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Abstract. A case of the matrix Kummer relation of Herz (1955) based
on the Pearson VII type matrix model is derived in this paper. As a con-
sequence, the polynomial Pearson VII configuration density is obtained
and this sets the corresponding exact inference as a solvable aspect in
shape theory. An application in postcode recognition, including a nu-
merical comparison between the exact polynomial and the truncated
configuration density, is given at the end of the paper.
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1 Introduction

Start assuming that a given sample of n “figures”, comprised in N land-
marks (“anatomical” points) in K dimensions, and summarized in an
N × K matrix X, belongs to certain matrix variate distribution with
unknown scale and location parameters. The statistical theory of shape
pursues the distribution of the transforming X after filtering out some
non important geometrical aspect of the original figures, such as the
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scale, the position, the rotation, the uniform shear, and so on; then the
so called shape of the population object should be inferred and some
comparisons among population shapes could be performed, among many
others statistical comparisons in the shape space, instead of comparisons
in the very noised non transformed Euclidean space. As usual, the clas-
sical theory of shape, with different geometrical filters, as the Euclidean
or affine, was based on Gaussian samples, see for example Goodall and
Mardia (1993) and the references therein. Then, the non normal ap-
plications demanded general assumptions for the samples, and the so
termed generalized shape theory was set under elliptical models. Un-
der the Euclidean filter we can mention the work of Dı́az-Garćıa and
Caro-Lopera (2010) and Dı́az-Garćıa and Caro-Lopera (2012); they find
the density of all geometrical information about the elliptical random
X which remains after removing the scale, the position and the rota-
tion. Finally, if an affine filter is applied, in order to remove from X all
geometrical information of scale, position, rotation and uniform shear,
Caro-Lopera et al(2010) obtained the so term configuration density of
X. All the above densities are expanded in terms of the well known
zonal polynomials, in a series of papers by A.T. James in 60’s, see for
example Muirhead(1982).

The transition of the Gaussian shape theory to the elliptical shape
theory demanded some advances in integration involving zonal polyno-
mials (see for example Caro-Lopera et al(2010)), but important prob-
lems remain, the computability of the shape densities.

In this paper we focus in alternatives for such problems. It is easy to
see in Goodall and Mardia (1993), Dı́az-Garćıa and Caro-Lopera (2010)
and Dı́az-Garćıa and Caro-Lopera (2012) that the structure of shape
densities under Euclidean transformations involves series of zonal poly-
nomials which heritages the difficulties for computations of the classical
hypergeometric series studied by Koev and Edelman (2006). However, a
class of the generalized confluent type series of the configuration densi-
ties of Caro-Lopera et al(2010) can be handled in order to transformed
the series into polynomials, and then the addressed open problems for
computations of the series can be avoided.

The configuration density under Kotz type samples (including Gaus-
sian) has this property, and the inference can be performed with polyno-
mials instead of infinite series, see Caro-Lopera et al(2009). The source
for this property resides in a generalization of the Kummer relation of
Herz (1955).

This motivates the present work, claiming that there is a similar
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Kummer relation based on a Pearson VII distribution, which under cer-
tain restriction of the parameters in the associated Pearson VII config-
uration density, it can be turned into a polynomial density. Then the
inference can be performed easily by working with the exact likelihood,
which is written in terms of very low zonal polynomials. In fact the ex-
act densities can be write down by using formulae for those polynomials;
for example, in the planar shape theory (the most classical applications
resides in the study of figures in ℜ2), we can use directly the formulae
given by Caro-Lopera et al(2007) instead of the numerical approaches
by Koev and Edelman (2006), in order to perform some analytical prop-
erties of the exact density.

This discussion is placed in the paper as follows: section 2 defines a
Pearson VII type series and finds an integral representation that leads to
a matrix Kummer type relation which we call Kummer-Pearson VII re-
lation; then by applying some general properties studied by Herz (1955),
the equality is extended for the required domains in the shape theory
context. Finally, Kummer-Pearson VII relation gives the finiteness of
the Pearson VII configuration density in section 3. Finally, section 4
studies an experiment of handwritten digit 3, and compares numerically
the exact and the truncated associated estimates of the mean configu-
rations.

2 Matrix Kummer-Pearson VII relation

Recall that the matrix Kummer relation (due to Herz (1955), see also
Muirhead(1982)) states that

1F1(a; c;X) = etr(X) 1F1(c− a; c;−X). (1)

Now, let X > 0 be an m×m positive definite matrix, then define

1P1(f(t,X) : a; c;X) =

∞∑
t=0

f(t,X)

t!

∑
τ

(a)τ
(c)τ

Cτ (X), (2)

where the function f(t,X) is independent of τ , τ = (t1, · · · , tm), t1 ≥
t2 · · · ≥ tm > 0, is a partition of t,

(β)τ =

m∏
i=1

(
β − 1

2
(i− 1)

)
ti

,

and
(b)t = b(b+ 1) · · · (b+ t− 1), (b)0 = 1.
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Then, using this notation we see that the Kummer relation (1) is a
particular case of a general type of expressions with the following form

1P1 (f(t,X) : a; c;X) = v(X)1P1 (g(t,X) : c− a; c;h(X)) , (3)

where the functions v, g and h are uniquely determined by the particular
function f and according to the domain of the parameters a, c and the
matrix X.

First, we consider an integral representation of the left hand side of
(3) under the model f(t,X) = (b)t.

Theorem 2.1. Let X < I, Re(a) > (m − 1)/2, Re(c) > (m − 1)/2
and Re(c − a) > (m − 1)/2. Then for suitable reals b and d, we have
that

1P1

(
(b)td

−b−t : a; c;X
)
=

Γm[c]

Γm[a]Γm[c− a]

×
∫
0<Y<Im

(d− tr(XY))−b |Y|a−(m+1)/2|I−Y|c−a−(m+1)/2(dY). (4)

Proof. First, we use a zonal polynomial expansion

(d− tr(XY))−b =

∞∑
t=0

(b)td
−b−t

t!
[tr(XY)]t

=
∞∑
t=0

(b)td
−b−t

t!

∑
τ

Cτ (XY).

Then integrating term by term using [Muirhead, 1982, theorem 7.2.10],
we have that∫

0<Y<Im

(d− tr(XY))−b |Y|a−(m+1)/2|I−Y|c−a−(m+1)/2(dY)

=

∞∑
t=0

(b)td
−b−t

t!

∑
τ

∫
0<Y<Im

|Y|a−(m+1)/2

×|I−Y|c−a−(m+1)/2Cτ (XY)(dY)

=
∞∑
t=0

(b)td
−b−t

t!

∑
τ

(a)τ
(c)τ

Γm[a]Γm[c− a]

Γm[c]
Cτ (X)

=
Γm[a]Γm[c− a]

Γm[c]

∞∑
t=0

(b)td
−b−t

t!

∑
τ

(a)τ
(c)τ

Cτ (X)

=
Γm[a]Γm[c− a]

Γm[c]
1P1

(
(b)td

−b−t : a; c;X
)
,
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and the required result follows. �

Now, we derive the version of (1) but based on a Pearson VII type
model, we call this expression, Kummer-Pearson VII relation.

Theorem 2.2. Let X > 0, Re(a) > (m−1)/2, Re(c) > (m−1)/2 and
Re(c − a) > (m − 1)/2. Then for suitable reals b and d, the Kummer-
Pearson VII relation is given by

1P1

(
(b)td

−b−t : a; c;X
)

= (d− trX)−b
1P1

(
(b)t (d− trX)−t : c− a; c;−X

)
. (5)

Proof. Consider W = I−Y in (4), then we obtain

1P1

(
(b)td

−b−t : a; c;X
)
=

Γm[c]

Γm[a]Γm[c− a]

×
∫
0<W<Im

(d− tr[X(I−W)])−b |W|c−a−(m+1)/2

×|I−W|a−(m+1)/2(dW)

=
Γm[c]

Γm[a]Γm[c− a]

×
∫
0<W<Im

(d− trX− tr(−XW))−b |W|c−a−(m+1)/2

×|I−W|a−(m+1)/2(dW)

=
Γm[c]

Γm[a]Γm[c− a]

× Γm[a]Γm[c− a]

Γm[c]
1P1

(
(b)t (d− trX)−b−t : c− a; c;−X

)
,

which is the required result. �

The reader can compare theorem 2.2 (and its proof) with the Kum-
mer relation (and its proof given by Herz (1955)). So the analysis of
Herz (1955) for extending the above relations for other values of the
parameters, holds in the Kummer-Pearson VII relation too.

Explicitly, we proved that the integral representation (4) of 1P1 ((b)t :
a; c;X) holds for Re(X) < I (by analytic continuation), Re(a) > (m −
1)/2, Re(c) > (m− 1)/2 and Re(c−a) > (m− 1)/2. Then by a suitable
modification of the arguments in Herz (1955), we can extend the domain
of (5) as follows.
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Theorem 2.3. Re(X) > 0, Re(a) > (m−1)/2 and Re(c) > (m−1)/2.
Then for suitable complex numbers b and d, the Kummer-Pearson VII
relation is given by

1P1

(
(b)td

−b−t : a; c;X
)

= (d− trX)−b
1P1

(
(b)t (d− trX)−t : c− a; c;−X

)
. (6)

The above relation is important in shape theory applications, in the
so called polynomial Pearson VII configuration density.

3 Polynomial Pearson VII Configuration
Density

Our motivation for studying finite shape densities, comes from the com-
putations of hypergeometric series type involved in these distributions.
It is known, that the zonal polynomials are computable very fast by
Koev and Edelman (2006), but the problem now resides in the conver-
gence and the truncation of the series of zonal polynomials. In fact, in
the same reference of Koev and Edelman (2006) we read:

“Several problems remain open, among them automatic detection
of convergence .... and it is unclear how to tell when convergence
sets in. Another open problem is to determine the best way to
truncate the series.”

Thus the implicit numerical difficulties for truncation of any config-
uration density motivate two areas of investigation: first, continue the
numerical approach started by (Koev and Edelman (2006)) with the
confluent hypergeometric functions and extend it to the case of some
configuration series type, as Pearson VII, Bessel, Logistic, for exam-
ple; or second, propose a theoretical approach for solving the problem
analytically (see Caro-Lopera et al(2009)).

We study now the second question corresponding to the polynomial
Pearson VII configuration density.

Recall that a p×n random matrix X is said to have a matrix variate
symmetric Pearson type VII distribution with parameters s,R ∈ ℜ,
M : p× n, Σ : p× p, Φ : n× n with R > 0, s > np/2, Σ > 0, and Φ > 0
if its probability density function is

Γ[s]

(πR)np/2Γ [s− np/2] |Σ|n/2|Φ|p/2

(
1+

tr(X−M)′Σ−1(X−M)Φ−1

R

)−s

.
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When s = (np+R)/2, X is said to have a matrix variate t-distribution
with R degrees of freedom. And in this case, if R = 1, then X is said to
have a matrix variate Cauchy distribution, see Caro-Lopera et al(2010).

Then, by Caro-Lopera et al(2010) we have that (see Goodall and
Mardia (1993) for the gaussian case),

Lemma 3.1. Let be

A =
ΓK [(N − 1)/2]

πKq/2|Σ|K/2|U′Σ−1U|(N−1)/2ΓK [K/2]
, a = (N − 1)/2, (7)

X = U′Σ−1µµ′Σ−1U(U′Σ−1U)−1/R, c = K/2, (8)

b = s−K(N − 1)/2, d = 1 + tr
(
µ′Σ−1µ

)
/R. (9)

If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), for Σ > 0, then the
non-isotropic noncentral Pearson type VII configuration density is given
by

A 1P1

(
(b)td

−b−t : a; c;X
)
, (10)

where 1P1(·) has been defined in (2).

Unfortunately, the above configuration density with general form
A 1P1(f(t) : a; c;X) is an infinite series, given that a = (N − 1)/2 and
c = K/2 are positive (recall that N is the number of landmarks, K is de
dimension and N−K−1 ≥ 1). So a truncation is needed for performing
inference when the modified algorithms of Koev and Edelman (2006) are
used.

However the above series can be turned into a polynomial if we use
the following basic principle of Caro-Lopera et al(2009).

Lemma 3.2. Let be N−K−1 ≥ 1 as usual, and consider the definition
of 1P1(·) in (2). The infinite configuration density has the general form

CD1 = w(K,N,X) 1P1

(
f(t,X) :

N − 1

2
;
K

2
;X

)
,

for suitable functions: w(·), independent of t and τ but dependent of
K,N and X; and f(·), independent of τ , but dependent of t and possibly
of X (it depends on the generator elliptical function, compare with the
particular Pearson VII case of lemma 3.1). Then, according to (3), if
the dimension K is even (odd) and the number of landmarks N is odd
(even), respectively, then the equivalent configuration density

CD2 = w(K,N,X)v(X) 1P1

(
g(t,X) : −

(
N − 1

2
− K

2

)
;
K

2
;h(X)

)
,
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is a polynomial of degree K ((N − 1)/2−K/2) in the latent roots of the
matrix X (otherwise the series is infinite); where v, g and h are functions
understood in the context of (3) and depends on the elliptical generator
function.

Given an elliptical configuration density CD1 indexed by the function
f(·) and based in the fact that a = (N − 1)/2 > 0, c = K/2 > 0, the
crucial point here consists of finding an integral representation valid
for c − a = −(N − K − 1)/2 < 0, which will lead to an equivalent
elliptical configuration density CD2 indexed by some function g(·). Then
the finiteness of CD2 follows from K even (odd) and N odd (even),
respectively.

In particular, for the Pearson VII generator function, the referred
polynomial density is provided by applying the new Kummer-Pearson
VII relation of theorem 2.3, via lemma 3.2, in lemma 3.1.

Theorem 3.1. Let be A, a, b, c, d and X defined by (7)-(9).

If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), Σ > 0, K is even
(odd) and N is odd (even), respectively, then the polynomial non-isotropic
noncentral Pearson type VII configuration density is given by

A (d− trX)−b
1P1

(
(b)t (d− trX)−t : c− a; c;−X

)
, (11)

and it is a polynomial of degree K ((N − 1)/2−K/2) in the latent roots
of X.

Proof. The proof is trivial, just start with the infinite configuration
density (10):

A 1P1

(
(b)td

−b−t : a; c;X
)
,

where A, a, b, c, d and X are given by (7)-(9). Then apply (6) and the
result follows. Note that the finiteness follows from Lemma (3.2) by
noting that c − a = −(N − K − 1)/2 is a negative integer, when K is
even (odd) and N is odd (even). �

The principle of lemma 3.2 is based on a known property of the hy-
pergeometric series easily extended to series of the type 1P1(f(t,X) :
a, c;X), see (2), which states that if a is a negative integer or a negative
half integer, the series vanishes in a polynomial. Then if we have an
application following a confluent distribution type, it is a polynomial,
always that the parameter a accepts the addressed special domain, oth-
erwise the distribution is a series of zonal polynomials and the open
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problems for its computability remains. This last case occurs for exam-
ple in the general configuration density, which is an infinite confluent
series type because a = (N − 1)/2 > 0, then it is not trivial to turn that
series into polynomials, because the application does not allow a nega-
tive parameter. Then the lemma 3.2 gives a special subclass by selecting
the number of landmarks (even, odd) given the dimension (odd, even),
otherwise the configuration density remains a series, then the associated
Kummer relation must be obtained in order to transform the numerator
parameter a into c− a which is a negative half integer as required. So,
in the context of shape theory under affine transformations, the study
of Kummer relation type plays an important role. It is easy to check
that the classical Kummer relation first derive by Herz (1955), and set in
the context of zonal polynomials by Constantine (1963) is related with
a Gaussian kernel; but if we want to obtain some non Gaussian polyno-
mial densities (under the explained restrictions of N and K), then we
need to derive new Kummer relations; it was the case of certain class
of Kotz configuration densities (which includes the classical Gaussian),
it required the derivation of the associated Kummer Kotz relation, see
Caro-Lopera et al(2009). Thus, in the case of the Pearson polynomial
configuration density the corresponding Kummer relation was the key
point for transforming series.

The above discussion opens related problems in some special topics of
matrix variate analysis involving confluent matrix with special domains
for the parameters, or general hypergeometric series type with more or
equal Pochhammer symbols in the numerator, several examples of this
situations, which demands new developments for Euler relations and
similar ones, can be inferred from some distributions proposed in [?,
chapters 8–11].

4 An Application in Postcode Recognition

As an illustration of the impressive numerical advantage of the exact
polynomial densities against the usual shape densities based con infinite
series of zonal polynomials, this section studies some aspects of a classi-
cal example in statistical shape theory, the handwritten digit 3. Dryden
and Mardia(1998) and other authors have studied the population mean
shape of a collection of 30 handwritten number three. The codes were
summarized in 13 landmarks, according the curvature of the extremes
of the digit. Figure 1 (which was built with the R-package Shapes, au-
thored by I. L. Dryden) shows the sample. The referred studies are based
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on the assumption that the landmarks are randomly normal distributed
and the shape of the object is reached under filtering out the scale, loca-
tion and rotation of the figure. However, the nature of the handwritten
process seems to be far of a modeling with a similarity transformation
and perhaps an affine transformation is closer to this situation, because
the main uniform change of the construction of the figure appears pre-
dominantly in one direction (vertical), simulating a spring type move-
ment, instead of constant growing in all directions. In that case we
remove all geometrical information of the figure which is related with
the scale, location, rotation and uniform shear. An statistical proof of
this statement can be obtained by using dimension model theory, based
on modifications of the so called BIC∗ criterion, see Raftery(1995), Ris-
sanen(1978), Yang and Yang(2007), and the references there in. The
corresponding statistical proof for this experiment under a Gaussian
generator and affine transformation against an Euclidean law is given
by Caro-Lopera et al(2009).

Table 1: The maximum likelihood estimates of configuration location

Truncation Convergence Time Loglikelihood Iterations FuncCount
Seg.

Series 0 N 195 2.2093e+003 15974 20000
Polynomial 0 Y 120.8906 2.1219e+003 8367 10479

Series 5 N 284.5781 2.1686e+003 15977 20000
Polynomial 5 Y 147.4219 1.5346e+003 7854 9914

Series 10 N 361.1563 1.8315e+003 15927 20000
Polynomial 10 Y 228.7500 1.3223e+003 10111 12633

Series 20 Y 378.4844 1.6994e+003 12853 16115
Polynomial 20 Y 299.3594 1.3223e+003 10111 12633

Series 50 Y 532.2656 1.5287e+003 9622 12037
Polynomial 50 Y 521.9375 1.3223e+003 10111 12633

Series 100 Y 1.1054e+003 1.4244e+003 10971 13731
Polynomial 100 Y 883.4219 1.3223e+003 10111 12633

Series 120 Y 957.0781 1.4023e+003 7768 9704
Polynomial 120 Y 901,5687 1.3223e+003 10111 12633

Series 150 Y 1.5775e+003 1.3787e+003 10068 126515
Polynomial 150 Y 1.2637e+003 1.3223e+003 10111 12633
Template

Tables 1, 2 and 3 shows the configuration location estimates by us-
ing two methods, the classical one (based on an infinite series of zonal
polynomials, see lemma 3.1) and the polynomial density obtained by
the matrix Kummer-Pearson relation (see theorem 3.1); the truncation
of the series, the time in seconds and the convergence of the algorithms
are given in the corresponding columns; also it is shown the number
of iterations and functions being evaluated in the optimization routine
and the maximum value reached in the likelihood. Finally, the tables



Kummer-Pearson VII relation 227

Table 2: ...Continuation Table 1

V1 V2 V3 V4 V5

Series

[
−0.9965
0.3517

] [
0.0709
−0.2434

] [
0.0695
−0.3486

] [
0.4455
−0.5559

] [
0.2338
0.4746

]
Polynomial

[
0.0558
0.6188

] [
−0.2476
0.3414

] [
−0.455
−0.0065

] [
−0.5717
−0.3417

] [
−0.435
0.0312

]
Series

[
−0.4139
2.1333

] [
0.2583
1.1821

] [
−1.2376
1.9376

] [
−0.7693
−0.3752

] [
−1.0877
0.0451

]
Polynomial

[
−1.4363
1.7525

] [
−3.0789
1.5125

] [
−3.7258
0.884

] [
−3.7155
0.109

] [
−3.521
0.763

]
Series

[
0.0556
1.0517

] [
−0.3136
0.7415

] [
−0.5988
0.2595

] [
−0.7255
−0.2247

] [
−0.5666
0.2315

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Series

[
0.0668
1.3995

] [
−0.4858
1.0199

] [
−0.8513
0.3873

] [
−1.049
−0.2859

] [
−0.8157
0.324

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Series

[
−0.0738
1.8964

] [
−0.9106
1.4216

] [
−1.4161
0.5915

] [
−1.6445
−0.3127

] [
−1.345
0.4978

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Series

[
−0.3405
2.216

] [
−1.456
1.7225

] [
−2.0655
0.7939

] [
−2.2739
−0.2482

] [
−1.9498
0.6722

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Series

[
−0.4354
2.2876

] [
−1.6332
1.7975

] [
−2.2695
0.8526

] [
−2.4668
−0.2183

] [
−2.1407
0.7234

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Series

[
−0.5634
2.3686

] [
−1.8664
1.8863

] [
−2.5352
0.9255

] [
−2.7168
−0.1767

] [
−2.3905
0.7869

]
Polynomial

[
−1.2968
2.6833

] [
−3.1351
2.2759

] [
−3.9553
1.291

] [
−4.0714
0.0888

] [
−3.7561
1.1051

]
Template

[
−2.0908
2.2071

] [
−4.0409
2.8051

] [
−4.5904
2.2904

] [
−4.2069
1.3688

] [
−3.3126
1.7582

]

show the maximum likelihood estimates of configuration location. It is
important to note that the exact configuration density is just a polyno-
mial of 10 degree, which can be constructed by using the exact formulae
given by Caro-Lopera et al(2007). Also, observe that all the estimates
after this truncation are equal, as it can be noticed in the table. How-
ever, the estimates based on the truncation of the series given in lemma
3.1) are so unstable, in fact, it is not sufficient a truncation of 120 in
the modification of the algorithms of Koev and Edelman (2006) to ob-
tain the exact estimation. Moreover, the computations were performed
with a processor Intel(R) Corel(TM)2 Duo CPU, E7400@2.80GHz, and
2,96GB of RAM, and we tried to obtained an estimation with a trun-
cation of 150, with the same initial values, and the programm does not
tolerate that truncation. Tables also shows the configuration coordi-
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Table 3: ...Continuation Table 1

V6 V7 V8 V9 V10

Series

[
−0.2582
0.4178

] [
0.0624
−0.3006

] [
0.117
0.0974

] [
−0.1171
0.0412

] [
−0.1083
0.5711

]
Polynomial

[
−0.393
0.1695

] [
−0.4416
0.2615

] [
−0.6074
0.0661

] [
−0.7698
−0.3256

] [
−0.822
−0.6514

]
Series

[
−0.251
2.519

] [
−0.5782
1.5909

] [
−1.0868
−0.1355

] [
−1.0048
−0.8559

] [
−1.4068
0.3555

]
Polynomial

[
−3.7978
1.2843

] [
−4.5051
1.6567

] [
−5.2428
1.3901

] [
−5.3697
0.5387

] [
−4.8461
−0.3302

]
Series

[
−0.5192
0.5463

] [
−0.5901
0.7407

] [
−0.794
0.4857

] [
−1.0118
−0.1144

] [
−1.0649
−0.668

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.395
−0.6145

]
Series

[
−0.7521
0.7489

] [
−0.8495
0.9931

] [
−1.1504
0.6829

] [
−1.4295
−0.101

] [
−1.5055
−0.8253

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.3955
−0.6145

]
Series

[
−1.2986
1.0772

] [
−1.493
1.4286

] [
−1.9345
1.0284

] [
−2.2848
−0.0132

] [
−2.318
−0.9888

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.3955
−0.6145

]
Series

[
−1.9591
1.3502

] [
−2.2843
1.784

] [
−2.8528
1.3471

] [
−3.2177
0.1607

] [
−3.1477
−0.9718

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.3955
−0.6145

]
Series

[
−2.1715
1.4227

] [
−2.5401
1.8768

] [
−3.1444
1.4358

] [
−3.5064
0.2207

] [
−3.3982
−0.946

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.3955
−0.6145

]
Series

[
−2.4511
1.5105

] [
−2.8769
1.9884

] [
−3.5264
1.5443

] [
−3.8811
0.2992

] [
−3.7205
−0.9059

]
Polynomial

[
−3.983
1.9115

] [
−4.708
2.4794

] [
−5.5607
2.0488

] [
−5.8348
0.7249

] [
−5.3955
−0.6145

]
Template

[
−3.5881
2.7053

] [
−5.4996
4.0629

] [
−7.5557
4.8428

] [
−8.2514
4.4208

] [
−6.9108
2.8899

]

nates of the template digit 3, a figure consisting of two equal sized arcs,
and 13 landmarks (two coincident) lying on two regular octagons see
Dryden and Mardia(1998), p.153. Finally a test about the equality of
the configuration shape and the templates indicates an approximate zero
p-value, the same conclusion obtained by Dryden and Mardia(1998) and
Caro-Lopera et al(2009) by using other approaches.
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Figure 1: Sample of 30 handwritten digit 3.
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