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Abstract. Interest in the presence and nature of trend arises frequently
in science, public health, technology, and many other areas. In this ar-
ticle we discuss the notion of trend in the context of recurrent event
processes. We discuss different frameworks within which one can inves-
tigate trend and consider various ways in which trends may be manifest.
Tests for trend are discussed in detail and the utility of intensity-based
models is emphasized for characterizing event processes and understand-
ing trends. Simulation studies are conducted to study the effect of het-
erogeneity in the investigation of trend. Data from a study of hospi-
talization patterns in patients with affective disorder are analysed for
illustration.
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1 Introduction

Processes of recurrent events are of interest in many settings, including
medicine, sociology, economics and reliability (Cook and Lawless, 2007).
In analysing such data, we are generally interested in understanding
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aspects of the stochastic mechanism generating the events. This leads to
consideration of models for the process intensity function, which specifies
the probability of a new event at time t, given the previous history of
event occurrences. In many situations the question arises about the
presence and nature of trend. We discuss definitions of trend in what
follows but, broadly speaking, the term refers to systematic variation
in either event occurrence rates or times between events. Trends, as
we discuss them, are monotonic (increasing or decreasing), which is in
line with both the dictionary definition of trend as a general direction
or tendency, and the common view of trend in time series (White and
Granger, 2011).

Trends in recurrent event processes were discussed at some length by
Cox and Lewis (1966), who gave a number of tests for trend in settings
where there were no covariates. These and subsequent tests proposed
in the literature assume a specific family of models within which certain
sub-models are said to be trend-free. However, for models of recurrent
events there is no universally adopted definition of a trend-free process
or a process with trend (Ascher and Feingold, 1984, Section 9A). This
is also true in other settings; in a review of trends in time series, White
and Granger (2011) noted that “there is no generally accepted defini-
tion” of trend. Despite this, when certain types of trends are present
they are often readily apparent in plots. In medical research, studies
typically involve multiple individuals with covariates, however, and in
that case simple plots may not provide clear evidence concerning trend.
For example, a tendency for times between hospitalizations for psychi-
atric patients to decrease has been proposed (Kvist et al., 2008), but as
we discuss later, this is difficult to establish.

The purpose of this paper is to review concepts of trend in recurrent
event processes and the contexts in which they arise. We will focus on
problems arising in chronic disease processes and on trends that manifest
themselves at the individual subject level. Typical data sets involve
many subjects but perhaps a rather small average number of events per
subject. Standard notation and terminology for recurrent events will be
used, as discussed by Cook and Lawless (2007).

Consider an individual process which starts at a designated time
t = 0, and let N(t) denote the number of events in (0, t]. The history of
event occurrence at time t is denoted by H(t) and includes the number
of events, N(t) = n, and their respective times 0 < T1 < · · · < Tn <
t. The times between events are called gap times and are denoted by
Wj = Tj − Tj−1 (j = 1, . . . , n), where T0 = 0. Unless stated otherwise



Concepts and Tests for Trend in Recurrent Event Processes 37

we consider processes in continuous time in which case the intensity
function

λ (t|H(t)) = lim
∆t↓0

Pr {N(t+∆t)−N(t) = 1|H(t)}
∆t

(1.1)

fully specifies the recurrent event process (Cook and Lawless, 2007, p.
10). Other features of a process that we consider are the marginal mean
and rate functions, defined as

µ(t) = E{N(t)}, ρ(t) = dµ(t)/dt,

respectively.
As noted above, there is no universal definition of trend, or of its

absence. The most common definitions of “no trend” are that either
(a) the gap times Wj are identically distributed for j = 1, 2, . . . or (b)
the rate function ρ(t) is a constant α. The special case of (a) in which
the Wj are also assumed to be independent gives a renewal process.
Then, ρ(t) approaches the value α = E(Wj)

−1 as t → ∞ although it
may vary substantially for small values of t. Another special process is
the equilibrium renewal process; this is a “delayed” renewal process for
which Wj (j = 2, 3, . . .) are i.i.d. with distribution function F (w) and
survivor function S(w), but with W1 having density function f1(w) =
µ−1S(w), where µ = E(Wj), j = 1, 2, . . . (Cook and Lawless, 2007,
p. 148). The equilibrium renewal process has constant rate function
ρ(t) = α = µ−1. Such processes are sometimes useful when the time
t = 0 indicates when observation of an individual begins, but their
recurrent event process has already been operating for some time.

With the “no trend” frameworks (a) and (b) in mind, definitions of
trend usually either involve (a) a model where the gap times Wj are
stochastically increasing (or decreasing) in some way for j = 1, 2, . . .,
or (b) a model in which ρ(t) is either monotonically increasing or de-
creasing. Our purpose in this paper is to consider models and tests for
trend and we operate mainly within these frameworks. If individuals are
observed over long periods so that each experiences many events, then
checking for trend is fairly straightforward. As we will see, however, the
assessment of trends involving rather large numbers of individuals who
experience rather small numbers of event is often difficult. Moreover,
this can be exacerbated by heterogeneity across individuals (see Sec-
tion 3), the existence of systematic temporal factors, and event-related
end-of-followup times τi.

The remainder of this paper is organized as follows. In Section 2
we review the canonical frameworks for analysing recurrent events and
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associated tests for trend. Tests which accommodate heterogeneity be-
tween individuals are discussed along with robust tests. In Section 3
we discuss the possible impact of heterogeneity on inferences regarding
trends in gap time analyses which ignore this feature. This is done an-
alytically and through simulation studies. Intensity-based approaches
for assessing trend are then discussed and these are used in Section 4
to model and study different types of trend in the context of a study of
recurrent hospitalization among patients with affective disorder. Con-
cluding remarks and topics for further research are discussed in Section
5.

2 Review of Models and Tests for Trend

We assume that m independent processes are under study, and focus
on settings where m is reasonably large and the numbers of events ni
for individuals i = 1, . . . ,m are small to moderate. As discussed in
Section 1, we consider two main types of model that represent absence of
trend: (a) models where the times Wj (j = 1, 2, . . .) between successive
events are identically distributed for a given individual, and (b) models
where the rate function ρ(t) for an individual is constant. Case (a)
typically requires a full specification of the recurrent event processes for
reasons indicated below. Case (b) is often considered when we wish to
focus on rate and mean functions for the recurrent events, and avoid full
specification of the process.

We provide a brief review of previous work on testing trend; each
setting involves an assumed family of models that includes sub-models
of type (a) or (b) for absence of trend, as well as alternatives that in-
corporate trend.

2.1 Tests Based on Poisson Processes

Many early tests of trend were based on Poisson processes with rate and
intensity functions

λi (t|Hi(t)) = ρi(t) = αi exp(βg(t)), i = 1, . . . ,m , (2.1)

where g(t) is a specified function, β is a real-valued parameter and
α1, . . . , αm are positive-valued parameters. When β = 0 there is no
trend in the processes. If data consist of event times tij (j = 1, . . . , ni)
observed over specified time intervals (0, τi] for individuals i = 1, . . . ,m,
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a simple test of β = 0 can be obtained from the conditional distribu-
tions of the event times given that Ni(τi) = ni. The nuisance parameters
α1, . . . , αm can be eliminated by this conditioning, leading to the condi-
tional likelihood function (Cox and Lewis, 1966, Sec. 3.3)

Lc(β) =

m∏
i=1

ni∏
j=1

{
exp(βg(tij))∫ τi

0 exp(βg(t))dt

}
, (2.2)

which can be used to test β = 0. A particularly simple test is obtained
from the score statistic Uc(0) = (∂ logLc(β)/∂β)|β=0, which reduces to

Uc(0) =
m∑
i=1

Uci(0) =
m∑
i=1


ni∑
j=1

g(tij)−
ni
τi

∫ τi

0
g(t)dt

 , (2.3)

where Uci(0) is the contribution from individual i to Uc(0). Under H0,
conditional on n1, . . . , nm, the variance of Uc(0) is (Cox and Lewis, 1966,
Sec. 3.3; Cook and Lawless, 2007, Sec. 3.7)

var{Uc(0)} =
m∑
i=1

ni

{
1

τi

∫ τi

0
g2(t)dt−

[
1

τi

∫ τi

0
g2(t)dt

]2}
, (2.4)

and under mild conditions, Z = Uc(0)/var{Uc(0)}1/2 is asymptotically
standard normal as m→ ∞.

Versions of this test with g(t) = t and g(t) = log t are especially
well known and widely used (e.g. see Ascher and Feingold, 1984, Sec.
5B; Bain et al., 1985; Cohen and Sackrowitz, 1993). These tests can be
extended in a number of directions. First, while the αi allow for hetero-
geneity in event rates across individuals, in some cases there may also
be fixed covariate vectors xi (i = 1, . . . ,m). If these affect the inten-
sity multiplicatively, so that ρi(t) becomes αi exp(βg(t))f(xi) for some
positive-valued function f , then once again we are led to the conditional
likelihood (2.2), with the f(xi) eliminated. This fact has been used by
Kvist et al. (2008) and others. Second, if extra flexibility is needed for
representing trends, g(t) and β in (2.1) can be vectors (e.g. Agustin
and Pena, 2005). Third, in settings where the ni tend to be small, tests
based on (2.2) may lack power. In this case we may assume that the αi

are identically distributed random variables whose distribution involves
a small number of parameters; alternatively we may opt to model het-
erogeneity solely in terms of external observable covariates, and use the
unconditional likelihood function (2.11) instead of (2.2). In both cases
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however, the assessment of trend becomes more dependent on explicit
modeling assumptions than when (2.2) is used.

Finally, we note that the tests considered here depend critically on
the null (no trend) and alternative models being Poisson processes. The
null homogeneous Poisson process is the only process which is an ordi-
nary renewal process (with exponential gap times Wj) and at the same
time has a constant rate function. We now consider more general tests
based on rate functions and on renewal processes.

2.2 Tests Based on Rate Functions

More robust tests of trend can be based on robust methods for estima-
tion of rate and mean functions (Lawless and Nadeau, 1995; Cook and
Lawless, 2007, Ch. 3). One family of tests employs the same type of
score statistic Uc(0) as in (2.3), since it can be shown that E{Uc(0)} = 0
as long as the τi are specified followup times and the rate functions ρi(t)
are of the form (2.1) with β = 0. However, the variance estimate (2.4)
does not apply unless the process is Poisson, so it is replaced by the
robust estimate

v̂ar{Uc(0)} =

m∑
i=1

Uci(0)
2 . (2.5)

Under mild conditions, the statistic Z = Uc(0)/v̂ar{Uc(0)}1/2 is asymp-
totically standard normal as m → ∞. Robust tests of this sort have
been considered in more detail by Cook et al. (1996), Cook and Lawless
(2007, Sec. 3.7) and Lawless et al. (2012).

2.3 Tests Based on Renewal Processes

There is also a substantial literature on tests of a “no trend” null hy-
pothesis H0 for a renewal process, where for each individual process
i = 1, . . . ,m, the gap times Wij (j = 1, 2, . . .) are independent and iden-
tically distributed (e.g. see Cox and Lewis, 1966, Sec. 3.4; Lewis and
Robinson, 1974; Wang and Chen, 2000; Kvaloy and Lindqvist, 2003;
Lawless et al., 2012). The tests for renewal processes are typically based
on the assumption that the number of events ni observed for each indi-
vidual is fixed, rather than the followup time. The simplest procedure
is, for the ith process, to use a rank statistic that tests for no association
between the gap times Wij and a specified covariate xij that reflects the
type of trend of interest (Cox and Lewis, 1966, Sec. 3.4). In using a
rank test we replace the Wij with scores; for illustration we take xij = j
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and consider ordered exponential (log rank) scores

ψij =
1

ni
+

1

ni − 1
+ . . .+

1

ni − rij + 1
, (2.6)

where rij is the rank of Wij among Wi1, . . . ,Wini . The rank statistic is
then

Ui =

ni∑
j=1

ψij (xij − x̄i) (2.7)

and under the null (no trend) hypothesis that the Wij (j = 1, . . . , ni)
are i.i.d., Ui has mean zero and variance (Kalbfleisch and Prentice, 2002,
Sec 7.2)

var(Ui) =


ni∑
j=1

(xij − x̄i)
2




ni∑
j=1

(
ψij − ψ̄i

)2
ni − 1

 . (2.8)

Combining across individuals i = 1, . . . ,m, a test of no trend can be
based on the statistic

ZR =
m∑
i=1

Ui/

{
m∑
i=1

var(Ui)

}1/2

, (2.9)

which under the null hypothesis of no trend is asymptotically normal as
m→ ∞ and, for fixed m, as the ni → ∞. The statistic ZR will be effec-
tive against alternatives for which the Wij are stochastically increasing
or decreasing as j increases.

In most biomedical applications the followup time τi is fixed or can
be treated as fixed, rather than the number of events ni, i = 1, . . . ,m.
However, the rank statistic (2.7) is still suitable under the null renewal
hypothesis since the Wij (j = 1, . . . , ni) are exchangeable given that
Ni(τi) = ni. The permutation variance estimate (2.8) is also valid, so a
test of no trend can be carried out using (2.7) - (2.9). This test accounts
for heterogeneity by summing rank statistics across the m processes. A
normal approximation or a permutation (resampling) approach can be
used to get p-values when m is small and the normal approximation is
inadequate. Any resampling method must obey the null hypothesis H0,
and bootstrap procedures that have been proposed for point processes
(e.g. Loh, 2010) do not do this. The procedure whereby we permute the
gap times Wij (j = 1, . . . , ni) within each individual, thus generating
new event times tij (j = 1, . . . , ni), is valid however, because under H0
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the gap times are identically distributed and exchangeable. By generat-
ing B new sets of data this way we can approximate the null distribution
of ZR. The null distribution of the pseudoscore statistic can also be ap-
proximated this way.

We remark that the practice of plotting separate Kaplan-Meier es-
timates of the survival function for each successive gap (i.e. first gap,
second gap, etc.) is inappropriate when there is heterogeneity, due to
a form of induced dependent censoring (Cook and Lawless, 2007, Sec.
4.4), and can lead to a false indication of trend; see Section 3.2.

The rank tests above allow for heterogeneity across individuals, in
fact in a much more general way than the tests of Sections 2.1 and 2.2.
They are also simpler than the nonparametric tests proposed by Wang
and Chen (2000), who consider a statistic based on pairwise comparisons
of gap times that is similar in spirit to a Wilcoxon rank test. However, we
note two situations that cause problems for the rank tests, as well as the
tests in Sections 2.1 and 2.2. First, if the gap times Wij (j = 1, 2, . . .)
for an individual form a stationary but not i.i.d. series, the variance
estimates (2.8) are no longer valid. Second, if the stopping time τi is
determined adaptively based on the event history (e.g. if an individual
is more likely to be lost to followup if they experience many events),
then the distributions of the test statistics considered so far are not as
stated. To deal with such complications, we have to consider models for
the process intensities in more detail, and we turn to this next.

2.4 Tests Based on Intensity Specifications

Time trends may occur because of factors related to the age of a process
or to the occurrence of previous events. A model that allows for both
types of trend is one with intensity function

λ (t|H(t)) = h0 (B(t)) eβ1g1(t)+β2g2(N(t−)) (2.10)

where h0(·) is a non-negative function and B(t) = t − tN(t−) is the
time since the last event. Such a model is often called a modulated
renewal process (Cook and Lawless, 2007, p. 132). If β1 = β2 = 0
the process is a renewal process but otherwise can be said to involve
a trend. The model (2.10) can be extended to allow for heterogeneity
across individuals, for example by adding a multiplicative random effect
in front of h0(B(t)). Doing this is sometimes necessary for the model
to adequately represent the processes of interest, but comes at a price,
because dependence of the intensity on the number of previous events
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is confounded with heterogeneity. See, for example, Cook and Lawless
(2007, Sec. 3.5.3), Aalen et al. (2008, Sec. 7.3), and the next section.
Thus, it is usually of interest to account for heterogeneity as much as
possible through a vector of covariates x on the individuals, say by
incorporating a multiplicative term exp(γ′x) in (2.10). In some cases
we might wish to allow time-varying covariates in order to look for a
trend after adjusting for other temporal effects such as seasonality.

If (2.10) or some other model adequately describes the intensity for
the process, then the likelihood function for m independent individuals
is

L =

m∏
i=1


ni∏
j=1

λi (t|Hi(tij))

 exp

{
−
∫ τi

0
λi (t|Hi(t)) dt

}
, (2.11)

and it remains valid under event-dependent stopping times τi (Cook
and Lawless, 2007, p. 30). Parametric models are easily handled by
ordinary maximum likelihood, as we illustrate later. Semiparametric
models in which h0(w) in (2.10) is allowed to be an arbitrary positive-
valued function can also be handled using the Cox partial likelihood
approach in many cases (Dabrowska et al., 1994; Lawless et al., 2001).

3 Heterogeneity and Trend in Gap Time
Analyses

3.1 Impact of Heterogeneity on Gap Time Analyses

Here we explore the effect of model misspecification in the context of
recurrent event gap time analyses directed at the investigation of trend.
We consider a simple model with a conditional intensity

λi(t|αi,Hi(t)) = αih0(Bi(t)) exp(βNi(t
−)) (3.1)

where αi is a gamma distributed random effect for individual i with
E(αi) = 1 and var(αi) = ϕ, and Bi(t) = t − tiNi(t−). Such “modulated
renewal” models have been considered by various authors (e.g. Pena,
2006). This is a conditional modulated renewal model which incorpo-
rates a trend in the gap time distributions when β ̸= 0; when β > 0
the gap times tend to get shorter as the cumulative number of events
increases. By averaging over the unobservable random effect, we obtain
the intensity of the form

λi(t|Hi(t)) = E(αi|Hi(t))h0(Bi(t)) exp(βNi(t
−)) . (3.2)
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If H0(w) =
∫ w
0 h0(u)du and Ni(t

−) = n− 1, following the derivation in
the Appendix we obtain

E(αi|Hi(t)) =
1 + ϕ(n− 1)

1 + ϕ[
∑n−1

j=1 H0(wij) exp(β(j − 1)) +H0(Bi(t)) exp(β(n− 1))]
.

(3.3)

Upon the occurrence of the nth event, the exponential term in (3.2) in-
troduces a persistent multiplicative factor exp(β) to the intensity func-
tion. The intensity also increases at the nth event, by a multiplicative
factor (1 + ϕn)/(1 + ϕ(n− 1)) from (3.3), but (3.3) also decreases with
increasing time Bi(t) since the most recent event, due to the H0(Bi(t))
term in the denominator which increases with t; the intensity is also
influenced by the preceding gap times, through their presence in the
denominator of (3.3).

The introduction of random effects therefore accommodates hetero-
geneity in the respective gap time distributions between individuals, but
their introduction can also be viewed as a device to generate an intensity
which reflects transient changes in risk following event occurrence. In
contrast, the multiplicative term exp(βNi(t

−)) reflects a persistent effect
of event occurrence on risk of the next event. The ability to distinguish
between these two types of event dependence is related to the magnitude
of ϕ and β, the distribution of the number of events per individual, and
the number of individuals.

3.2 Simulation Studies

The purpose of these simulation studies is to explore the issue of het-
erogeneity and model misspecification in the assessment of trend based
on gap time analyses. In the first scenario we generate data from a
model with β = 0 in (3.1) so there is no renewal trend, but set ϕ > 0
so there is heterogeneity. In the second scenario we take ϕ = 0 in (3.1)
and consider values of β greater than or equal to zero. Here we use
N̄i(t

−) in place of Ni(t
−) in (3.1) where N̄i(t

−) = Ni(t
−) if Ni(t

−) ≤ 20
and N̄i(t

−) = 20 otherwise. This upper limit is adopted to simplify
computation of expected numbers of events and minimize the probabil-
ity of generating unduly large numbers of events for some individuals.
In the third scenario we consider both heterogeneity (ϕ > 0) and a re-
newal trend (β > 0) with N̄i(t

−). Data are simulated under a constant
baseline hazard so h0(w) = h0, and events are generated over the time
interval (0, 1]. In each of the settings studied, h0 was determined so
that the expected number of events per individual was 1, 2 or 4. Two
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thousand data sets of m = 1, 000 individuals are simulated for each of
the parameter configurations.

For each scenario we fit three semiparametric models in which the
form of h0(w) is left unspecified : a semiparametric modulated renewal
model based on (3.1) without the random effect, a semiparametric mixed
renewal model based on (3.1) with the constraint β = 0, and a semipara-
metric hybrid model based on (3.1) with no constraints. The empirical
mean and empirical standard error (ESE) of the parameter estimates
from each of the three fitted models are reported. We also implemented
the pseudo-score test for trend based on (2.3) with g(t) = t and using
the robust variance in (2.5). As discussed in Section 2.1, this test is
geared towards trends in the rate function and accommodates latent
individual-specific effects and fixed covariates. Finally we carried out
the rank-based test for trend using the statistic (2.9) with scores given
by (2.6). For each trend test we report the empirical rejection rates as
the proportion of simulated datasets for which the test statistic exceeded
the nominal 5% critical value.

Table 1 contains the results of the simulation studies for the first
scenario (β = 0). We considered values of ϕ from 0.1 for minimal het-
erogeneity, 0.2 for mild heterogeneity to 0.4 for moderate heterogeneity.
In all cases in Table 1 the mean estimate of β from the fit of the mod-
ulated renewal model is positive reflecting the phenomenon that the
heterogeneity between individuals leads to an apparent trend in the gap
time distributions. That is, even though each individual has no trend
in their event process, when the heterogeneity between individuals is
not accounted for, this omission creates an apparent trend in which the
mean gap times decrease as the number of events increases. The mag-
nitude of E(β̂) increases as ϕ increases, but for a given ϕ, is decreasing
as E{N(τ)} increases. The latter phenomenon reflects the fact that in
(3.3), larger E{N(τ)} comes from scenarios with larger H0(w) = h0w,
so a smaller value of β produces a given value of (3.3).

The estimates of ϕ from the mixed renewal model are generally good
but slightly conservative. For the hybrid model the empirical bias of the
estimator of β is much smaller than for the modulated renewal model
since the heterogeneity is adequately accounted for. The empirical stan-
dard error for β̂ from the hybrid model tends to be larger than it is
for the misspecified modulated renewal model. Moreover the empirical
standard errors for β̂ are much larger than the corresponding average
model-based standard error (ASE) under the hybrid model. This is due
to inadequacy of the usual asymptotic normal approximations, which we
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discuss below. The empirical rejection rates of the robust pseudo-score
test and the rank test for trend are compatible with the nominal 5%
level for all parameter configurations in Table 1.

Table 2 contains the results from the second scenario in which data
were generated with no heterogeneity (i.e. ϕ = 0). We set β = 0,
log 1.10 ≈ 0.095 and log 1.25 ≈ 0.223 to reflect a renewal model, as
well as modulated renewal models with mild and moderate increase in
risk with each event occurrence; again we consider the case where the
expected number of events was 1, 2 or 4. When the (correct) modulated
renewal model is fit, as expected the empirical biases in β̂ are negligible,
there is good agreement between the empirical and average model-based
standard error. The mean variance estimate (average of ϕ̂) from the
mixed renewal model is close to zero when β = 0, but increases with
larger values of β > 0. This indicates that trends at the individual
level must be adequately modeled to ensure estimates of ϕ reflect only
heterogeneity between individuals and not other types of trend or model
misspecification. The estimator of β from the semiparametric hybrid
model has considerably greater empirical standard error than average
model-based standard error when E{N(τ)} = 1, as in Table 1, and
there is also a non-negligible positive bias in the estimate of ϕ. The
empirical performance of the estimators of β and ϕ from the hybrid
model are considerably improved for E{N(τ)} = 2 or 4.

The empirical rejection rates of the two trend tests under β = 0
represent empirical type I error rates and these are again compatible
with the nominal level. For β > 0 these rejection rates give the empirical
power and we see greater power with larger β and larger E{N(τ)}.
Among the two trend tests the robust pseudo-score test appears to be
the most powerful for trends of this type.

Table 3 contains the results of fitting the three models to data gen-
erated with combinations of ϕ = 0.2 and 0.4 and β = log 1.1 ≈ 0.095
and log 1.25 ≈ 0.223. Here we see that estimates of β from the mod-
ulated renewal model are inflated. Likewise, the mixed renewal model
gives estimates of ϕ which, on average, are considerably larger than the
true values. The hybrid model yields estimates which are somewhat
positively biased for β and negatively biased for ϕ; both biases decrease
as E{N(τ)} increases. There is considerably greater variability in the
estimate of β from the hybrid model than is accounted for by the model-
based standard errors (ASE); the relative over-estimation decreases as
E{N(τ)} increases. Again, as one would expect, the empirical power
of the trend tests is greater for larger values of β, but interestingly for
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a given value of β the powers of the two tests are greater for larger
values of ϕ. This might be due to the occurrence of more individuals
with larger ni when ϕ is bigger, though the mean ni is the same. The
robust pseudo-score test often has higher power, but the exception is
when β = 0.223 and ϕ = 0.4 where the rank test has 99.5% empiri-
cal power compared to 97% seen for the robust pseudo-score test. The
higher power of the pseudo-score test may be due to the fact that all
individuals with ni ≥ 1 contribute to it, whereas only those with ni ≥ 2
are used in the rank test.

The bias in β̂ and ϕ̂ and the poor agreement between the ASE and
ESE of β̂ seen in the empirical results for the hybrid model in Tables 1-3,
are related to the fact that β̂ and ϕ̂ are negatively correlated and that
when E{N(τ)} is fairly small, the usual normal approximation to the
sampling distribution of (β̂, ϕ̂) is poor; the performance is particularly
poor for smaller m. A further problem arises from the fact that ϕ ≥ 0
and when ϕ = 0 the maximum likelihood estimate of (β, ϕ) has a non-
standard distribution (Self and Liang, 1987; Barnabani, 2008). When ϕ
is positive but small, sample sizes (in terms of m and ni) must be very
large for the standard asymptotic normal approximations to be valid.

For illustration we examine six simulated datasets with m = 100
from the settings where (β, ϕ) = (log 1.25, 0), (0, 1.0) and (log 1.25, 1.0)
for E{N(τ)} = 1 and 4. Figure 1 contains contour plots for the pro-
file relative likelihood function for (β, ϕ) denoted RLp(β, ϕ), defined by
setting −2 logRLp(β, ϕ) equal to the 50th, 80th, 90th and 95th per-
centiles of the χ2

1 distribution; these would be relevant for obtaining
profile likelihood-based confidence intervals for the individual parame-
ters. For all datasets the negative association between the estimates is
apparent from the orientation of the contours. For the cases in which
E{N(τ)} = 1 the non-elliptical shape of the contours are most evident,
as is the impact of the boundary constraint for ϕ when there is no het-
erogeneity. When E{N(τ)} = 4 the precision is much greater but the
impact of the boundary constraint is still evident.

We also consider two larger simulated datasets of m = 1000 and
E{N(τ)} = 4; one is simulated with ϕ = 0 and β = log 1.25 and an-
other with ϕ = 1.0 and β = 0. For each of these datasets we fitted a
semiparametric modulated renewal model and a hybrid model with

λ(t|Hi(t)) = hn(Bi(t)) , n = Ni(t
−) (3.4)

and

λ(t|αi,Hi(t)) = αihn(Bi(t)) , n = Ni(t
−) (3.5)
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Figure 1: Relative profile likelihood contour plots for (β, ϕ) from the
hybrid model (3.1) for several simulated datasets; E{N(τ)} = 1 (left
column) and E{N(τ)} = 4 (right column); m = 100; p contours are
obtained by setting −2 logRLp(β, ϕ) equal to the 100pth percentile of
the χ2

1 distribution, p = 0.50, 0.80, 0.90 and 0.95.
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respectively, where the hn(w), n = 0, 1, 2, . . . are arbitrary hazard func-
tions. Estimates of the cumulative baseline hazard functions Ĥn(w),
n = 0, 1, 2, . . . , are plotted for both fitted models for each dataset in
Figure 2. The top two figures correspond to the data set generated with
(β, ϕ) = (log 1.25, 0) under models (3.4) and (3.5) and the bottom two
are for the dataset with (β, ϕ) = (0, 1). When there is no heterogeneity
present, the estimated cumulative baseline hazards are comparable for
the Markov renewal model and mixed Markov renewal (hybrid) mod-
els. However, when the true process is a mixed renewal process, the
modulated renewal model incorrectly suggests a trend towards shorter
gap times with increasing number of events. When the heterogeneity is
adequately dealt with through the hybrid model, no trend is seen.

4 Assessment of Trend in Psychiatric
Admissions

We consider here the analysis of data from a study on hospitalization
patterns for psychiatric patients with affective disorder (Kessing et al.,
2004). We begin with a description of the data, which deal with recur-
rent hospitalizations over the years 1994 to 1999. It is of considerable
interest whether the time gaps between successive episodes of hospital-
ization tend to increase with the number of episodes. Earlier, Kessing
et al. (1999) considered models like (3.1) with some additional covari-
ates for data similar to these here, collected over 1971-1993. Kvist et
al. (2010) provide a discussion of the current study along with a statis-
tical analysis aiming to provide insight into aspects of trend regarding
recurrent hospitalizations. We report here on some models fitted to
investigate additional aspects of trend in these data.

We restrict attention to 10,523 individuals with a discharge from a
first hospitalization due to affective disorder between January 1, 1994
and December 31, 1999. Among these individuals, 1106 were diagnosed
as bipolar at the time of first admission and an additional 1295 were
classified as bipolar later during the course of follow-up. Follow-up was
terminated at December 31, 1999 or upon diagnosis of schizophrenia or
an organic disorder, and the hospitalization process itself was terminated
by death. There was a total of 6, 498 readmissions and the number of
readmissions per patient ranged from 0 to 89 (mean = 0.62, SD = 1.72).

Figure 3 displays a timeline for a hypothetical individual where B
denotes the calendar time of birth, and Ak and Dk denote the calendar
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Figure 2: Estimated cumulative baseline hazard functions Ĥn(w) for
modulated renewal and hybrid models fitted to simulated datasets with
(β, ϕ) = (log 1.25, 0) (top row) and (β, ϕ) = (0, 1) (bottom row) ; m =
1000
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Figure 3: Timeline diagram for a hypothetical individual with recurrent
hospitalizations
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Figure 4: Multistate diagram for disease onset, recurrent hospitalization
and death

times of admission and discharge from the kth hospitalization. We use
script letters to indicate measurement on calendar time. We let (τ0, τ1]
denote the calendar interval over which events are observed. To be in-
cluded in the sample, individuals must have had a first hospitalization
over the calendar interval (τ0, τ1], and so L = τ0−B is the left truncation
time for the age of disease onset (taken to be the age at first hospital-
ization). The disease onset and recurrent hospitalization process can be
characterized by the multistate diagram in Figure 4 where we distinguish
the first admission from subsequent admissions by having a disease-free
state which is occupied prior to disease onset.

We let s index time measured in terms of age for an individual, and
use nonscripted letters to denote times measured in age; so Ak = Ak−B,
Dk = Dk − B, etc. Let D denote the age of death, C denote the age
at end of followup, X = min(D,C) and δ(s) = I(s ≤ X). We let
N(s) =

∑∞
k=1 I(s ≥ Ak) count the number of admissions over the age

interval (0, s] and Yk(s) = I(N(s) = k − 1) indicate that the individual
has had their (k−1)st but not their kth hospitalization by age s. We will
also use notation dN(s) = N(s)−N(s−) to indicate that an admission
occurs at time s; a similar notation is used for other counting processes.
It is helpful to define counting processes for each hospitalization and so
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we let Nk(s) = I(Ak ≤ s) indicate that the kth admission has occurred
by age s and ND

k (s) = I(D ≤ s,N(s) = k) indicate death at age s with
a history of k prior admissions. If C(s) indicates that the subject is not
in hospital at age s, then Ȳk(s) = δ(s)C(s)Yk(s) indicates they are under
observation and alive at age s and at risk for their kth hospitalization.

The selection condition that subjects must have their first admission
for affective disorder following January 1, 1994 leads to left truncation
and L = τ0 − B is the left truncation time (age) for the first admission;
we let L(s) = I(L ≤ s) indicate that age s is beyond the left truncation
time for a subject.

We begin with descriptive graphical analyses of the admission rates
as a function of age and admission history. Let Qk(s) denote the cu-
mulative intensity for the kth admission under a working Markov model
in which the admission intensity is a function of age alone, k = 2, . . . ,.
Here Q′

k(s) is the rate of admission at age s for a kth hospitalization
episode, given that a person is at risk. If we add subscripts to indicate
individual i, this may be estimated nonparametrically by

dQ̂k(s) =

∑m
i=1 Li(s)Ȳik(s) dNik(s)∑m

i=1 Li(s)Ȳik(s)
,

Q̂k(s) =
∫ s
0 dQ̂k(u). The corresponding nonparametric estimates of the

cumulative intensities for death at age s are obtained similarly as

dΓ̂k(s) =

∑m
i=1 Li(s) δi(s)Yi,k+1(s) dN

D
ik (s)∑m

i=1 Li(s) δi(s)Yi,k+1(s)
,

giving Γ̂k(s) =
∫ s
0 dΓ̂k(u). Although these estimates are not in general

directly connected to modulated renewal models like (3.1), they provide
insight into hospitalization patterns.

Plots of these estimates are given in Figure 5 in the left panel for the
admission process and right panel for death. The estimates of the cu-
mulative transition rates for second and subsequent hospitalizations are
increasingly steep, indicating that at any given age there is an increase
in risk of hospitalization with an increased history of prior hospitaliza-
tion; the slope of the cumulative rate for the second admission is quite
steep among young children, in part because of the small number of
individuals at risk in this age range.

The right hand panel reveals little evidence of an association be-
tween hospitalization and death since there is no apparent trend in the
mortality rate by hospitalization history.
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Figure 5: Plots of cumulative transition rates for re-admission and death
in the study of affective disorder, stratified by the number of prior ad-
missions with age as the basic time scale.

The robust pseudo-score test and the rank test were applied to this
data using the gaps between discharge and admission for successive hos-
pitalizations. This ignores the effect of durations of hospitalizations, but
given these tend to be short relative to the times between hospitaliza-
tions this may be expected to have little impact on the inferences regard-
ing trend. The robust pseudo-score statistic was 27.37 giving p < 0.0001,
and the rank test with log rank scores ψij as given in (2.6) was -2.49
with p = 0.0128, so both lead to rejection of the null hypothesis and a
conclusion that successive gap times tend to decrease. This does not,
however, provide a clear picture of the nature of the phenomenon. The
much smaller p−value from the pseudo-score test may be due to the fact
that it uses all individuals with ni ≥ 1 whereas the rank statistic only
uses persons with ni ≥ 2.

We next consider gap time analyses with conditional modulated re-
newal models incorporating information on age at disease onset, calen-
dar time effects, time since disease onset, and the cumulative number of
events. To this end we specify models of the form

λ(t|αi,Hi(t)) = αih0(Bi(t)) exp(z
′
i(t)β) (4.1)
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where zi(t) is a p× 1 vector of time-dependent covariates, β is the cor-
responding p × 1 vector of regression coefficients, and αi is a random
effect. We define time t in this analysis as time since disease onset,
which is defined as Ai1, so t = s − Oi where Oi = Ai1 − B is the age
at disease onset. The vector zi(t) can contain functions of age, calendar
time, the number of previous episodes, and so on. This allows us to
examine possible sources of the trend seen in Figure 5.

Let r = 1, . . . , 6 denote the six years from 1994 to 1999 covered by
the data, and let Vr−1 denote the start of calendar year r, r = 1, . . . , 6.
We define Pir = I(Vr−1 ≤ Ai1 < Vr) for r = 1, . . . , 6, where V6 refers
to the end of 1999. This variable is useful for assessing whether there
are trends in the hospitalization patterns with the year of disease onset.
We can also define a related time-dependent covariate which indicates
which period of time t is in: Pir(t) = I(Vr−1 ≤ Ai1 + t < Vr), r =
1, . . . , 6. This variable enables us to examine whether there are patterns
in hospitalization over the calendar time period of observation.

Interest also lies in trends related to the age at disease onset. We
consider a piecewise model to allow for various trends. Let 0 = s0 < s1 <
· · · < sr−1 < sRa = ∞ denote cut-points for age at disease onset, and
let Gir = I(sr−1 < Ai1 −Bi < sr) indicate that individual i had disease
onset during age interval (sr−1, sr], r = 1, . . . , Ra. Trends in admissions
related to current age can also be examined by defining time-dependent
covariates Gir(t) = I(sr−1 < Ai1 − Bi + t < sr), r = 1, . . . , Ra.

One can also examine the effect of time since disease onset which is
by its nature time-varying. To do this we let Oir(t) = I(br−1 < t < br)
where 0 = b0 < b1 < · · · < bRo−1 < bRo = ∞ denote cut-points based,
for example on years. Figure 6 contains a Lexis diagram to indicate how
these time-dependent covariates are defined.

The results of fitting several models of the form (4.1) are reported
in Tables 4 and 5. The first model (1A) reported on in Table 4 contains
a covariate for sex, a categorical covariate for the cumulative number of
prior admissions, which is Ni(t

−) for Ni(t
−) ≤ 7 and 8 for Ni(t

−) ≥ 8,
and a six-category time-dependent covariate for the time since disease
onset. The results reveal a significantly higher rate of admission for
women compared to men. We also see a highly significant trend towards
increased risk of admission with increasing numbers of prior hospital-
izations. There is, however, also a significant trend indicating a lower
admission rate with increasing time since first admission (disease on-
set). There is evidence of substantial heterogeneity, as represented by
the estimate of ϕ.
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Figure 6: Diagram illustrating construction of time-dependent covariates
for an individual in the analysis of hospitalizations for affective disorder

To illustrate the effect of omitting the random effect from this model,
in Figure 7 we plot the estimated cumulative baseline hazards for the first
few gap times based on the corresponding model excluding the random
effect (left panel), as well as this model (right panel); here we stratify on
the number of prior admissions. As in the simulated example, there is
considerably more (spurious) evidence of a trend in the model excluding
the random effect than in the model which appropriately accommodates
heterogeneity.

The conclusions about the effects of these variables are unchanged
when we also adjust for the age of onset (Model 2A). Here we see a sig-
nificantly lower rate of admission for those individuals with later ages of
onset. The third model (Model 3A) indicates that if we include period
of onset but drop years since onset as a factor, the effect of prior admis-
sions becomes inconsistent, with negative and then positive effects. This
may be because the prior admissions parameters are compensating for
the missing years since onset effects; models 1A and 2A indicate oppo-
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site trends for years since onset (decreasing trend) and number of prior
admissions (increasing trend). The final model (4A) includes an effect
for both the period of onset and years since onset, and for this we find
also a lower rate of re-admission for those individuals with disease onset
in the latter part of the observation window, but a consistent pattern
for the effect of prior admissions similar to those for models 1A and 2A.
For each of these models there remains significant heterogeneity in the
admission process across individuals.

Table 5 contains analogous results for models with other time-depend-
ent covariates. In these models the age and period variables do not re-
late to disease onset but rather are time-dependent covariates indicating
current age and current period. The age variable changes at most once
during the period of observation given the wide age intervals used, but
the period variable changes with each year. The conclusions are broadly
similar to those of the analyses reported in Table 4 except that in this
case the effect of prior admissions is consistent across all four models.
This may be due to the fact that for the third model, the current age and
period variables compensate for the missing years since onset, whereas
the period of onset variable in Model 3A of Table 4 does not do this.

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
U

M
U

LA
T

IV
E

  B
A

S
E

LI
N

E
  H

A
Z

A
R

D
  F

U
N

C
T

IO
N

TIME

MODULATED  RENEWAL  MODEL

N(t−) = 1
N(t−) = 2
N(t−) = 3
N(t−) = 4
N(t−) = 5
N(t−) = 6
N(t−) = 7
N(t−) ≥ 8

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
U

M
U

LA
T

IV
E

  B
A

S
E

LI
N

E
  H

A
Z

A
R

D
  F

U
N

C
T

IO
N

TIME

HYBRID  MODEL

N(t−) = 1
N(t−) = 2
N(t−) = 3
N(t−) = 4
N(t−) = 5
N(t−) = 6
N(t−) = 7
N(t−) ≥ 8

Figure 7: Estimates of cumulative baseline hazards from modulated
renewal and hybrid models related to Model 1A of Table 4
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The results in Tables 4 and 5 indicate that the gaps between admis-
sions tend to decrease with the number of prior admissions, but that
this is offset by a tendency for gaps between admissions to increase with
calendar time, age and years since disease onset. To examine the differ-
ences between individuals with unipolar and bipolar affective disorder,
we fitted models analogous to those in Tables 4 and 5 but including a bi-
nary time-dependent variable indicating a diagnosis of bipolar disorder.
These models reveal a significantly higher re-admission rate following a
bipolar diagnosis; for example, adding this variable to Model 1A gives
RR = 1.29 (95% CI: 1.18, 1.41; p < 0.0001). The evidence of higher risk
of re-admission following a diagnosis of bipolar disorder is present in all
fitted models. Similar conclusions are reached from sensitivity analy-
ses in which the same models were fit but on a data set excluding an
individual with 89 hospital admissions, but these models generally had
lower estimates of the frailty variance parameter.

A marginal analysis of the effect of prior admissions, as in Figure
5, is biased towards persons with earlier onset and age of onset, which
gives longer periods of followup. Thus, the effects of prior admissions
seen in Figure 5 are larger than the relative risks seen in Tables 4 and
5.

5 Discussion

There is a wide variety of models that can be fitted to recurrent event
data, and different models lead to different characterizations of trends. It
is important that models which allow an assessment of different aspects
of trend be considered. As illustrated in Section 4, there may be several
types of trend present in data and it can be challenging to distinguish
them. We should add that model diagnostics are important but this
is challenging when heterogeneity is present and when there is a large
number of individuals but small numbers of events per individual. To a
large extent, model checking will depend on comparisons with expanded
models in which additional structure is present. We have illustrated this
to some degree in the application.

An important point that we have not dealt with is selection effects.
These arise when patients are included or withdrawn from studies for
reasons related to their event processes. In the context of the psychiatry
study, patients may die during the course of follow-up and if there is
an association between death and the admission process the individuals
remaining on study may be at lower risk of admission and re-admission.
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This would help explain apparent lower re-admission rates with increas-
ing time since disease onset or even calendar/period effects. The plot
on the right-hand side of Figure 5 does not suggest a strong relation
between admission and death, but this is examined in the context of a
marginal Markov model with the time-scale based on age.

The model (3.1) has a parsimonious way of characterizing depen-
dence on the event history for a given individual. Gjessing et al. (2010)
discuss such models and point out that because of the exponential term
exp(βNi(t

−)), the model “explodes” if t is allowed to become large. To
avoid this problem, we adopt useful closely related models in the sim-
ulation studies and application in which the event count in the linear
predictor is capped at some specified value. When this upper limit is
reasonably large, trends of this sort can still be effectively studied.

Acknowledgements

Data on psychiatric hospitalizations were kindly provided by Professor
Lars Vedel Kessing and Professor Per Kragh Andersen who have used
the data in prior publications on recurrent events. This research was
supported by the Natural Sciences and Engineering Research Council of
Canada (RJC and JFL) and the Canadian Institutes for Health Research
(RJC). Richard Cook is a Canada Research Chair in Statistical Methods
for Health Research. We thank Ker-Ai Lee for programming assistance
in the simulation studies.

Appendix: Derivation of (3.3)

Assume the history Hi(t) consists of n−1 events, at times ti1, . . . , ti,n−1.
Writing “Pr” to denote a probability density for convenience and using
(2.11), we find for model (3.1) that

Pr(Hi(t), αi) =


n−1∏
j=1

αih0(Bi(tij))e
β(j−1)


× exp

{
−αi

∫ t

0
h0(Bi(u))e

βNi(u
−)du

}
g(αi)

= αn−1
i


n−1∏
j=1

h0(wij)e
β(j−1)

×



Concepts and Tests for Trend in Recurrent Event Processes 67

exp

−αi

n−1∑
j=1

H0(wij)e
β(j−1) +H0(Bi(t))e

β(n−1)

 g(αi)

Noting that

E(αi|Hi(t)) =

∫∞
0 αiPr(Hi(t), αi)dαi∫∞
0 Pr(Hi(t), αi)dαi

and that

g(αi) =
ϕϕ

−1−1 exp(−αiϕ
−1)

ϕϕ−1Γ(ϕ−1)
,

we find (3.3) after a little algebra.
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