)
k:l

It will be used below to reset the weights in each layer of the neural
network.

For simplicity, we consider now a 2-layer perceptron network, which
also will be sufficient for our purpose of calibrating the stochastic process
parameters.

The processed state ¢ of the neural network is computed by the
following steps.

First the critical parameter for the first layer is computed from n
weighted input values as ;- | w;-z;. We consider a hidden output layer
with m neurons. For j = 1,...,m, let g; be the activation function of
the j-th neuron of the hidden layer, with an activation value of h;, given

= gj(z w; - Ti) . (42)
i=1
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Usually for all neurons of a given layer a common activation function
g=4i,---,9m, €.8. a sigmoid function, is used.

Next, the output of the previous (hidden) layer becomes the input of
the next layer, and the activation proceeds analogously to the previous
layer.

Let f be the activation function of the pre-final (here the second)
output layer. Then the pre-final critical value is

g=10 _uj-hy) (43)
j=1

Finally, the pre-final critical value ¢ is interpreted by a final activa-

tion function F' yielding
y=F(q) (44)

as a final state value computed from the neural network with the given
weights of the input variables from input and hidden layers.

Now the neural network performs a training step by modifying the
weights of all input layers. The learning mechanism the weights is de-
termined by the target distance measure

R
E = 2;(91—1/1)
1=

The weights of both layers are changed according to the steepest descent,
i.e.

oF
wlF = 4
Vu, o (45)
oF
wB = 2= 4
Vv J c’?uj ( 6)

With a learning rate o, which should be adapted to the data, the weights
are changed as follows:

Wi = wd' — -V, E (47)
ui® = u?ld —a- -V, E (48)

The necessary number of iterations depends on the requirements posed
by the data, the user, and the discipline. Furthermore the starting
weights could include theoretical assumption about relevance, interac-
tion and dependencies. Unlike with standard neural networks proce-
dures, in our approach the meaning of the information contained in the
intermediate layers is made transparent and usable, rather than operat-
ing with a ”black box”.
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8 Neural Network & Stochastic Model

In this section we apply neural networks to the estimation of the stochas-
tic process.

First we demonstrate a simple combination using a 1-layer percep-
tron network. In this one layer neural network the variance o and the
mean p are weighted to predict the target value.

=53 (49)

With § = pouy + ogue we obtain

n

1
E = 3 ;(yz — (pour + UOU2))2 (50)
VuE = —uo Z(yi — (pour + oouz)) (51)
i=1
VwE = —o09 Z(yi — (pour + oouz)) (52)
i=1

A more complex combination uses a 2-layer neural network, where
we compute variance and mean via weighted input variables. The first
estimate of the mean is

1 n
Ho = g E wix;
i=1

and for the variance it is

1 n

a5 = 3 Z(wm — po)?
i=1

The neural network is then trained by adjusting the weights w; of the

first layer, and the weights u; of the second layer, according to the

respective sensitivities (45) and (46) of the error function (49).
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9 Neural Parameter Calibration

In this section we demonstrate the dynamical calibration of process pa-
rameters for the stochastic process.

Here, different points of the historical time series, receive different
weights, which are learned dynamically when propagating through the
historical training set.

In the first layer p and o are determined on the basis of weighted
values w;y; of the time series of y-values.

fiy = S dt Z widy; (53)
1 /dS;
A2
= idt; 4
7 S dt; d,t Z v [dt <s > (54)
In the second layer a new value is determined with
Jiv1 = Ui+ (uifly +ugd)dt; . (55)

Here, the us-term acts as an volatility enhancement of wind speed trend,
and the ratio

U2
A = " (56)
can be interpreted as a time-dependent trend-enhancement factor.
Including this value in the regression the process for determining p
and o in the first layer is repeated. In contrast to normal neural net-
works the first weights are used according to the formula for y and o2.
In every iteration the weights in the first and second layers are changed
according to the steepest descent.

10 Numerical Results for Selected Examples

As an example, we test our structural stochastic and neuro-stochastic
models with the daily mean wind speed in 0.1 m/s measured at Rotter-
dam (Fig. 1 resp. 2), at Kassel (Fig. 3 resp. 4), and at Zugspitze (Fig.
5 resp. 6).

In every prediction step, previous values are used to predict the next
one. The models were implemented in MATLAB and Mathematica,
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Figure 1: Wind speed log-residuals at Rotterdam: daily predictions after detrending
by structural stochastic model (bold black line) between 1.1.2010-31.12.2010 with 2
years of previous history

respectively. In all figures the predicted values are compared to the real
values (faint lines). The models can be compared on the basis of their
coefficients of determination, R?.

Using the stochastic model and multi-layer neural networks, respec-
tively, we find for Rotterdam R%? = 0.17 and R2 = 0.19, for Kas-
sel R2 = 0.18 and R2, = 0.12, and for Zugspitze R2, = 0.25 and
R2 = 0.12. Hence, around 12 to 25 per cent of the fluctuations could
be explained by at least one of the compared models. These results sug-
gest that, for a coastal region (e.g. Rotterdam) the R?-determination
is higher, while for the undulating forest regions (e.g. Kassel) and
even more the higher mountain regions (e.g. Zugspitze) the structural
stochastic model yields higher determination. This may be due to the

fact that, on the one hand, the structural stochastic model is capturing
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Figure 2: Wind speed (in units of 0.17%) at Rotterdam: daily predictions of resid-
uals after detrending by neuro-stochastic model (bold black spots) between 1.1.2010-
31.12.2010 with 2 years of previous history

of extremal wind speed distribution more explicitly and in more detail,
while on the other hand extreme fluctuations in wind speed are indeed
more likely in high altitude, and wind speed is close to zero more likely
where the surface of the landscape is rough.

In any case a considerable fraction of wind speed fluctuations is still
explained by the neural network, although the residuals are supposed
to contain information only about spikes and autoregression, features
which are not modeled explicitly by the neuro-stochastic model.

The p-value in all examples is p < 0.001is considerably smaller than
the significance level of 0.05, hence the correlation between reality and
prediction is highly significant. As expected, only a low level of positive
correlation ranging between 0.346 and 0.436 is achieved in the case of
neural networks. This range improves as much as 0.42-0.50 in stochastic
approach. Considering a target time horizon of 2 years, good agree-
ment of the predicted values with the reality is achieved. Calibrating
the model-parameters with neural weights adapting continuously to the
history, the model learns to capture the optimal trend according to move-
ments of the past 2 years.
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Figure 3: Wind speed log-residuals at Kassel: daily predictions after detrending
by structural stochastic model (bold black line) between 1.1.2010-31.12.2010 with 2
years of previous history

Figure 4: Wind speed (in units of 0.12) at Kassel: daily predictions of residu-
als after detrending by neuro-stochastic model (bold black spots) between 1.1.2010-
31.12.2010 with 2 years of previous history



314 Giebel et al.

0.5
o]
(]
(0]
. 0 T ‘ V ﬂf
LS
-c {
@
N
©
c
2 -05
@®©
(O]
[}
oy
[a)]
_1 L
Reality
Prediction
_15 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Prediction step (day)

Figure 5: Wind speed log-residuals at Zugspitze: daily predictions after detrending
by structural stochastic model (bold black line) between 1.1.2010-31.12.2010 with 2
years of previous history

11 Conclusion and Outlook

In our combined model of neural networks and stochastic processes, the
neural transformation processes adapt in such a manner that, from a
continuously updated history of fixed length the network is continuously
learning the process parameters. In comparison to traditional calibra-
tion, our neural methods is taking into account the historical process
in a more detailed and dynamical manner, as it is shown in [16]. As a
result, the parameters of the stochastic process can be better calibrated
than with traditional methods. As our examples demonstrate: Even
a relatively simple stochastic process, in combination together with a
smart neural network learning continuously the right parameters, the
model yields satisfactory predictions. This demonstrates the efficiency
of our combined stochastic-neural approach.
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Figure 6: Wind speed (in units of 0.1) at Zugspitze: daily predictions of residu-
als after detrending by neuro-stochastic model (bold black spots) between 1.1.2010-
31.12.2010 with 2 years of previous history

The numerical results suggest that, for a coastal region (e.g. Rot-
terdam) the R?-determination is higher, while for the undulating forest
regions (e.g. Kassel) and even more the higher mountain regions (e.g.
Zugspitze) the structural stochastic model yields higher determination.
This is little surprising, as the latter model puts more detailed effort to
capture the separate structure of extremal wind events, with extreme
fluctuation in wind speed being more likely in high altitude, and wind
speed close to zero being more likely with increasing roughness of sur-
face.

The research is continued to apply our neural network approach also
to more demanding stochastic processes, as they may be required for es-
timations of different climate factors, energy resources or energy demand
and prices, such as for gas or electricity.

In several such cases, different phases of normal and spiky modes of
volatility have to be taken into account. This can be done on the one
hand by regime switching models, on the other hand by working with
more advanced semi-martingale processes including jumps, also with
time-dependent frequency.

Neural networks calibration may improve stochastic models. In the
light of their potential to capture all kinds of generalized (linear and
non-linear) ”trends”, neural networks can give us an idea, how much of
structural, i.e. "trend” information we loose, if we do not improve our
results, especially in the case of renewable energy. Unraveling of hidden
structural information could be economically important, e.g. for energy
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storage and reduction of non-renewable forms of energy. Furthermore it
could show up hidden weather trends. In order to apply neural networks,
we have to account a priori for a correlation between all measurements.
These correlations have to be checked carefully. Furthermore the va-
lidity of our model has to be demonstrated, by applying the model on
real unknown data, in particular since generally conclusive measures for
model validity are not easily available either.

In the broader context of learning algorithms (aka learning ma-
chines), the multilayer perceptron (MLP) applied in the second model
above is unusual, by the fact that we use tailored activation functions,
describing well defined parameters of a stochastic model. Hence ev-
ery neuron in the intermediate layer has a clear interpretation. This is
very different from the common data mining versions of the multilayer
perceptron (MLP) and its generalizations, the support vector machines
(SVMs). In the standard MLP applied for some activation function, the
intermediate layers are usually a hidden black box. Similarly, the fea-
ture space of a nonlinear SVM typically remains without interpretation,
and the right choice of the kernel function is rarely evident like in [21].
In this aspect our neuro-stochastic model provides an interesting new
path for the design of learning algorithms, with a feature space clearly
defined by the parameters of the stochastic model, the kernel functions
(which here are just the activation functions) designed directly for learn-
ing these model parameters. Opening this black box might give a new
direction to further research in statistical learning.
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