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dently. The asymptotic properties including consistency and asymptotic
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The bivariate normal distribution is considered as an highly applicable
example in order to estimate the parameter θ = (µ1, σ1, µ2, σ2) by ML
method of estimation based on mk bivariate record data. Asymptotic
variances of the ML estimators are calculated by deriving the Fisher
information matrix about θ contained in the vector of the first k bivari-
ate record data. As another application, we concerned the problem of
“breaking boards” of Glick (1978, Amer. Math. Monthly, 85, 2-26) by
considering three different sampling schemes of breaking boards and we
computed the relative asymptotic efficiencies of ML estimators based on
these three types of data.
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1 Introduction

In a sequence of pair-wise random variables, the values of one variable
that exceed or fall below the previous values of that variable are called
record values and the corresponding value of other variable to each ex-
ceeding value is the concomitant of that record value. The bivariate
sequence is then termed the sequence of bivariate record values. The
reader is referred to Arnold et al. (1998) for more details on univariate
and bivariate record data.

Estimation of parameters of bivariate normal distribution based on
bivariate ordered random variables is concerned by a few authors. Har-
rell and Sen (1979), Qinying He and Nagaraja (2009) and the references
therein, consider the problem of estimation based on bivariate order
statistics under the bivariate normal distribution. Chacko and Thomas
(2008) obtained best linear unbiased estimators of the parameters of the
bivariate normal distribution in terms of only concomitants of record
values.

The problem of deriving Fisher information contained in bivariate
record values was studied by Amini and Ahmadi (2007, 2008). Amini
and Ahmadi (2009) studied the additional information by considering
inter-record times.

In this paper we consider ML estimation based on bivariate record
data. Since for a single record-breaking sample, the number of record
data are rare, it is inapplicable to investigating the asymptotic proper-
ties of the estimators when the number of records in a sequence gets
large. In nonparametric setting, Samaniego and Whitaker (1988) ex-
tend the single sample results to the multi-sample case and studied the
consistency of the nonparametric maximum-likelihood estimator of the
sampling distribution.

In this sampling scheme, one repeat an inverse sampling scheme for
achieving record data m times. The asymptotic properties, then, can
be concerned by letting m to get large. A balanced scheme includes m
independent sequences each with the first k record data. We show that
in such a scheme, the ML estimators are consistent and asymptotically
normal as m tends to infinity. One of the most important bivariate
distributions in statistical inference is the bivariate normal distribution.
As an application of the proposed estimation we estimate the parameter
θ = (µ1, σ1, µ2, σ2) by ML estimation method based on mk bivariate
record data. Asymptotic variances of the ML estimators are calculated
by deriving the Fisher information matrix about θ contained in the vec-
tor of the first k bivariate record data.
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As another application of the aforementioned inferential problem
consider life testing problems in which testing of an item is destructive
and costly. If the items are expensive, one can set up the experiment
so that only the low life units are destroyed. As an example, one may
consider the example of testing the breaking strength of wooden beams
cited in Gulati and Padgett (1994 a, b) and Glick (1978), in which
beams are replaced when they do not break until the pressure reaches
the minimum previously observed breaking time. In other words, only
the lower record values are observed. Now, suppose that we want to fit a
model for the relationship between the breaking strength as the response
variable and some other characteristics of wooden beams as predictors
(such as elasticity). Here our only observations are the lower records of
breaking strength and their associated concomitants. In such situations
the problem of estimation based on record values and their concomitants
is in a high degree of importance. Suppose we want to observe the
“strength” (X) and “elasticity” (Y ) of mk beams by a destructive life
test. One can consider, the following three different sampling schemes
for testing the wooden beams:

A: Test the beams by replacing them when they do not break until
the pressure reaches the minimum previously observed breaking
time. Continue the experiment until breaking k beams. Repeat
the whole experiment m times.

B: Perform test A and also save the number of beams remaining un-

broken between the ith and the (i+ 1)th breaking beams in each
replication.

C: Simply test mk beams until breaking.

Test A and B are similar tests, except that we observe an additional
variable which are record times. Indeed, in test B, we consider the ad-
ditional information that the strength of the beams remaining unbroken

between the ith and the (i + 1)th breaking beams is greater than the

strength of the ith breaking beam. In test C the experimenter observe a
bivariate random sample of size mk. Although, in tests A and B, more
beams are tested, the number of destroyed beams in the three tests is
equal. However, the tests A and B are more economical tests, since the
more “low life” items are destroyed.

The question is that “which sampling scheme leads to more precise
estimators of population parameters?”. Here, the relative asymptotic
efficiencies of the ML estimators, based on the above three types of



238 Amini and Ahmadi

data, can be calculated using the Fisher information matrix about θ
contained in the vector of the first k bivariate record data.

The paper is organized as follows. Section 2 contains some notations.
In Section 3, the main results of ML estimation and limit theorems are
proposed. Section 4, concerns the ML estimation of the parameters of
the bivariate normal distribution, using bivariate record values. Finally,
we calculate the Fisher information matrices and asymptotic relative
efficiencies.

2 Notations

Let {(Xi, Yi), i ≥ 1} be a sequence of i.i.d. pair-wise random variables
with the absolutely continuous cumulative distribution function (cdf)
FX,Y (x, y; θ) and the corresponding pdf fX,Y (x, y; θ). Also fX(x; θ)
and FX(x; θ) denote the marginal pdf and cdf of X, respectively and
F̄X(x; θ) = 1− FX(x; θ).

The sequence of lower records and their concomitants is defined as

(Ri, R[i]) = (XTi , YTi), i ≥ 1,

where T1 = 1 with probability one and for i ≥ 2, Ti = min{j : j >
Ti−1, Xj < XTi−1}.

Suppose

∆i = Ti+1 − Ti − 1, i = 1, 2, . . . , k − 1, ∆k = 0,

are the number of trials needed to obtain new records, which are called
inter-record times. Let us denote

R(k) = (R1, . . . , Rk), ∆(k) = (∆1, . . . ,∆k),C(k) = (R[1], . . . , R[k]),

Rm = {(R1(j), . . . , Rk(j)), j = 1, . . . ,m},

Cm = {(R[1](j), . . . , R[k](j)), j = 1, . . . ,m},

and
∇m = {(∆1(j), . . . ,∆k(j)), j = 1, . . . ,m},

where (Ri(j), R[i](j),∆i(j)) stands for the ith record data in the jth se-
quence, i = 1, . . . , k, j = 1, . . . ,m.

The joint pdf of Rm and Cm is (see Arnold et al., 1998)

fRm,Cm(r, c; θ) =

m∏
j=1

k∏
i=1

fX,Y (ri(j), ci(j); θ)/

k−1∏
i=1

[FX(ri(j); θ)]. (1)
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Using (1) the joint pdf of Rm, Cm and ∇m is given by

fRm,Cm,∇m(r, c, δ; θ) =
m∏
j=1

k∏
i=1

fX,Y (ri(j), ci(j); θ){F̄X(ri(j); θ)}δi(j) . (2)

So, the conditional probability mass function of ∇m given (Rm, Cm) is
given by

f∇m|Rm,Cm(δ|r, c; θ) =
m∏
j=1

k−1∏
i=1

[F̄X(ri(j); θ)]
δi(j)FX(ri(j); θ). (3)

We consider lower bivariate records to derive the results of this paper.
Similar results also hold for the case of upper bivariate record data.
Hereafter, we will call lower records, simply, records.

3 Main Results

Suppose that the assumptions of Section 2 hold. Also, let θ = (θ1, . . . , θl) ∈
Θ ⊂ Rl and the data involves (Rm, Cm,∇m). Using (1) and (2), the like-
lihood equations based on bivariate records only are

m∑
j=1

k∑
i=1

∂

∂θs
log fX,Y (ri(j), ci(j); θ)−

m∑
j=1

k−1∑
i=1

∂

∂θs
logF (ri(j); θ) = 0, s = 1, . . . , l.

Also the likelihood equations based on bivariate records and inter-record
times are given by

m∑
j=1

k∑
i=1

∂

∂θs
log fX,Y (ri(j), ci(j); θ)+

m∑
j=1

k∑
i=1

δi(j)
∂

∂θs
log F̄ (ri(j); θ) = 0, s = 1, . . . , l.

The following theorems establish consistency and asymptotic nor-
mality of the roots of the above equations (if exist), as m tends to
infinity.

Theorem 3.1. Let θ̂m be the MLE of θ based on m independent
sequences of the first k bivariate record values, then θ̂m is a consistent
estimator for θ as m → ∞.

Proof. Let θ0 be the value of θ. Since θ̂m is the ML estimator of θ, we
have

log fRm,Cm(ϱm, ςm; θ̂m) ≥ log fRm,Cm(ϱm, ςm; θ), for all θ ∈ Θ. (4)
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On the other hand by Jensen’s inequality we have

Eθ0

(
log

fR,C(r, s; θ)

fR,C(r, s; θ0)

)
≤ log Eθ0

(
fR,C(r, s; θ)

fR,C(r, s; θ0)

)
= 0.

So

Eθ0 (log fR,C(r, s; θ)) ≤ Eθ0 (log fR,C(r, s; θ0)) .

Since for all θ ∈ Θ 1
m log fRm,Cm(ϱm, ςm; θ) tends almost everywhere to

Eθ0 (log fR,C(r, s; θ)) as m → ∞, hence with probability one and for
large enough m, we have

1

m
log fRm,Cm(ϱm, ςm; θ) ≤ 1

m
log fRm,Cm(ϱm, ςm; θ0), for all θ ∈ Θ.

(5)
Setting θ = θ0 in (4) and θ = θ̂m in (5), it is deduced that θ̂m tends to
θ0 with probability one, as m → ∞. �

Theorem 3.2. Let θ̂m be as in Theorem 3.1, then the asymptotic
distribution of

√
m(θ̂m − θ) is Nl(0 , I−1

R(k),C(k)(θ)) as m → ∞, where

I−1
R(k),C(k)(θ) is the inverse of Fisher information matrix in (R(k),C(k)).

Proof. The Taylor’s expansion of ∂
∂θr

log fRm,Cm(ϱm, ςm; θ)
∣∣∣
θ=θ̂

for r =

1, . . . , l around an arbitrarily θ1 is equal to

∂

∂θr
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ̂

=
∂

∂θr
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ1

+

l∑
s=1

(θ̂s − θ1)
∂2

∂θr∂θs
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ∗

,

where θ∗ is a sequence in Θ which tends in probability to θ1. The left
hand side of the above equality is equal to zero and hence

∂

∂θ
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ1

=

l∑
s=1

(θ̂s − θ1)
−∂2

∂θ∂θs
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ∗

= m(θ̂ − θ1)IR(k),C(k)(θ1).
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On the other hand, ∂
∂θ log fRm,Cm(ϱm, ςm; θ)

∣∣
θ=θ1

has a mean equal to

zero and a variance equal to mIR(k),C(k)(θ1). So, by strong low of large
numbers, we have

1√
m

∂

∂θ
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ1

=
√
m

(
1

m

∂

∂θ
log fRm,Cm(ϱm, ςm; θ)

∣∣∣∣
θ=θ1

− 0

)

has an asymptotic distribution Nl(0 , IR(k),C(k)(θ1)) as m → ∞. Hence,

√
m(θ̂m − θ) = I−1

R(k),C(k)(θ)
1√
m

∂

∂θ
log fRm,Cm(ϱm, ςm; θ)

has an asymptotic distribution Nl(0 , I−1
R(k),C(k)(θ)) as m → ∞. �

Remark 3.1. Similar asymptotic results as presented in Theorems 3.1
and 3.2, are hold for ML estimators based on bivariate records and their
inter-record times by replacing fRm,Cm(ϱm, ςm; θ) with fRm,Cm,∇m(ϱm, ςm,
δm; θ) and IR,C(θ) with IR,C,∆(θ) in Theorems 3.1 and 3.2.

4 Bivariate Normal Parameter Estimation

Suppose that m independent sequences each with k bivariate records are
observed and the sampling distribution is bivariate normal distribution
with parameter θ = (µ1, σ1, µ2, σ2, ρ). Let (Ri(j), R[i](j)) denote the ith
bivariate record in the jth sequence. Also, denote the standard hazard
rate function and standard reverse hazard rate function of X, respec-
tively, by h0(x) = fX(x; θ0)/F̄X(x, θ0) and r0(x) = fX(x; θ0)/FX(x, θ0),
in which θ0 = (0, 1, , µ2, σ2, ρ). Our aim is to obtain the MLE of θ based
on bivariate records. The likelihood equations for bivariate record values
and record times are as follows:

m∑
j=1

k∑
i=1

(
Ri(j) − µ1

σ1

)
− ρ

σ1

m∑
j=1

k∑
i=1

(
R[i](j) − µ2

σ2

)

− 1− ρ2

σ1

m∑
j=1

k∑
i=1

∆ih0

(
Ri(j) − µ1

σ1

)
= 0, (6)
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m∑
j=1

k∑
i=1

R[i](j) −mkµ2 −
ρσ2
σ1

 m∑
j=1

k∑
i=1

Ri(j) −mkµ1

 = 0,

ρ

(
mk −

∑m
j=1

∑k
i=1(Ri(j) − µ1)

2

σ2
1

−
∑m

j=1

∑k
i=1(R[i](j) − µ2)

2

σ2
2

)
+C∗(θ)(ρ2 + 1)−mkρ3 = 0,

where C∗(θ) =
∑m

j=1

∑k
i=1

(
Ri(j) − µ1

) (
R[i](j) − µ2

)
/(σ1σ2),

mk(1− ρ2)−
m∑
j=1

k∑
i=1

(
Ri(j) − µ1

σ1

)2

+ ρC∗(θ)

+(1− ρ2)

m∑
j=1

k∑
i=1

∆i(Ri(j) − µ1)

σ1
h0

(
Ri(j) − µ1

σ1

)
= 0, (7)

and

mk(1− ρ2)−
m∑
j=1

k∑
i=1

(
R[i](j) − µ2

σ2

)2

+ ρC∗(θ) = 0.

For the case of bivariate record values without record times, the above
equations remain true except that (6) and (7) are replaced, respectively,
with

m∑
j=1

k∑
i=1

(
Ri(j) − µ1

σ1

)
− ρ

σ1

m∑
j=1

k∑
i=1

(
R[i](j) − µ2

σ2

)

−1− ρ2

σ1

m∑
j=1

k−1∑
i=1

r0

(
Ri(j) − µ1

σ1

)
= 0,

and

mk(1− ρ2)−
m∑
j=1

k∑
i=1

(
Ri(j) − µ1

σ1

)2

+ ρC∗(θ)

+(1− ρ2)
m∑
j=1

k−1∑
i=1

(Ri(j) − µ1)

σ1
r0

(
Ri(j) − µ1

σ1

)
= 0.

The roots of the above likelihood equations have no closed form and these
equations have to be solved numerically. However, it is not difficult to
carry out an numerical computation using mathematical packages, e.g.
Maple or Mathematica.
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4.1 Fisher Information Matrix

In order to compute the asymptotic relative efficiencies of the MLE es-
timator of θ based on m independent sequences each with k bivariate
records and times (denoted with RCT), with corresponding estimator
based on similar mk bivariate records without times (denoted with RC),
and the estimator based on a bivariate random sample of size mk (de-
noted with IID), we derive the Fisher information matrices in these three
data bases.

We have kIX,Y (θ) = ((Iij)); i, j = 1 . . . , 5, such that Iij = Iji; j ̸= i
and

I11 =
k

σ2
1(1− ρ2)

, I12 = 0, I13 =
−kρ

σ1σ2(1− ρ2)
, I14 = 0, I15 = 0,

I22 =
k(1− ρ2/2)

2σ4
1(1− ρ2)

, I23 = 0, I24 =
−kρ2

4σ2
1σ

2
2(1− ρ2)

, I25 =
−kρ

2σ2
1(1− ρ2)

,

I33 =
k

σ2
2(1− ρ2)

, I34 = 0, I35 = 0,

I44 =
k(1− ρ2/2)

2σ4
2(1− ρ2)

, I45 =
−kρ

2σ2
2(1− ρ2)

,

and

I55 =
k(1 + ρ2)

(1− ρ2)2
.

We denote some moments of bivariate records from standard bivariate
normal distribution as follows

αi[i] = E(R0,1
i R0,1

[i] ), α
(2)
[i] = E(R0,1

[i] )
2 and α

(2)
i = E(R2

i ),

where (R0,1
i , R0,1

[i] ) is the ith bivariate record from standard normal distri-

bution. Suppose the distribution of (Xi, Yi) is standard bivariate normal
with correlation ρ for i=1,2,..., then

Yi = ρXi + ϵi, (8)

where the Xi and the ϵi are mutually independent and ϵi are normal dis-
tributed with zero mean and variance equal to 1−ρ2. So by considering
X-record sequence we have for i ≥ 1

R0,1
[i] = ρR0,1

i + ϵ[i], (9)
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where ϵ[i] denotes the particular ϵi associated with R0,1
i . Since Xi and

ϵi are independent so the sequence R0,1
i is independent of ϵ[i], the later

being mutually independent, each with the same distribution as ϵi. So
we can conclude from (9) that for any finite function g(.)

E(R0,1
[i] g(R

0,1
i )) = ρE(R0,1

i g(R0,1
i )) and

E((R0,1
[i] )

2g(R0,1
i )) = ρ2E((R0,1

i )2g(R0,1
i )) + (1− ρ2)E(g(R0,1

i )).

Especially we have

E(R0,1
[i] R

0,1
i ) = αi[i] = ρα

(2)
i and E[(R0,1

[i] )
2
] = α

(2)
[i] = ρ2α

(2)
i + 1− ρ2.

The log-likelihood function of the first k bivariate records is equal to

l(θ;R(k),C(k)) =

k∑
i=1

L∗(θ;Ri, R[i])−
k−1∑
i=1

log

(
Φ

(
Ri − µ1

σ1

))
,

where

L∗(θ;Ri, R[i]) = −1

2
log(σ2

1σ
2
2(1− ρ))− 1

2(1− ρ2)

×

[(
Ri − µ1

σ1

)2

+

(
R[i] − µ2

σ2

)2

− 2ρ

(
Ri − µ1

σ1

)(
R[i] − µ2

σ2

)]
.

Hence, we obtain I(R(k),C(k))(θ) = ((I ′ij)); i, j = 1 . . . , 5, such that I ′ij =
I ′ji; j ̸= i and

I ′11 = −
k∑

i=1

E

(
∂2

∂µ2
1

L∗(θ;Ri, R[i])

)
− 1

σ2
1

k−1∑
i=1

E(r′0(R
0,1
i ))

=
1

σ2
1

[
k

1− ρ2
+

k−1∑
i=1

E(R0,1
i r0(R

0,1
i ))−

k−1∑
i=1

E(r20(R
0,1
i ))

]
,
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I ′22 = −
k∑

i=1

E

(
∂2

∂(σ2
1)

2
L∗(θ;Ri, R[i])

)

− 1

4σ4
1

E

[
3

k−1∑
i=1

R0,1
i r0(R

0,1
i ) +

k−1∑
i=1

(R0,1
i )2r′0(R

0,1
i )

]

=
1

σ4
1

[
−k

2
+

1

(1− ρ2)

{
k∑

i=1

α
(2)
i − 3

4
ρ

k∑
i=1

αi[i]

}

− 3

4

k−1∑
i=1

E(R0,1
i r0(R

0,1
i ))− 1

4

k−1∑
i=1

E((R0,1
i )2r′0(R

0,1
i ))

]

=
1

σ4
1

[
−k

2
+

1− 3/4ρ2

(1− ρ2)

k∑
i=1

α
(2)
i

− 3

4

k−1∑
i=1

E(R0,1
i r0(R

0,1
i )) +

1

4

k−1∑
i=1

E((R0,1
i )3r0(R

0,1
i ))

− 1

4

k−1∑
i=1

E((R0,1
i )2r20(R

0,1
i ))

]
,

I ′33 = −
k∑

i=1

E

(
∂2

∂µ2
2

L∗(θ;Ri, R[i])

)
=

k

σ2
2(1− ρ2)

,

and

I ′44 = −
k∑

i=1

E

(
∂2

∂(σ2
2)

2
L∗(θ;Ri, R[i])

)

=
1

σ4
2

[
−k

2
+

1

(1− ρ2)

{
k∑

i=1

α
(2)
[i] − 3

4
ρ

k∑
i=1

αi[i]

}]

=
1

σ4
2

[
k

2
+

ρ2

4(1− ρ2)

k∑
i=1

α
(2)
i

]
.

Amini and Ahmadi (2007) showed that

I ′55 =
(1− ρ2)

∑k
i=1 α

(2)
i + 2kρ2

(1− ρ2)2
.
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Furthermore, we have

I ′12 = −
k∑

i=1

E

(
∂2

∂µ1∂σ2
1

L∗(θ;Ri, R[i])

)

− 1

2σ3
1

E

[
k−1∑
i=1

r0(R
0,1
i ) +

k−1∑
i=1

R0,1
i r′0(R

0,1
i )

]

=
1

σ3
1

[
1

1− ρ2

{
k∑

i=1

αi −
ρ

2

k∑
i=1

α[i]

}

− 1

2

{
k−1∑
i=1

E(r0(R
0,1
i )) +

k−1∑
i=1

E(R0,1
i r′0(R

0,1
i ))

}]

=
1

σ3
1

[
1− ρ2/2

1− ρ2

k∑
i=1

αi −
1

2

{
k−1∑
i=1

E(r0(R
0,1
i ))

−
k−1∑
i=1

E((R0,1
i )2r0(R

0,1
i )) +

k−1∑
i=1

E(R0,1
i r20(R

0,1
i ))

}]
,

I ′13 = −
k∑

i=1

E

(
∂2

∂µ1∂µ2
L∗
)

=
−kρ

σ1σ2(1− ρ2)
,

I ′14 = −
k∑

i=1

E

(
∂2

∂µ1∂σ2
2

L∗
)

=
−ρ2

2σ1σ2
2(1− ρ2)

k∑
i=1

αi,

I ′15 = −
k∑

i=1

E

(
∂2

∂µ1∂ρ
L∗
)

=
−ρ

σ1(1− ρ2)

k∑
i=1

αi,

I ′23 = −
k∑

i=1

E

(
∂2

∂σ2
1∂µ2

L∗
)

=
−ρ

2σ2
1σ2(1− ρ2)

k∑
i=1

αi,

I ′24 = −
k∑

i=1

E

(
∂2

∂σ2
1∂σ

2
2

L∗
)

=
−ρ2

4σ2
1σ

2
2(1− ρ2)

k∑
i=1

α
(2)
i ,

I ′25 = −
k∑

i=1

E

(
∂2

∂σ2
1∂ρ

L∗
)

=
−ρ

2σ2
1(1− ρ2)

k∑
i=1

α
(2)
i ,

I ′34 = −
k∑

i=1

E

(
∂2

∂µ2∂σ2
2

L∗
)

=
ρ

2σ3
2(1− ρ2)

k∑
i=1

αi,

I ′35 = −
k∑

i=1

E

(
∂2

∂µ2∂ρ
L∗
)

=
1

σ2(1− ρ2)

k∑
i=1

αi,
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and

I ′45 = −
k∑

i=1

E

(
∂2

∂σ2
2∂ρ

L∗
)

=
ρ

2σ2
2(1− ρ2)

[
k∑

i=1

α
(2)
i − 2k

]
.

The Fisher information matrix in the first k bivariate records and record
times is equal to I(R(k),C(k),∆(k))(θ) = ((I ′′ij)); i, j = 1 . . . , 5, such that
I ′′ij = I ′′ji; j ̸= i. Since the conditional pdf f∆(k)|R(k),C(k) depends only
on µ1 and σ1 and is free of other parameters, we have for {(i, j); 1 ≤
i ≤ 5, 1 ≤ j ≤ 5, i ≤ j} − {(1, 1), (2, 2), (1, 2)},

I ′′ij = I ′ij − E

(
∂2

∂θi∂θj
log f∆|R,C

)
= I ′ij .

Furthermore

I ′′11 =
1

σ2
1

[
k

(1− ρ2)
−

k∑
i=1

E

(
1− Φ(R0,1

i )

Φ(R0,1
i )

h′0(R
0,1
i )

)]

=
1

σ2
1

[
k

(1− ρ2)
+

k∑
i=1

E
(
R0,1

i r0(R
0,1
i )
)
+

k∑
i=1

E
(
r0(R

0,1
i )h0(R

0,1
i )
)]

,

I ′′22 =
1

σ4
1

[
−k

2
+

1

2(1− ρ2)

{
2

k∑
i=1

α
(2)
i − 3

2
ρ

k∑
i=1

αi[i]

}

− 3

4

k∑
i=1

E

(
R0,1

i

1− Φ(R0,1
i )

Φ(R0,1
i )

h0(R
0,1
i )

)

− 1

4

k∑
i=1

E

(
(R0,1

i )2
1− Φ(R0,1

i )

Φ(R0,1
i )

h′0(R
0,1
i )

)]

=
1

σ4
1

[
−k

2
+

1− 3/4ρ2

(1− ρ2)

k∑
i=1

α
(2)
i − 3

4

k∑
i=1

E
(
R0,1

i r0(R
0,1
i )
)

+
1

4

k∑
i=1

E
(
(R0,1

i )3r0(R
0,1
i )
)
+

1

4

k∑
i=1

E
(
(R0,1

i )2r0(R
0,1
i )h0(R

0,1
i )
)]

,
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and

I ′′12 = I ′12 − E

(
∂2

∂µ1∂σ2
1

log f∆|R,C(δ|r, s)
)

= I ′12 −
k−1∑
i=1

E

(
∂2

∂µ1∂σ2
1

log Φ

(
Ri − µ1

σ1

))

−
k−1∑
i=1

E

(
1− Φ(R0,1

i )

Φ(R0,1
i )

∂2

∂µ1∂σ2
1

log

(
1− Φ

(
Ri − µ1

σ1

)))

=
1

σ3
1

[
1− ρ2/2

1− ρ2

k∑
i=1

αi −
1

2

{
k−1∑
i=1

E(r0(R
0,1
i ))

−
k−1∑
i=1

E((R0,1
i )2r0(R

0,1
i ))−

k−1∑
i=1

E(R0,1
i h0(R

0,1
i )r0(R

0,1
i ))

}]
.

4.2 Asymptotic relative efficiencies

In this section, we try to find an answer for the question “which sampling
scheme (of A, B or C, introduced in Section 1) leads to more precise
estimators of population parameters?”, for the special case of bivariate
normal distribution. We use the asymptotic variances of the ML estima-
tors which are the trace items of the inverse of the Fisher information
matrices contained in the three types of data.

Since µ1 and µ2 are location parameters, the Fisher information
matrices are free of µ1 and µ2. It can be seen that I−1(1, 1) is multiple
of σ2

1, I
−1(2, 2) is multiple of σ4

1, I
−1(3, 3) is multiple of σ2

2, I
−1(4, 4) is

multiple of σ4
2 and I−1(5, 5) is free of σ1 and σ2, for I be each of the

three mentioned information matrices, where I−1(i, i) is the element of
the ith row and the ith column of the matrix I−1.

Thus, the asymptotic relative efficiency (denoted by ARE) given be-
low does not depend on µi and σi, i = 1, 2. Hence, without loss of gener-
ality, we take σ1 = σ2 = 1 in evaluating I−1

(R(k),C(k))(θ), I
−1
(R(k),C(k),∆(k))(θ)

and (kIX,Y )
−1(θ) using the above formulas. For simplicity, we denote

the ML estimate of θ based on (R(k),C(k)) by θ̂A, the MLE of θ based
on (R(k),C(k),∆(k)) by θ̂B and the MLE of θ based on the bivariate
random sample of size mk by θ̂C. Asymptotic efficiency of the MLE
using bivariate record values and times with respect to (w.r.t.) that
using bivariate random sample of the same size, and ARE of the MLE
using bivariate record values and times w.r.t. that using bivariate record
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values without times are as follows:

ARE(θ̂i,B; θ̂i,C) =
(kIX,Y )

−1(i, i)

I−1
(R(k),C(k),∆(k))(i, i)

;

ARE(θ̂i,B; θ̂i,A) =
I−1
(R(k),C(k))(i, i)

I−1
(R(k),C(k),∆(k))(i, i)

, for i = 1, . . . , 5.

Tables 1 to 5 show the values of ARE of µ1, σ1, µ2, σ2 and ρ, respectively.
These are similar for negative and positive values of ρ. Since the values
variations for Tables 1 and 2 w.r.t. ρ are very negligible, they are shown
in 8 decimal places. The other tables’ values are shown in 4 decimal
places.

Table 1: The values of ARE(µ̂1,B; µ̂1,C) (ARE(µ̂1,B; µ̂1,A)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 0.75230738 0.75230737 0.75230713 0.75230716 0.75230687
(1.17312564) (1.17312564) (1.17312566) (1.17312565) (1.17312497)

3 0.57576506 0.57576512 0.57576506 0.57576490 0.57576826
(1.28298358) (1.28298355) (1.28298357) (1.28298304) (1.28298400)

4 0.49074455 0.49074457 0.49074461 0.49074453 0.49074460
(1.43525201) (1.43525195) (1.43525236) (1.43525122) (1.43525451)

5 0.47198582 0.47198584 0.47198582 0.47198586 0.47198773
(1.70970389) (1.70970339) (1.70970367) (1.70970404) (1.70970474)

Table 2: The values of ARE(σ̂1,B; σ̂1,C) (ARE(σ̂1,B; σ̂1,A)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 1.17304229 1.17304227 1.17304236 1.17304220 1.17304198
(1.26641666) (1.26641666) (1.26641667) (1.26641663) (1.26641643)

3 1.13989568 1.13989568 1.13989570 1.13989544 1.13989669
(1.25907952) (1.25907947) (1.25907955) (1.25907899) (1.25908029)

4 1.18477633 1.18477632 1.18477626 1.18477616 1.18477632
(1.31711383) (1.31711383) (1.31711405) (1.31711337) (1.31711383)

5 1.36443750 1.36443730 1.36443767 1.36443798 1.36444343
(1.51709264) (1.51709230) (1.51709265) (1.51709311) (1.51708756)
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Table 3: The values of ARE(µ̂2,B; µ̂2,C) (ARE(µ̂2,B; µ̂2,A)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 0.8418 0.8338 0.8182 0.7959 0.7680
(1.0019) (1.0173) (1.0471) (1.0897) (1.1432)

3 0.6522 0.6453 0.6319 0.6128 0.5890
(1.0032) (1.0285) (1.0776) (1.1476) (1.2345)

4 0.5259 0.5228 0.5169 0.5082 0.4971
(1.0047) (1.0417) (1.1146) (1.2209) (1.3571)

5 0.4663 0.4571 0.4504 0.4460 0.4439
(1.0067) (1.0604) (1.1693) (1.3368) (1.5680)

Table 4: The values of ARE(σ̂2,B; σ̂2,C) (ARE(σ̂2,B; σ̂2,A)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 1.0017 1.0155 1.0432 1.0850 1.1405
(1.00002) (1.0019) (1.0148) (1.0592) (1.1699)

3 1.0034 1.0300 1.0776 1.1302 1.1538
(1.00002) (1.0019) (1.0153) (1.0617) (1.1721)

4 1.0049 1.0434 1.1136 1.1911 1.2166
(1.00003) (1.0023) (1.0186) (1.0765) (1.2137)

5 1.0062 1.0558 1.1530 1.2800 1.3707
(1.00003) (1.0032) (1.0273) (1.1165) (1.3408)

Table 5: The values of ARE(ρ̂B; ρ̂C) (ARE(ρ̂B; ρ̂A)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 1.0937 1.0926 1.0903 1.0869 1.0823
(1.0012) (1.0112) (1.0310) (1.0605) (1.0996)

3 1.2055 1.1928 1.1683 1.1332 1.0897
(1.0014) (1.0122) (1.0332) (1.0631) (1.1003)

4 1.3234 1.3003 1.2564 1.1958 1.1235
(1.0018) (1.0157) (1.0420) (1.0784) (1.1218)

5 1.4442 1.4154 1.3612 1.2873 1.2004
(1.0027) (1.0241) (1.0645) (1.1195) (1.1842)
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As we can see from the Tables 1 to 5, considering inter-record times
along by bivariate records, provides a distinct improve in estimation of
θ. Also, plans A and B lead to more precise estimators of scale and
correlation parameters of bivariate normal distribution. On the other
hand, location parameters’ estimates are more precise based on plan C.
Furthermore, smaller values of k, for location parameters, and greater
values of k, for scale and correlation parameters, lead to improvement of
the estimators based on plans A and B relative to the estimators based
on plan C. Also, ARE(σ̂2,B; σ̂2,C) is relative to ρ and ARE(µ̂2,B; µ̂2,C)
and ARE(ρ̂B; ρ̂C) have reverse relation with ρ.
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