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Abstract. A simple step-stress accelerated life testing plan is con-
sidered when the failure times in each level of stress are geometrically
distributed under Type-I censoring. The problem of choosing the opti-
mal plan is investigated using the asymptotic variance-optimality as well
as determinant-optimality and probability-optimality criteria. To illus-
trate the results of the paper, an example is presented and a sensitivity
analysis is performed. A simulation study is also done to investigate the
robustness of the criteria with respect to estimation error of the param-
eters. Eventually, some conclusions are presented.
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1 Introduction

The accelerated life testing (ALT) experiments are commonly used in
product life testing and analysis to shorten the time of the experiments
which may not terminate on an adequate time under the normal condi-
tions. Under the ALT plans, units are tested at higher than operating
levels of stress such as temperature, vibration, voltage, pressure and hu-
midity. Nelson (1990), Meeker and Escobar (1998) and Bagdonavicius
and Nikulin (2002) are some key references in this field. The step-stress
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accelerated life testing (SSALT) is a special type of the ALT in which
the stress levels of the experiment are increased during the test period
at some pre-specified times. Determination of the change times of stress
levels is one of the most important design problems in the SSALT. Miller
and Nelson (1983) investigated the optimum SSALT with two levels of
stress (i.e., the case of a simple SSALT) for the exponentially distributed
life times. Bai et al. (1989) extended the results of Miller and Nel-
son (1983) to the case of time-censored data. The case of three stress
levels was dealt by Khamis and Higgins (1996). For the general case
of k-level SSALT, some numerical investigations was taken by Khamis
(1997). Khamis and Higgins (1998) also considered the problem un-
der a Weibull distribution for the lifetimes of units subjected to stress.
Gouno et al. (2004) studied the problem of determining the optimal
change times of stress levels for a general k-level SSALT plan under the
large-sample case, when the available data are progressively Type-I cen-
sored. Fard and Li (2009) studied optimal simple SSALT for the Weibull
distributed failure times under Type-I censored data. Balakrishnan and
Han (2009) considered the optimality problem in a k-level SSALT under
progressively Type-I censored data from exponential distribution. Wang
and Yu (2009) considered a simple SSALT with progressively Type-II
censored exponential data and determined the optimum change time on
the basis of the variance of the uniformly minimum variance unbiased
estimators. Ling et al. (2011) found the optimal simple SSALT un-
der Type-I hybrid censored data. Kateri et al. (2011) investigated this
problem under Type-II censoring.

There are situations in reliability and survival analysis for which
the life-testing experiment must be investigated in a discrete set-up.
For example, suppose that the lifetimes of the units in an experiment
depend on the number of times the units are switched on and off or the
number of shocks they receive. The number of rotations of a machine or
the number of pages a printer prints may also be included. Let w be the
number of times a unit can withstand the operating stress until it fails,
so, w is the associated failure time. For more details about the results
on order statistics of a random sample taken from a discrete population
see, for example, Nagaraja (1992). Censored samples in discrete set-up
are of great interest, as revealed from the works of Rezaei and Arghami
(2002), Davarzani and Parsian (2011) and Balakrishnan et al. (2011).
In a simple SSALT, assuming the failure times at each level of stress are
geometrically distributed, frequentist and Bayesian analysis have been
investigated by Arefi and Razmkhah (2013) and Arefi et al. (2011),
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respectively. See, also, Xu et al. (2010) and Wang et al. (2012).
The main goal of this paper is to investigate the optimal simple

SSALT in a discrete set-up. Toward this end, we use three different op-
timality criteria, namely, the AV-, D- and P-optimality criteria. The AV-
optimality criterion in this paper focuses on the minimizing the asymp-
totic variance of the reliability estimate under normal operating condi-
tions. The D-optimal plan is obtained by minimizing the determinant
of the covariance matrix or equivalently by maximizing the determinant
of the Fisher information matrix. The P-optimal plan is derived by
minimizing the probability of non-existence of the parameter estimates.

The rest of the paper is as follows: In Section 2, some preliminaries
are presented. In Section 3, the main results are given. In Section 4,
the optimization criteria are investigated. To illustrate the results of the
paper, an example is presented and a sensitivity analysis is performed
in Section 5. A simulation study is done in Section 6. Eventually, some
conclusions are presented in Section 7.

2 Preliminaries

In a simple SSALT, n identical units are simultaneously placed on a
test under an initial level of stress S1 and the level of stress is increased
to S2 at the pre-fixed time τ . Assume that the failure times at level
Si (i = 1, 2) are geometrically distributed with successive probability
θi (i = 1, 2), for which θ1 < θ2. That is, the probability mass function
(pmf) and cumulative distribution function (cdf) at level Si are given
by

fi(x; θi) = θi(1− θi)
x−1, x = 1, 2, . . .

and
Fi(x; θi) = 1− (1− θi)

x, x = 1, 2, . . . , (1)

respectively, where 0 < θi < 1. Using the memoryless property of the
geometric random variable, it is easy to show that when the stress level
jumps from S1 to S2 at point τ , the pmf of the model is as follows

g(x) =

{
g1(x) = θ1(1− θ1)

x−1, x = 1, 2, · · · , τ,
g2(x) = θ2(1− θ1)

τ (1− θ2)
x−(τ+1), x = τ + 1, τ + 2, · · · (2)

(see, also, Arefi et al., 2011). Using (2), the corresponding cdf is

G(x) =

{
G1(x) = 1− (1− θ1)

x, x = 1, 2, · · · , τ,
G2(x) = 1− (1− θ1)

τ (1− θ2)
x−τ , x = τ + 1, τ + 2, · · · . (3)
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Suppose that in an experiment, the lifetimes of the units are counted
in number of cycles, number of rotations, number of switches on and
off, etc. Moreover, suppose that the test terminates when all surviving
units have operated η times, where η is a pre-fixed integer number, then
a Type-I censoring scheme has been performed. Under this scheme, the
failure times greater than η are not observed. So, we will observe the
following data set under Type-I censoring scheme:

X1:n ≤ X2:n ≤ · · · ≤ XN1:n ≤ τ < XN1+1:n ≤ · · · ≤ XN1+N2:n ≤ η,

where Xi:n denotes the ith smallest order statistic in a sample of size n
from the pmf in (2), N1 is the number of observations that are less than
or equal to τ and N2 stands for the number of data points that are less
than or equal to η and greater than τ , for which N1+N2 ≤ n. Summing
up, the situation studied in the present paper is data with the given
structure and with an assumed geometric distribution for the number
of times the experimental units can withstand the operating stress until
they fail.

3 Main Results

As seen in (2), there exist two parameters θ1 and θ2 in a simple SSALT.
Assuming θ̂1 and θ̂2 are the maximum likelihood estimators (MLEs) of
these parameters on the basis of the data set X⋆ = (X1:n, · · · , XN1+N2:n,
N1, N2), we will find the optimal simple SSALT by considering the prop-
erties of θ̂1 and θ̂2 individually or a function of both of them such as
φ(θ̂1, θ̂2). Using the tie-run technique in the case of discrete order statis-
tics which is defined by Gan and Bain (1995) regarding the number and
lengths of runs of tied observations, Arefi et al. (2011) showed that the
likelihood function of θ1 and θ2 is

L(θ1, θ2) =
n!

(n− r1 − r2)!

( k∏
j=1

zj !

)−1

θr11 (1− θ1)
d1θr22 (1− θ2)

d2 , (4)

where r1 and r2 are the observed values of N1 and N2, respectively, k
stands for the number of tie-runs with length zj for the jth one, and d1
and d2 are the observed values of

D1 =

N1∑
i=1

Xi:n −N1 + τ(n−N1) (5)
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and

D2 =

N1+N2∑
i=N1+1

Xi:n − (τ + 1)N2 + (η − τ)(n−N1 −N2), (6)

respectively. Moreover, they showed that

θ̂1 =
N1

N1 +D1
and θ̂2 =

N2

N2 +D2
. (7)

Notice that the MLEs of positive parameters θ1 and θ2 in (7) exist,
if N1 ̸= 0 and N2 ̸= 0, respectively. Therefore, we introduce the event
B = {1 ≤ N1 ≤ n − 1, 1 ≤ N2 ≤ n − N1} on which the estimates are
positive. We emphasize that all the results and computations presented
hereafter in the paper are conditionally obtained when the event B oc-
curs, otherwise, the results are meaningless. Moreover, note that for
simplicity in notation, the condition is omitted in the next results. That
is, P (N1 = r1, N2 = r2) ≡ P (N1 = r1, N2 = r2|B), also for i = 1, 2, we
have E(Ni) ≡ E(Ni|B), E(Di) ≡ E(Di|B), etc. The following results
are applied to determine the optimal SSALT plan.

• By some algebraic calculations, it can be shown that the probability
of occurrence of the event B is given by

P (B) = 1− (1− p1)
n − (1− p2)

n + pn3 , (8)

where

p1 = G1(τ) = 1− (1− θ1)
τ ,

p2 = G2(η)−G1(τ) = (1− θ1)
τ (1− (1− θ2)

η−τ ),

p3 = 1− p1 − p2 = (1− θ1)
τ (1− θ2)

η−τ .

• Notice that given the event B, the random variables N1 and N2 have
a truncated trinomial distribution. Using (8), the corresponding condi-
tional pmf, for 1 ≤ r1 ≤ n− 1 and 1 ≤ r2 ≤ n− r1, is

P (N1 = r1, N2 = r2) =
cr1,r2 pr11 pr22 pn−r1−r2

3

1− (1− p1)n − (1− p2)n + pn3
, (9)

where

cr1,r2 =
n!

r1!r2!(n− r1 − r2)!
.



198 Arefi and Razmkhah

• Using (9) and by performing some algebraic calculations, it is deduced
that given B, the conditional expected values of N1 and N2 are as follows

E(N1) =
n−1∑
r1=1

n−r1∑
r2=1

r1cr1,r2 pr11 pr22 pn−r1−r2
3

1− (1− p1)n − (1− p2)n + pn3

=
np1

(
1− (1− p2)

n−1
)

1− (1− p1)n − (1− p2)n + pn3
(10)

and, similarly,

E(N2) =
np2

(
1− (1− p1)

n−1
)

1− (1− p1)n − (1− p2)n + pn3
, (11)

respectively.

•GivenN1 = r1, the random variable V1 =
∑N1

i=1Xi:n may be considered
as the sum of the random sample X1, . . . , Xr1 from the pmf

h1(x) =
g1(x)

G1(τ)
=

θ1(1− θ1)
x−1

1− (1− θ1)τ
, x = 1, 2, . . . , τ,

where g1(·) and G1(·) are as defined in (2) and (3), respectively. There-
fore, the conditional moment generating function of V1, given both
N1 = r1 and B, is

MV1(v) = E
(
evV1 |N1 = r1, B

)
= E

(
ev

∑r1
i=1 Xi

)
=

{
θ1e

v
(
1− ((1− θ1)e

v)τ
)(

1− (1− θ1)τ
)(
1− (1− θ1)ev

)}r1

. (12)

From (12), it is deduced that

E(V1) = E
(
E(V1|N1)

)
= E(N1)

{
1− τ(1− θ1)

τ

1− (1− θ1)τ
+

1− θ1
θ1

}
.

Now, using (5), the expected value of D1, when the event B occurs, is
as follows

E(D1) = nτ +
{1− θ1

θ1
− τ

1− (1− θ1)τ
}
E(N1), (13)

where E(N1) is as defined in (10).
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•GivenN1 = r1, N2 = r2 andB, the random variable V2 =
∑N2+N1

j=N1+1Xi:n

is identical in distribution to the sum of the random sample Y1, . . . , Yr2
from the pmf

h2(x) =
g2(x)

G2(η)−G1(τ)
=

θ2(1− θ2)
x−(τ+1)

1− (1− θ2)η−τ
, x = τ + 1, . . . , η,

where g2(·) and Gi(·) (i = 1, 2) are as defined in (2) and (3), respectively.
Hence, the conditional moment generating function of V2, given N1 = r1,
N2 = r2 and B can be obtained as follows

MV2(v) = E
(
evV2 |N1 = r1, N2 = r2, B

)
=

{
θ2e

v(τ+1)
(
1− ((1− θ2)e

v)η−τ
)(

1− (1− θ2)η−τ
)(
1− (1− θ2)ev

)}r2

. (14)

Since h2(x) is free of θ1, the function MV2(v) also does not depend on
θ1. Using (6) and (14), it can be shown that the expected value of D2,
given the event B, is

E(D2) = (η−τ)(n−E(N1))+

{
1− θ2
θ2

− (η − τ)

1− (1− θ2)η−τ

}
E(N2), (15)

where E(N1) and E(N2) are as defined in (10) and (11), respectively.
Using the above results, one may compute the Fisher information

(FI) matrix which is a main equipment in this paper to find an optimal
simple SSALT. The FI matrix plays a key role in the parameter estima-
tion. It is a measure of the information content of the data relative to
the parameters being estimated. Let us denote the FI matrix of the pa-
rameters θ1 and θ2 by I(θ1, θ2). By definition, the elements of I(θ1, θ2)
are the negative expectations of the second partial and mixed partial
derivatives of the log-likelihood function of the parameters θ1 and θ2
(see, for example, Lehmann and Casella, 1998, p. 125). Using (4), it is

easy to show that E
(
∂2 logL(θ1,θ2)

∂θ1∂θ2

)
= 0. Therefore, we get

I(θ1, θ2) =

(
a1(τ) 0
0 a2(τ)

)
, (16)

such that

aj(τ) = −E

(
∂2 logL(θ1, θ2)

∂θ2j

)
=

E(Nj)

θ2j
+

E(Dj)

(1− θj)2
, j = 1, 2, (17)
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where E(N1), E(N2), E(D1) and E(D2) are as defined in (10), (11), (13)
and (15), respectively.

4 Optimization Criteria

In this section, we present three different optimality criteria. The first
one is obtained by minimizing the asymptotic variance of a function of θ̂1
and θ̂2, which were presented in (7). Two other approaches are derived
by maximizing the determinant of the FI matrix and minimizing the
probability of non-existence of the parameter estimates.

4.1 AV-Optimality

In the SSALT plans, minimizing the asymptotic variance (AV) of the
MLE of any parameter of interest such as the mean life or some percentile
life at a specified level of stress may be considered as a commonly used
optimization criterion. Since the reliability function and the mean time
to failure (MTTF) are related together as MTTF =

∑∞
x=0R(x), where

R(x) stands for the reliability function at x, the optimization criterion
could also be defined as a function of reliability. Here, we minimize the
AV of the reliability estimate at time x under normal operating condi-
tions to get the optimal value of the change time. Toward this end, we
assume that S0 is the stress level under normal operating conditions and
the failure times are geometrically distributed with success probability
θ0. Since there is not any data set under the stress level S0, we cannot
give a direct estimator for θ0. So, we have to consider a relationship be-
tween the parameters and the levels of stress to get a suitable estimator
for θ0 on the basis of θ̂1 and θ̂2. Suppose that the parameter 1− θi is a
log-linear function of the stress level Si (i = 0, 1, 2). That is,

log(1− θi) = γ0 + γ1Si, i = 0, 1, 2, (18)

where γ0 and γ1 are unknown parameters which are depend on the nature
of test. The log-linear function is a common choice for the lifestress
relationship, because, it includes both the power law and the Arrhenius
law as special cases (see, for example, Wu et al., 2008). Using (1) and
(18), by taking ω = S1−S0

S2−S0
, the reliability at time x, where x is an integer

number, under stress level S0 is given by

RS0(x) = exp
{ x

1− ω

(
log(1− θ1)− ω log(1− θ2)

)}
.
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Using the invariance property of the MLEs, the MLE of RS0(x) is

R̂S0(x) = exp
{ x

1− ω

(
log(1− θ̂1)− ω log(1− θ̂2)

)}
,

where θ̂1 and θ̂2 are as defined in (7). The AV of the MLE of RS0(x) is
given by

ϕ(τ) = H ′I−1(θ1, θ2)H, (19)

where I−1(θ1, θ2) is the inverse of the FI matrix of θ1 and θ2 as defined
in (16) and H ′ stands for transpose of H such that

H =

(
∂RS0(x)

∂θ1
,
∂RS0(x)

∂θ2

)′

(see, for example, Lawless, 2003, p. 549). By some algebraic calcula-
tions, it can be shown that

∂RS0(x)

∂θ1
=

−x

(1− ω)(1− θ1)
RS0(x),

and
∂RS0(x)

∂θ2
=

ωx

(1− ω)(1− θ2)
RS0(x).

Therefore, the objective function in (19) reduces to

ϕ(τ) =

(
xRS0(x)

1− ω

)2( 1

(1− θ1)2a1(τ)
+

ω2

(1− θ2)2a2(τ)

)
, (20)

where for j = 1, 2, aj(τ) is as defined in (17). The AV-optimal τ (viz.,
τ∗AV ) is the one that minimizes ϕ(τ). From (20), it is also obvious that
the value of τ∗AV does not depend on x.

4.2 D-Optimality

Another optimal criterion is based on maximizing the determinant of the
FI matrix. It can be statistically shown that maximizing the determi-
nant of the FI matrix is the same as minimizing the determinant of the
covariance matrix. Therefore, the optimal SSALT plan that maximizes
the determinant of the FI matrix will provide the smallest standard error
and it is called a D-optimal plan. Moreover, the determinant of I(θ1, θ2)
is proportional to the reciprocal of the volume of the asymptotic joint
confidence region for the parameters so that maximizing the determi-
nant is equivalent to minimizing the volume of confidence region. In
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other words, a larger value of the determinant of the FI matrix would
correspond to higher joint precision of the estimators of θ1 and θ2 (see,
Wu et al., 2008). Therefore, using (16), the D-optimal τ (viz., τ∗D) is
obtained by maximizing

δ(τ) = a1(τ)a2(τ), (21)

where for j = 1, 2, aj(τ) is as defined in (17).

4.3 P-Optimality

In the simple SSALT plans, the estimates of the parameters of interest
may not exist due to the absence of failure times either before or after
the stress change time. For this reason, we choose the change time of
the stress levels so as to minimize the probability of non-existence of the
parameter estimates (see, for example, Kateri et al., 2011). Therefore,
by use of the (8), the criterion function is defined to be

π(τ) = 1− P (B)

= (1− θ1)
τn +

(
1− (1− θ1)

τ + (1− θ1)
τ (1− θ2)

η−τ
)n

−(1− θ1)
nτ (1− θ2)

n(η−τ). (22)

The P-optimal τ (viz. τ∗P ) is obtained by minimizing the function π(τ).
For more investigations, let us denote the events of non-existence of

θ̂1 and θ̂2 by B1 and B2, respectively. Then, it is obvious that the event
B is complement of the union of B1 and B2, denoted by B1 ∪B2. That
is, in fact we have π(τ) = P (B1 ∪ B2). On the other hand, it can be
shown that

P (B1) = P (X1:n > τ) = (1−G1(τ))
n = (1− θ1)

τn. (23)

Similarly, the probability of the intersection of B1 and B2, denoted by
B1 ∩B2, is given by

P (B1 ∩B2) = P (X1:n > η)

= (1−G2(η))
n

= (1− θ1)
nτ (1− θ2)

n(η−τ). (24)

Furthermore, using (22)–(24), we have

P (B2) =
(
1− (1− θ1)

τ + (1− θ1)
τ (1− θ2)

η−τ
)n
.
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Remark 4.1. From (23), it is observed that the probability of non-
existence of θ̂1 does not depend on the censoring scheme and it is also a
decreasing function of τ . Therefore, if minimizing P (B1) is considered
as the optimization criterion, the optimum change time is obtained to
be τ∗P = η− 1. Similarly, if minimizing P (B1 ∩B2) in (24) is considered
as the optimization criterion, τ∗P = 1 is the optimum change time, since
P (B1 ∩B2) is an increasing function in τ for θ1 < θ2.

5 Numerical Illustrations

In this section, we first present an artificial example to illustrate the
proposed procedure in obtaining the optimal simple SSALT plan. Then,
we perform a sensitivity analysis.

5.1 Example

Suppose that the number of switches on and off the electronic units
receive until they fail is subject to examination in a simple SSALT for
which the lowest and highest levels of stress applied to test units are 24
kilovolt (KV) and 36 KV of voltage, respectively. Moreover, assume that
the test is terminated when the units have received the number of η = 55
switches on and off. If from a previous experience based on similar data
or based on a preliminary test we know that the failure times of the units
follow a geometric distribution with parameters θ1 = 0.03 and θ2 = 0.08,
then by maximizing the criterion function in (21) and minimizing the
function in (22), we get τ∗D = 20 and τ∗P = 22, respectively.

As mentioned in Section 4, the value of τ∗AV does not depend on
x. So, if the estimation of the reliability at any arbitrary time x at the
design voltage of 20 KV be the problem of interest, we define ω = S1−S0

S2−S0
,

while S0 = 20 KV, S1 = 24 KV and S2 = 36 KV. So, ω = 0.25. By
minimizing the criterion function in (20), the optimum change time of
stress levels is determined to be τ∗AV = 26.

5.2 Sensitivity Analysis

To examine the effect of changes in the initial parameters θ1, θ2 and
the values of η and n on the optimal value of τ , a sensitivity analysis is
performed. Toward this end, the values of τ∗AV , τ

∗
D and τ∗P are derived

when one of the objectives θ1, θ2, η or n changes and the others are
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Figure 1: Optimal τ changes in θ1, θ2, η and n.

fixed. To determine the value of τ∗AV in this analysis, we assume that
ω = 0.25. The results are presented in Figure 1. Notice that in this
figure, the dash, point and solid lines show the values of τ∗AV , τ

∗
D and

τ∗P , respectively.
From Figure 1, it is observed that:

1. For fixed θ2, η and n, the optimal value of change time τ in terms
of AV-, D- and P-optimality criteria decreases, when θ1 closes to
θ2. However, the P-optimality is more sensitive criterion than two
others, the AV-optimality is approximately stable (see the top left-
hand corner of the Figure 1).

2. For pre-determined θ1, η and n, the optimal value of τ increases in
terms of D- and P-optimality criteria, when θ2 moves away from θ1,
while it is decreasing in terms of AV-optimality criterion (see the
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top right-hand corner of the Figure 1). In this case, the different
criteria give quite different results. This is because each criterion
can be used for a special purpose. For example, the AV crite-
rion focuses on estimation of the reliability under normal working
conditions while the other criteria play an important role in the
situations in which the estimation of the parameters θ1 and θ2 is
the main goal without relating back to normal working conditions.

3. For pre-specified θ1, θ2 and n, the optimal value of τ increases when
the censoring time η increases, moreover, for a large value of η (as
η > 130), the optimal value of τ is quite stable (see the bottom
left-hand corner of the Figure 1).

4. For fixed θ1, θ2 and η, the optimal value of τ increases when the
sample size n increases, specially, for a moderate value of n (as
n > 10), the optimal value of τ is quite stable (see the bottom
right-hand corner of the Figure 1).

6 Simulation Study

As seen in Section 4, all the criteria used in the paper to find the op-
timal simple SSALT plan depend on the parameters θ1 and θ2. Hence,
when the parameters are unknown they must be estimated based on a
preliminary test (without knowing the optimal τ) and plugged into the
formulas. Therefore, the estimation error will be a main concern. In
this section, we present a simulation study to investigate the robustness
of the criteria with respect to estimation of the parameters. Toward this
end, the following algorithm has been used:

1. It is assumed that θ1 = 0.02 and θ2 = 0.05.

2. The optimal values of τ are derived as τ∗AV = 32, τ∗D = 24 and
τ∗P = 27, which are computed by minimizing (20), maximizing (21)
and minimizing (22), respectively. To derive the value of τ∗AV , it
is also assumed that ω = 0.25.

3. By considering all optimal values of τ derived in the Step 2, a
random sample of size n = 20 is separately taken from the cdf in
(3).

4. Assuming η = 55, the values of θ̂1 and θ̂2 are obtained using (7).
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Figure 2: Box plot of optimal τ for different optimality criteria.

5. By substituting the values of θ̂1 and θ̂2 in the objective functions
(20), (21) and (22), the associated optimal values of τ are com-
puted again by the same way as expressed in the Step 2.

6. The Steps 3–5 are repeated 104 times and the box plots of optimal
change times are obtained for all criteria.

The results are presented in Figure 2 and it is observed that the AV-
optimality criterion is quite stable, but the D- and P-optimality crite-
ria are sensitive to estimation error of the parameters. Note that the
functional type of the log-linear relationship considered between the pa-
rameters and stress levels may be the main reason of the fact that the
AV-optimality criterion is less influenced by estimation error than the D-
and P-optimality criteria. This implies that use of the log-linear func-
tion in (18) is a good idea to estimate the reliability under the normal
operating conditions.

7 Conclusions

In this paper, a simple SSALT plan was considered in a discrete set-up
for which the failure times at each level of stress are geometrically dis-
tributed. It was also assumed that the data are sampled under Type-I
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censoring scheme. To find the optimal change time of the low to high
stress levels, three different criteria were considered, namely, the AV-,
D- and P-optimality criteria. The AV-optimality criterion determined
the optimal value of change time such that the asymptotic variance of
the reliability estimate under the stress level S0, which is a function of
θ̂1 and θ̂2, is minimized. Maximizing the determinant of the FI matrix
and the minimizing the probability of non-existence of the parameter es-
timates lead to the D- and P-optimal change times, respectively. Since
each criterion can be used for a special purpose, it was also seen that
in some situations the different criteria give quite different results. Fur-
thermore, all the optimality criteria used in the paper were depended
on the parameters of interest, hence, a simulation study was performed
and it was seen that the AV-optimality criterion was less influenced by
estimation error than the D- and P-optimality criteria. The proposed
procedure can be extended to some other cases:

• To derive the AV-optimal plan, a log-linear relationship between
the parameters and stress levels was considered. Some other choices
may also be studied in future works.

• All results of the paper were derived by assuming that the data
come from the geometric distribution. Notice that for applications
of the proposed procedure in a practical setting it is important to
verify that the assumptions for using the geometric distribution
actually hold. Independence and equal probability in each trial are
assumptions that have to be fulfilled for the geometric distribution
to apply.
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