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1 Introduction

In analyzing real data sets, there is a general tendency to find more
flexible models to presents features of the data. When the data sets
have skewness and heavy tails, one should model the data with a skew
and/or heavy tailed distribution. In the past three decades, there was
a substantial growth in studying and using a number of distributional
families for modeling such data sets. See for example Genton (2004)
and references cited therein. Some families of distributions which allow
for skewness and contain the normal distribution as a proper member
have played an important role in these developments. Among them are
the skew-normal distribution (Azzalini, 1985, 1986), the multivariate
skew-normal distribution (Azzalini and Dalla Valle, 1996), the skew-t
distribution (Jones and Faddy, 2003) and the skew-elliptical distribution
(Branco and Day, 2001; Sahu et al., 2003).

The class of elliptical distributions, introduced by Kelker (1970) and
developed by Fang et al. (1990), includes a vast set of known symmetric
distributions, for example, normal, student-t and Pearson type II dis-
tributions. Azzalini and Capitanio (1999), Branco and Day (2001) and
Sahu et al. (2003) construct skew-elliptical distributions based on ellip-
tical distributions which are skew and contain elliptical distributions as
a proper member.

Some authors construct flexible distributions that can be alternatives
to the normal distributions for modeling of data sets with heavier tails
than normal. First heavy-tailed distributions alternative to the normal,
are t and slash distributions. The random variable

X = µ+ σ
Z

U
1
q

(1.1)

is said to have slash-distribution with parameter µ, σ and q (denoted
by X ∼ SL(µ, σ, q)) where Z ∼ N(0, 1) and U ∼ U(0, 1) are inde-
pendent random variables. General properties of this distribution are
studied in Rogers and Tukey (1972) and Mosteller and Tukey (1977).
For a review of the literature and extensions of slash distributions, see
Kafadar (1982, 2001), Wang and Genton (2006), Genc (2007), Gomez et
al. (2007), Gomez and Venegas (2008), Arslan (2008, 2009) and Arslan
and Genc (2009). By replacing Z in (1.1) with the multivariate normal,
multivariate skew-normal and elliptical distributions, Wang and Gen-
ton (2006) and Gomez et al. (2007) construct the Multivariate Slash
(MSL), the Multivariate Skew-Slash (MSSL) and the Slash-Elliptical
(SLEL) distributions, respectively.
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In this paper, by replacing Z in (1.1) with skew-elliptical distribu-
tions, we define a new family of distributions. These distributions are
appropriate for fitting skewed and heavy-tailed data sets . To this end, in
Section 2 we state some preliminary definitions. In Section 3, the Slash
Skew-Elliptical (SLSEL) distribution is introduced and some properties
are given. In Section 4, in the special case of slash skew-t distribution, an
EM-type algorithm is constructed to estimate its parameters. A small
simulation study and an application to real data are given is Section 5.
A conclusion is given in Section 6.

2 Preliminaries

In this section the definitions of elliptical and skew-elliptical distribu-
tions’ that are needed for subsequent sections’ are given.

Definition 2.1. A random variable W has elliptical distribution with
location parameter µ and scale parameter σ, denoted byW ∼ EL1(µ, σ; g),
if W has probability density function (p.d.f.)

fW (w) =
1

σ
g((

w − µ

σ
)2), (2.1)

for some non-negative function g(u), u ≥ 0 satisfying
∫∞
0 u−

1
2 g(u)du =

1.

For example, Normal, Cauchy, Student-t, Pearson and Kotz-type distri-
butions belong to this family of distributions. The elliptical distribution
was originally defined by Kelker (1970) and a comprehensive review of
its properties can be found in Fang et al. (1990).

Definition 2.2. A random variable X has skew-elliptical distribution
with location parameter µ, scale parameter σ and skew parameter λ,
denoted by X ∼ SEL1(µ, σ, λ; g), if X has p.d.f.

fX(x) =
2

σ
fg(

x− µ

σ
)Fg(λ

(x− µ)

σ
) (2.2)

where fg(.) and Fg(.) are the p.d.f. and cumulative distribution function
(c.d.f.) of EL1(0, 1; g), respectively.

This form of skew-elliptical distribution was defined by Azzalini and
Capitanio (1999), Branco and Dey (2001) and Sahu et al. (2003).
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3 Slash Skew-Elliptical Distributions

In this section we define SLSEL distribution. The p.d.f. and some
distributional properties are derived.

Definition 3.1. A random variable Y has SLSEL distribution with
location parameter µ, scale parameter σ, skew parameter λ and tail
parameter q > 0, denoted by Y ∼ SLSEL1(µ, σ, λ, q; g), if

Y = µ+ σ
X

U
1
q

, (3.1)

where X ∼ SEL1(0, 1, λ; g) is independent of U ∼ U(0, 1).

Using (2.2) and independence of X and U, the p.d.f. of random variable
Y in (3.1) can be easily shown to be

fY (y) =

{
qσq

|y−µ|q+1

∫ ( y−µ
σ

)2

0 u
q−1
2 g(u)Fg(λ

√
uh(y − µ))du y ̸= µ

q
σ(q+1)g(0) y = µ,

(3.2)

where h(t) = t
|t| and g(.) is the density generator function of EL1(0, 1; g)

distribution defined in (2.1). In the special canonical case, i.e., when
q=1, (3.2) reduces to

fY (y) =

{
σ

(y−µ)2

∫ ( y−µ
σ

)2

0 g(u)Fg(λ
√
uh(y − µ))du y ̸= µ

1
2σg(0) y = µ.

(3.3)

When q → ∞ we obtain SEL1(µ, σ, λ; g) distribution. When λ = 0,
(3.2) reduce to SLEL density defined by Gomez et al. (2007). If g(.) is
the generator of normal distribution, i.e.,

g(t) = (2π)−
1
2 e−

t
2 , (3.4)

then (3.2) reduces to the density of univariate skew-slash distribution
defined by Wang and Genton (2006) and we denoted (3.1) by Y ∼
SLSN1(µ, σ, λ; q) (X has skew-normal distribution, X ∼ SN(0, 1, λ)).
When g(t) is given by (3.4) and λ = 0, (3.2) reduces to the density of
general slash distribution defined in (1.1).

3.1 Some Properties of SLSEL Distributions

Let Y ∼ SLSEL1(0, 1, λ, q; g) and T ∼ SLEL1(0, 1, λ; g) (SLEL distri-
bution defined by Gomez et al., 2007). Then it is easy to see that the
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p.d.f.s of W = |Y | and V = Y 2 are given by

fW (w; q) =
q

wq+1

∫ w2

0
u

q−1
2 g(u)du,

fV (v; q) =
q

2v
q+2
2

∫ v

0
u

q−1
2 g(u)du, (3.5)

which are the p.d.f.s of |T | and T 2 derived by Gomez et al. (2007),
respectively. Therefore Y 2 = T 2, and this property is similar to the
relation between normal and skew-normal distributions.

Theorem 3.1. If Y ∼ SLSEL1(µ, σ, λ, q; g) and T = aY +b, a, b ∈ R,
then T ∼ SLSEL1(aµ+ b, |a|σ, q, λh(a); g).

Theorem 3.2. If Y |U = u ∼ SEL1(0, u
− 1

q , λ; g) and U ∼ U(0, 1),
then Y ∼ SLSEL1(0, 1, λ, q; g).

The proof of Theorems 3.1 and 3.2 are easily derived from (2.2) and
(3.2).

Remark 3.1. Theorems 3.1 and 3.2 show that the SLSEL distribution
is invariant under linear transformations and can be represented as a
particular scale-mixture of SEL and U(0, 1) distributions. The results
are also useful for generating SLSEL1(µ, σ, λ, q; g) deviates.

Theorem 3.3. If Z ∼ SLSEL1(0, 1, λ, q; g) and Y ∼ SLSEL1(µ, σ,
λ, q; g) then

µk = E(Zk) =
q

q − k
ak, k = 0, 1, 2, .... (q > k),

where ak = 2
∫
R xkg(x2)Fg(λx)dx is the r-th moment of SEL1(0, 1, λ; g)-

distribution given in (2.2), and

µ′
k = E(Y k) =

k∑
l=0

(
k
l

)
σlµk−lµl, k = 0, 1, 2, .... (q > k).

Proof. Let X ∼ SEL1(0, 1, λ; g) and independent of U ∼ U(0, 1).

Then E(U
− k

q ) = q
q−k , Z = X

U
1
q

and Y = µ + σZ. So the results are

followed by a simple calculation.
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As a special case, let Y ∼ SLSN1(µ, σ, λ, q), which has the generator
function g(.) given by (3.4). Then ak is the k-th moment of skew-
normal distribution and for k = 1, 2 is given by (Azzalini, 1985) a1 =√

2
π

λ√
1+λ2

, a2 = 1. So, from Theorem 3.3 we have

µ′
1 = E(Y ) = µ+

q

q − 1

√
2

π

σλ√
1 + λ2

, q > 1,

µ′
2 = E(Y 2) = µ2 + 2µ

q

q − 1

√
2

π

σλ√
1 + λ2

+
q

q − 2
σ2, q > 2,

V ar(Y ) =
q

q − 2
σ2 − 2

π
(

q

q − 1
)2

σ2λ2

1 + λ2
, q > 2

which are given in Proposition 4 of Wang and Genton (2006) in the
univariate case (see also Basso et al., 2010).

Note that the measure of skewness r1 = E(X−E(X))3

[V ar(X)]3/2
and kurto-

sis r2 = E(X−E(X))4

[V ar(X)]2
− 3 depends on ak, k = 2, 3, 4, the moments of

SEL1(0, 1, λ, g)-distribution. These measures are obtained in the fol-
lowing special case.

3.2 A Special Case

Let Y be given by (3.1), where X has a standard skew-t distribution
with r degrees of freedom, ST1(0, 1, λ, r), which has the p.d.f. given by
(2.2) with µ = 0, σ = 1 and the generator function

g(t) =
Γ( (1+r)

2 )

Γ( r2)
√
πr

(1 +
t

r
)−

(1+r)
2 , tϵR. (3.6)

We will call this distribution Slash Skew-t (SLST) distribution and de-
noted it by Y ∼ SLST1(µ, σ, λ, q, r). To illustrate the tail behavior
and skewness of the SLSEL distribution, we draw the density curve of
SLST1(0, 1, λ, 1, 3) and SLST1(0, 1, 1, q, 3) distributions for some val-
ues of λ and q in Figure 1. We can see that when λ gets larger, the
curve becomes more skewed, and when q gets smaller, the curve be-
comes heavier. Also we draw the density curve of t3, ST1(0, 1, 5, 3),
SLST1(0, 1, 5, 1, 3) and SLSN1(0, 1, 5, 1) distributions in Figure 2. We
see that the SLST1(0, 1, 5, 1, 3) is more skewed and heavier than the
other distributions.
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From Azzalini and Capitano (2003), the moments of skew-t distri-
bution, ST1(0, 1, λ, r), are given by

a1 = cδ, a2 =
r

r − 2
, r > 2,

a3 =
r

r − 3
cδ(3− δ2), r > 3, a4 =

3r2

(r − 2)(r − 4)
, r > 4,
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FIGURE.1 a Density function of the SLST1(0, 1, λ, 1, 3) for λ = 1 (dotted
line), λ = 2 (dashed line) and λ = 5 (solid line)

b Density function of the SLST1(0, 1, 1, q, 3) for q=2 (dashed line), q=3

(dotted line) and q=5 (solid line)
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FIGURE. 2 Density function of the SLST1(0, 1, 5, 1, 3), SLSN1(0, 1, 5, 1),

ST1(0, 1, 5, 3) and t3
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where c =
√

r
π

Γ( r−1
2

)

Γ( r
2
) and δ = λ√

1+λ2
. So, from Theorem 3.3, the mea-

sures of skewness and kurtosis of SLST1(µ, σ, λ, q, r) can be computed
and are given by

r1 =

q
q−3

r
r−3cδ(3− δ2) + 2( q

q−1)
3c3δ3 − 3 q2

(q−1)(q−2)
r

r−2cδ

( q
q−2

r
r−2 − ( q

q−1)
2c2δ2)3/2

, q > 3, r > 3,

and

r2 =
3 q
q−4

r2

(r−2)(r−4)
+ 6 q

q−2
r

r−2
( q
q−1

)2c2δ2 − 4 q
q−3

r
r−3

q
q−1

c2δ2(3− δ2)− 3( q
q−1

)4c4δ4

( q
q−2

r
r−2

− ( q
q−1

)2c2δ2)2
− 3,

q > 4, r > 4,

respectively. Note that r1 and r2 are complicated functions of δ, q
and r. We use the Mathematica software to find the behavior of these
functions. For fixed q > 3 and r > 3, r1 is an increasing odd function
of δ. For δ > 0 (λ > 0) we have 0 < r1 < ∞ with limq→3+ r1 = ∞, for
δ < 0 (λ < 0) we have −∞ < r1 < 0 with limq→3+ r1 = −∞, and r1 = 0
for δ = 0 (λ = 0). Also, for fixed q > 4 and r > 4, r2 is a convex and

even function of δ with minimum r∗2 = 3(q−2)2(r−2)
q(q−4)(r−4) − 3 at δ = 0. So,

r2 ≥ r∗2 ≥ 3(r − 2)

r − 4
− 3 ≥ 0,

and limq→4+ r2 = +∞. Therefore −∞ < δ < +∞ and 3(r−2)
r−4 − 3 ≤ r2 <

+∞, and the ranges of skewness and kurtosis depend on the parameters
δ, q and r.

Note that if X ∼ ST1(0, 1, λ, r), then X can be represented by X =
Z√
V
, where Z ∼ SN1(0, 1, λ) and V ∼ 1

rχ
2
r (chi-square distribution with

r degrees of freedom), see Azzalini and Capitanio (2003). Also if Z ∼
SN1(0, 1, λ) then from Henze (1986) a stochastic representation of Z is
given by

Z = δ|T0|+ (1− δ2)
1
2T1, δ =

λ√
1 + λ2

(3.7)

where T0 and T1 are independent standard normal random variables and
|.| denotes absolute value.

Now, if Y ∼ SLST1(µ, σ, λ, q, r) then from (3.1), Y = µ + σ X

U
1
q
where
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X ∼ ST1(0, 1, λ, r). So Y has the following stochastic representation

Y = µ+ σδU
− 1

q V − 1
2 |T0|+ σ(1− δ2)

1
2U

− 1
q V − 1

2T1

= µ+ αT + β
1
2U

− 1
q V − 1

2T1 (3.8)

where α = σδ, β = σ2(1−δ2) and T = U
− 1

q V − 1
2 |T0|. This representation

can be used to simulate realizations of Y and to implement the EM-type
algorithm.

4 Maximum Likelihood Estimation via an
EM-Type Algorithm

In this section we estimate the parameters of the new skew-slash distri-
bution. We consider the special case of SLST distribution and estimate
its parameter by maximum likelihood method. For maximum likelihood
estimation of the parameters of SLST1(µ, σ, λ, q, r) we used an EM-type
algorithm (Dempster et al., 1977) which is used similarly by Basso et
al. (2010) for estimation of the parameters of scale mixture of skew-
normal distributions. Let Y = (Y1, ...., Yn)

T be a random sample of
size n from SLST1(µ, σ, λ, q, r) distribution. For the simplicity in com-
putation, we set q = 2. Consider the stochastic representation (3.8)
for Yi, i = 1, 2, ..., n. Following the EM algorithm, let (Yi, Ui, Vi), i =
1, 2, ..., n be the complete data, where Yi is called observed data and Ui,
Vi are considered as missing data. Let θ = (µ, σ, λ, r). From (3.8), for
i = 1, 2, ..., n we have

Yi|ui, vi, ti ∼ N(µ+ αti, u
−1
i v−1

i β), Ui ∼ U(0, 1)

Ti|ui, vi ∼ N(0, u−1
i v−1

i )I(0,∞), Vi ∼
1

r
χ2
r

Ti|yi, ui, vi ∼ N(µTi , u
−1
i v−1

i M2
T )I(0,∞)

where µTi = α
β+α2 (yi − µ), M2

T = β
β+α2 and N(a, b2)I(0,∞) denote the

truncated normal distribution N(a, b2) on (0,∞). Since

f(yi, ui, vi, ti) = f(yi|ui, vi, ti)f(ti|ui, vi)f(ui)f(vi),

so, the log-likelihood function for the complete data is given by

Lc(θ) = c− n

2
ln(β)− nr

2
ln(

r

2
)− n ln(Γ(

r

2
))− 1

2β

n∑
i=1

uivi(yi − µ− αti)
2

+(
r

2
− 1)

n∑
i=1

ln(vi)−
r

2

n∑
i=1

vi
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where c is a constant that is independent of θ.
Now the conditional expectation of Lc(θ) given the observed data yi and
the current estimates of the parameters, say θ̂, is given by

Q(θ|θ̂) = E(Lc(θ)|yi, θ̂) (4.1)

= c− n

2
ln(β)− nr

2
ln(

r

2
)− n ln(Γ(

r

2
))

− 1

2β

n∑
i=1

(E(ViUi|yi, θ̂)(yi − µ)2

+α2E(ViUiT
2
i |yi, θ̂)− 2α(yi − µ)E(ViUiTi|yi, θ̂))

+(
r

2
− 1)

n∑
i=1

E(ln(Vi)|yi, θ̂)−
r

2

n∑
i=1

E(Vi|yi, θ̂). (4.2)

Let

k̂i = E(ViUi|yi, θ̂), Ŝ4i = E(ln(Vi)|yi, θ̂)

Ŝ2i = E(ViUiTi|yi, θ̂), Ŝ5i = E(Vi|yi, θ̂)

Ŝ3i = E(ViUiT
2
i |yi, θ̂), Ŝi = E(V

1
2
i U

1
2
i WΦ(

µTiV
1
2
i U

1
2
i

MT
)|yi, θ̂) (4.3)

where WΦ(x) =
ϕ(x)
Φ(x) and ϕ, Φ are standard normal density and cumula-

tive distribution function, respectively.

Since Yi|ui, vi ∼ SN1(µ, u
− 1

2
i v

− 1
2

i σ, λ), so it is easy to show that

k̂i =
2

σ̂r̂
√
r̂f(yi)

∫ 1

0

∫ ∞

0
u

3
2
i w

3
2
i p(wi)ϕ(u

1
2
i w

1
2
i (

yi − µ̂

σ̂
√
r̂
))

×Φ(u
1
2
i w

1
2
i λ̂(

yi − µ̂

σ̂
√
r̂
))dwidui,

Ŝi =
2

σ̂r̂f(yi)

∫ 1

0

∫ ∞

0
uiwip(wi)ϕ(u

1
2
i w

1
2
i (

yi − µ̂

σ̂
√
r̂
))

×ϕ(u
1
2
i w

1
2
i λ̂(

yi − µ̂

σ̂
√
r̂
))dwidui,

Ŝ2i = µ̂Ti k̂i + M̂T Ŝi,

Ŝ3i = µ̂2
Ti
k̂i + µ̂TiM̂T Ŝi + M̂2

T ,
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Ŝ4i =
2

σ̂r̂
√
r̂f(yi)

∫ 1

0

∫ ∞

0
u

1
2
i w

3
2
i p(wi)ϕ(u

1
2
i w

1
2
i (

yi − µ̂

σ̂
√
r̂
))

×Φ(u
1
2
i w

1
2
i λ̂(

yi − µ̂

σ̂
√
r̂
))dwidui, ,

Ŝ5i =
2

σ̂r̂
√
r̂f(yi)

∫ 1

0

∫ ∞

0
u

1
2
i w

1
2
i ln(

wi

r
)p(wi)ϕ(u

1
2
i w

1
2
i (

yi − µ̂

σ̂
√
r̂
))

×Φ(u
1
2
i w

1
2
i λ̂(

yi − µ̂

σ̂
√
r̂
))dwidui, (4.4)

where f(yi) is the p.d.f of SLST1(µ̂, σ̂, λ̂, 2, r̂) (given by (3.2) with gen-
erator (3.6)) and p(wi) is the p.d.f of χ2

r.
Now consider the E-step of the algorithm. In this step, given the

observation yi and current estimates θ̂, the conditional expectations k̂i,
Ŝi, Ŝ2i, Ŝ3i, Ŝ4i and Ŝ5i must be computed. Note that for computing k̂i,
Ŝi, Ŝ4i and Ŝ5i, Monte Carlo integration can be employed, which yields
the so called MC-EM algorithm. For the M-step of the algorithm, we
maximize the expected complete-data function over θ, or the Q-function
which from (4.2) and (4.3) is given by

Q(θ|θ̂(k)) = E(Lc(θ)|y, θ̂(k))

= c− n

2
ln(β)− nr

2
ln(

r

2
)− n ln(Γ(

r

2
))

− 1

2β

n∑
i=1

(k̂
(k)
i (yi − µ)2 + α2Ŝ

(k)
3i − 2α(yi − µ)Ŝ

(k)
2i )

+(
r

2
− 1)

n∑
i=1

Ŝ
(k)
4i − r

2

n∑
i=1

Ŝ
(k)
5i , (4.5)

where θ̂(k) is an updated value of θ̂. From (4.5), we can derive explicit
relations between µ, α and β which maximizes (4.5), but this is not
the case for r. In this case the M-step can be replaced with a sequence
of conditional maximization (CM) steps. The resulting method known
as ECM algorithm (Meng and Rubin, 1993). Liu and Rubin (1994)
introduced an ECME algorithm which is maximizing the constrained
Q-function with some CM-steps that maximizes the corresponding con-
strained actual marginal likelihood function, called CML-steps. Similar
to Basso et al. (2010), we use ECME algorithm as follows.
E-step: Given a current estimate θ̂(k) = (µ̂(k), σ̂(k), λ̂(k), r̂(k)) and obser-

vation y = (y1, ..., yn), compute k̂
(k)
i and Ŝ

(k)
i , i = 1, 2, ..., n from (4.4)

by Monte Carlo integration and then compute Ŝ
(k)
2i and Ŝ

(k)
3i .
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CM-steps: Derive θ̂(k+1) by maximizing Q(θ|θ̂(k)) over θ, which are
given by the following closed form expressions

µ̂(k+1) = (

n∑
i=1

(yik̂
(k)
i − α̂(k)Ŝ

(k)
2i ))(

n∑
i=1

k̂
(k)
i )−1

α̂(k+1) = (
n∑

i=1

(yi − µ̂(k+1))Ŝ
(k)
2i )(

n∑
i=1

Ŝ
(k)
3i )−1

β̂(k+1) =
1

n

n∑
i=1

(k̂
(k)
i (yi − µ̂(k+1))2 + (α̂(k+1))2Ŝ

(k)
3i

−2α̂(k+1)(yi − µ̂(k+1))Ŝ
(k)
2i )

σ̂2
(k+1)

= (α̂(k+1))2 + β̂(k+1) λ̂(k+1) =
α̂(k+1)√
β̂(k+1)

.

CML-step: Derive r̂(k+1) by maximizing the actual marginal
log-likelihood function as follows

r̂(k+1) = argmaxr

n∑
i=1

log(f(yi; µ̂
(k+1), σ̂(k+1), λ̂(k+1), 2, r)),

where f(yi; θ) is the SLST1 density.

The algorithm iterates between the E and M steps until reach conver-
gence.

4.1 The observed information matrix

In this subsection we evaluate the observed information matrix of the
SLST distribution, defined by

J0(Θ|y) = −∂2l(Θ|y)
∂Θ∂ΘT

,

where l(Θ|y) is the incomplete likelihood function based on observa-
tion y. Under some regularity conditions, the covariance matrix of the
maximum likelihood estimates Θ̂ can be approximated by the inverse of
J0(Θ|y). The observed information matrix can be obtained as follows,

J0(Θ̂|y) =
n∑

i=1

t̂it̂
T
i ,
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where

t̂i =
∂(log f(yi; θj))

∂θj
, j = 1, 2, 3, 4,

see Basford et al. (1997) and Lin et al. (2007).
Now, partitioned t̂i into components corresponding to all the parameters
in Θ, i.e.,

t̂i = (t̂i,µ, t̂i,σ, t̂i,λ, t̂i,r)
T ,

where

t̂i,θj =
∂ ln f(yi; Θ)

∂θj
, j = 1, 2, 3, 4.

Define

IF1
i1 (v1, v2) =

∫ 1

0
u

1
2
+v1(1 +

u(yi − µ)2

rσ2
)−

r+v2
2

×F1(λu
1
2 (yi − µ)(

(r + 1)

r(rσ2 + u(yi − µ)2)
)
1
2 ; r + 1)du,

If1i1 (v1, v2, v3) =

∫ 1

0
u

1
2
+v1(rσ2 + u(yi − µ)2)−

v2
2

×f1(λu
1
2 (yi − µ)(

(r + 1)

r(rσ2 + u(yi − µ)2)
)
1
2 ; r + 1)du,

IF1
i2 (v1, v2) =

∫ 1

0
u

1
2
+v1(σ

2
r+1 + u

σ− 2r
r+1

r
(yi − µ)2)−

r+v2
2

×F1(λu
1
2 (yi − µ)(

(r + 1)

r(rσ2 + u(yi − µ)2)
)
1
2 ; r + 1)du,

If1i2 (v1, v2, v3) =

∫ 1

0
u

1
2
+v1(σ

2
r+1 + u

σ− 2r
r+1

r
(yi − µ)2)−

r+v2
2

×(rσ2 + u(yi − µ)2)−
v2
2

×f1(λu
1
2 (yi − µ)(

(r + 1)

r(rσ2 + u(yi − µ)2)
)
1
2 ; r + 1)du,

where f1(x; r + 1) and F1(x; r + 1) are p.d.f. and c.d.f. of Student-t
distribution with r + 1 degree of freedom.
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After some algebraic manipulation, we obtain

∂

∂µ
(f(yi; Θ)) =

2

σ

Γ( r+1
2 )

(rπ)
1
2Γ( r2)

(
(r + 1)

r

(yi − µ)

σ2
IF1
i1 (1, 3)

−λ(
r + 1

r
)
1
2 If1i1 (

1

2
, 1, 3)

+λ(
r + 1

r
)
1
2 (yi − µ)2If1i1 (

3

2
, 1, 3)),

∂

∂σ
(f(yi; Θ)) =

2Γ( r+1
2 )

(rπ)
1
2Γ( r2)

((yi − µ)2σ−−3r+1
r+1 IF1

i2 (1, 3)

−σ− 1−r
r+1 IF1

i2 (0, 3)− λ
(r(r + 1))

1
2

2
(yi − µ)If1i2 (

1

2
, 1, 3)),

∂

∂λ
(f(yi; Θ)) =

2

σ

(r + 1)
1
2Γ( r+1

2 )

rπ
1
2
Γ( r

2
)

(yi − µ)If1i1 (
1

2
, 1, 1),

∂

∂r
(f(yi; Θ)) =

2

σ
(
( ∂
∂rΓ(

r+1
2 ))Γ( r2)−

1
2rΓ(

r+1
2 )Γ( r2)− Γ( r+1

2 )( ∂
∂rΓ(

r
2))

(rπ)
1
2Γ( r2)

×IF1
i1 (0, 1) +

Γ( r+1
2 )

2π
1
2Γ( r2)

(r + 1)

σ2r
5
2

(yi − µ)2IF1
i1 (1, 3)

+
λ

r2(r + 1)
1
2

Γ( r+1
2 )

2π
1
2Γ( r2)

(yi − µ)If1i1 (
1

2
, 1, 1)

+λσ2 Γ( r+1
2 )

2π
1
2Γ( r2)

(r + 1)
1
2

r
(yi − µ)If1i1 (

1

2
, 1, 3)).

Note that the elements of the information matrix are very complicated.
So, we cannot establish the non singularity of the observed information
matrix. But for the SLST model, from the simulation study we observe
that this matrix is nonsingular for finite degrees of freedom.
In the next section we use the above techniques to estimate the param-
eters.

4.2 Sensitivity Analysis

For checking the influence of observations on the ML estimators, we
use a sensitivity analysis with scale-deletion method in this section and
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Section 5.3, to detect observations that under small perturbation of the
model exert great influence on the ML estimates. This method has
been used in some papers, such as Cook (1977), Bolfarine et al. (2007)
and Lin et al. (2009). We use the case-deletion approach to detect the
influence of removing the i-th case from the analysis by evaluating the
metrics such as the likelihood distance and Cook’s distance (see Cook,
1977).

Let Θ̂(i) be the ML estimate of Θ without the i-th observation in the

sample. To assess the influence of the i-th case on the ML estimate Θ̂,
the basic idea is to compare the difference between Θ̂(i) and Θ̂. If deletion
of a case seriously influences the estimates, more attention should be paid
in that case. Hence, if Θ̂(i) is far from Θ̂, then the i-th case is regarded as
an influential observation. A first measure of global influence is defined
as the standardized norm of Θ̂(i) − Θ̂, namely the generalized Cook
distance

GDi(Θ) = (Θ̂(i) − Θ̂)T [−L̈(Θ)](Θ̂(i) − Θ̂),

where −L̈(Θ) = ∂2l(Θ|y)
∂Θ∂ΘT is the observed information matrix (in Θ = Θ̂)

evaluated in this section.
Another measure of case-deletion approach is the likelihood distance
which is defined by

LDi(Θ) = 2(L(Θ̂(i))− L(Θ̂(i))).

In the next section we perform sensitivity analysis to illustrate the use-
fulness of the proposed methodology.

5 Applications

In this section, we present two applications of SLSEL distribution. The
first one is a small simulation study and the other is a statistical analysis
of real data sets.

5.1 Small Simulation Studies

We perform a small simulation study to investigate the ML estimators
that proposed in Section 4. In the simulation study, we investigate
asymptotic properties of the estimate obtained by ECME algorithm. We
generate random sample of sizes n = 100, 500, 1000, 5000 and 10000 from
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SLST1(0, 1, 1, 2, 5). For each sample of size n, we repeat the sampling
100 times and compute the simulation bias and MSE which are defined
as

Bias(γ̂(j)) =
1

100

100∑
i=1

γ̂
(j)
i − γ(j)

MSE(γ̂(j)) =
1

100

100∑
i=1

(γ̂
(j)
i − γ(j))2, j = 1, 2, 3, 4,

where γ(j) and γ̂i
(j), j = 1, 2, 3, 4 stands for parameters µ, σ, λ, r and

their ECME estimates when the data is sample i, respectively. Figure 3
shows the graph of Bias(γ̂(j)) versus the sample size n. From this figure
we see that the bias of µ̂, σ̂, λ̂, r̂ converges to zero when the sample
size is increased. A similar result was happening for the MSE of these
estimators.

FIGURE. 3 Graph of bias versus sample size n for ECME estimates of

a µ̂, b σ̂, c λ̂ and d r̂

5.2 Real Data Application

We consider here the fiber-glass data set analyzed by Jones and Faddy
(2003) and Azzalini and Capitanio (2003) in two forms of skew-t distri-
bution and Wang and Genton (2006) in the slash skew-normal (SLSN)
distribution. They note skewness on the left as well as heavy tail be-
havior. We fit a SLSN1(µ, σ, λ, 2) and a SLST1(µ, σ, λ, 2, r) distribu-
tion to this data set. The maximum likelihood estimates of the pa-
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rameters via ECME algorithm and their standard errors (in parenthe-
sis) are µ̂ = 1.77(0.6703), σ̂ = 0.21(0.0481), λ̂ = −1.73(0.6829) and
µ̂ = 1.69(0.0622), σ̂ = 0.15(0.0628), λ̂ = −1.1(1.3475), r̂ = 4.1(2.3732)
for SLSN and SLST distributions, respectively. The histogram of this
data set and the fitted density curves are plotted in Figure 4. For model
comparison, we also computed the Akaike Information Criterion (AIC)
(Akaike, 1974) and the Efficient Determination Criterion (EDC) (Bai et
al., 1989). These values are AIC = 35.41 and EDC = 34.17 for SLSN
distribution and AIC = 34.59 and EDC = 32.94 for SLST distribution.
From these criteria and Figure 4, we see that SLST distribution has a
better fit than the SLSN distribution to this data set. Note that we use
a similar ECM algorithm as in Section 4 to estimate the parameters of
SLSN distribution.

fiber−glass data

D
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0

FIGURE. 4 Histogram of fiber-glass data set with fitted SLSN1(µ, σ, λ, 2)

distribution (dashed line) and SLST1(µ, σ, λ, 2, r) distribution (solid line)

5.3 Sensitivity Analysis

In this section, we use the real data set to find the points which are
influential in parameter estimation. Let Θ̂ be the ML estimate of Θ in
fiber-glass data and Θ̂i be the ML estimate of Θ without the i-th ob-
servation, then we compute the GDi and LDi as diagnostics for global
influence. The measures GDi and LDi computed and presented in Fig-
ures 5.a and 5.b, respectively. From these figures we observe that the
case 63 is identified as the most influential and cases 56, 59 and 60 are
influential.
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FIGURE.5 a Index plot of GDi for case weights perturbation for fiber-glass
data

b Index plot of LDi for case weights perturbation for fiber-glass data

6 Conclusion and Future Work

In this article, we present a new class of asymmetric distributions, called
SLSEL distributions, to find more flexible models which present features
of the data. We investigate some properties of the proposed model.
Also, we use the EM-type algorithm to obtain the maximum likelihood
estimates. Furthermore, we illustrate our method with a real data set
and show that the SLSEL model has better performance than the other
competitors’ ones. Finally, we use the case-deletion approach to the pro-
posed model to check the influence of observations on ML estimators.
Results obtained from the real data sets show the usefulness of the ap-
proach.
Another special case of this work is to define the Skew-Slash Contami-
nated Normal (SLSCN) distribution which can be defined as follows:
Let Y be given by (3.1), where X has the p.d.f. given by (2.2) with
µ = 0, σ = 1 and the generator function

g(t) = υϕ(t; 0,
1

γ
) + (1− υ)ϕ(t; 0, 1), tϵR.

We denoted it by Y ∼ SLSCN1(µ, σ, λ, q, υ, γ). The SLSCN is a flexible
distribution which can be used to model the data with skewness and/or
heavy tailed. Because of the complexity of this model, further works
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are needed for finding the ML estimates via the EM algorithm of the
SLSCN distribution.
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