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On the Discrete Cumulative Residual Entropy
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Abstract. Recently, Rao et al. (2004) have proposed a new measure
of uncertainty for a distribution function F, called cumulative residual
entropy (CRE) and obtained some properties and applications of that.
Asadi and Zohrevand (2007) have proposed that CRE has connected
to some well-known reliability measures. In the present paper, we in-
troduce cumulative residual entropy for discrete random variables and
study some of its properties, and show how it is connected with some
well-known measures such as mean residual life-time.
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1 Introduction

Shannon (1948) introduced a measure of uncertainty in a discrete distri-

bution based on the Boltzman entropy of classical statistical mechanics
and called it entropy. Shannon entropy for discrete random variable X
is defined by

H(X)=-> p(z)logp(x),
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where p(.) is probability mass function of X. With this, he opened up
a new branch of mathematics with far reaching applications in many
areas. To name a few: financial analysis, data compression (Salomon
(1998)), statistics and information theory (Kullback (1959) and Cover
and Thomas (1991)). In continuous cases, Shannon entropy is called
relative entropy that is defined as follows

H(X) = —/_OO f(z)log f(z)dx,

where f is density function. However, the Shannon entropy has certain
disadvantages. For example, it may take any value on the extended
real line, it requires the knowledge of density function for non-discrete
random variables, the discrete Shannon entropy dose not converge to its
continuous analogous, and in order to estimate the Shannon entropy for
a continuous density, one has to obtain the density estimation, which
is not a trivial task. Rao et al. (2004) introduced an alternative of
uncertainty called cumulative residual entropy (CRE). This measure is
based on the cumulative distribution function F' and is defined for non-
negative random variables as follows

§X) =~ [ Fla)log Fla)da,

where F(z) = 1 — F(z) is survival function. £(X) measures the uncer-
tainty contained in the survival function of X. The basic idea in their
definition was to replace the density function by the survival function in
Shannon’s definition. CRE is more general than the Shannon entropy
and possesses more general mathematical properties than the Shannon
entropy. This measure is always non-negative and its definition is valid
for both continuous and discrete cases. It can easily be computed from
sample data and its estimation asymptotically converges to the true
value.

The relation between CRE and Shanoon entropy is as follows.

e If Y be a non-negative random variable with pdf g(y) = %, where

F is the survival function of random variable X, then
1

HY)= ——

Note that in this property, Y is called the equilibrium random variable

assosiated to X (Rao et al. (2004)). Equality (1) clarify that CRE
measures the uncertainty contained in survival function.

§(X) + log E(X). (1)
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e CRE is equivalent to E(MRL(X)), where M RL(X) is the mean resid-
ual life-time function (Asadi and Zohrevand (2007)).

CRE has applications in reliability engineering and computer vision, for
more details see Rao (2005). Baratpour and Habibi Rad (2011) devel-
oped a consistent test for testing the hypothesis of exponentially against
some alternatives. Asadi et al. (2007) showed how CRE connected with
reliability measures such as the mean residual life-time. In this work
we propose an alternative measure of uncertainty for random variable
X with discrete distribution and call it discrete cumulative residual en-
tropy (D-CRE) of X. The main objective of our study is to extend CRE
to random variables with discrete distribution and connect it to some
well-known reliability measure such as mean residual life-time.

Rest of the paper is organized as follows: Section 2 contains some
basic definitions which are required in later sections. The reader may
proceed to section 3, and refer to these results as needed. After that,
in section 3, we define D-CRE and explain some properties of it. Then,
we compute this measure in some examples. We show that D-CRE
dominates the discrete Shannon entropy. Finally in section 4, we show
that D-CRE is always greater than the expectation of the mean residual
life-time of X which plays an important role in reliability and survival
analysis. In this section, we also give a lower bound for the D-CRE of
the statistical models which are in the class of new worse than used in
expectation (NWUE) for discrete distributions.

2 Basic Relationships

In this section, we have some fundamental definitions that are needed in
the next sections. Let X be a counting random variable with probability
mass function p(k) = P(X = k), k=0,1,2,..b, b < oo and survival
function
b b
RE)=P(X>k)=> P(X=z)=> p(), k=0,1,2,.0, b<oo
=k =k

Definition 2.1. The failure rate of X is defined as
P(X =k) pk)

Therefore, we can write

niy = B = RGi+1) | Rlk+1)

R(k) R(k)
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It may be noted that discrete setup ensures upper and lower bounds as
1 and 0, respectively, for the failure rate function. We refer the reader
to Barlow and Marshal (1963) for some general results regarding these
measures.

The most important difference between hazard rate function in contin-
uous and discrete distribution is that —In R(k) # Zf:o h(i). Thus, we
have to determine another version of that. We refer the reader to Roy
and Gupta (1999).

Definition 2.2. The second failure rate (SFR) of X is defined as

R(k —1)
R(k)
= —logP(X > k|X >k—1)

r(k) = log (2)

In (2), P(X > k|X > k —1) is the conditional probability that a device
be alive at time k, given that it has not failed by £ — 1. By noting that
—log(.) is a decreasing function, if P(X > k|X > k — 1) increases, then
r(.) will decrease.

It is easy to verify that the function h(k) and r(k) satisfy the relation
of the form

r(k+1) = —log(1 — h(k)). (3)

Hence, both r(k) and h(k) have the same monotonicity property.

The MRL plays an important role in reliability and survival analysis
to model and analyze the data. Let in the following definition, X be a
discrete random variable with survival function R(k), k = k1, ko, ...(k1 <
ky < ..).

Definition 2.3. The MRL of X, which we denoted by MRL(k)
is defined as

MRL(k)=E(X -k | X > k) = Zk <kj+1)]—k.

kj>k )

Assume k = k;, then we have

MRL i ]+1 (kj-i-l)
j=i
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Let X be a discrete random variable with support {0,1,...,b}, b < oo,
we have

MRL(k) =) RO k=0,1,2,....,b, b<oo.

Classification of distribution with respect to ageing properties is a pop-
ular theme in reliability theory. A class of distributions which arises in
the study of replacement and maintenance policies is the class of new
better (worse) than used in expectation (NBUE (NWUE)) distributions.

Definition 2.4. A discrete random variable X with support N =
{0,1,2,...,b},b < oo or its distribution is said to be D-NBUE (D-
NWUE), if

b
R(E)Y R(s)> (<)Y R(i+1), k=0,1,2,..,b-1 (4

=1 %

o
[y

Il
B

We refer the readers to Esary and Marshal (1973) for some general re-
sults regarding this definition.

3 Discrete Cumulative Residual Entropy

In this section, we introduce an information measure similar to CRE but
for non-negative discrete random variables.

Definition 3.1 Let X be a non-negative discrete random variable with
survival function R(z;), x1 < 23 < ... < xp, b < oo. The discrete
cumulative residual entropy (D-CRE) of X is defined as

b
d(X) = =) P(X >a)(log P(X > z;))(2; — i-1)
=1
b
= =Y P(X >uz;)(log P(X > a))(zi — zi1).
1=2

D-CRE measures the uncertainty contained in distribution function of
discrete random variables. Thus, if d§(X) < d¢(Y'), then we conclude
that the uncertainty contained in distribution function of X is equal or
less than the uncertainty contained in that of Y.
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Some properties of D-CRE are as follows.

e D-CRE takes values in [0, co]. In particular, d§(X) = 0, if and only if
X is a constant.

e If random variable X with support N ={0,1,2,...,b}, b < oo be the
discrete life-time of a device, then

b
d(X) == P(X >i)log P(X >1i).
=1

oIf Y =a+bX, a>0, b>0,then d§(Y) = b(d{(X)).

e If X be uniformly distributed on {x1,z9,...,23}, b < oo, then

b . .
n—u1 n—1
dg(X) = — E n log n ($Z — I‘ifl).
=1

Example 3.1. (a) Consider a uniform distribution with the probability
mass function

1
p(l?) = 57 1":071727
then, its D-CRE is computed as follows
1 1
X)) = =, 5(3 — i) log(§(3 — 1))
i=1

= log3 — ; log 2
~ 0.63
(b) Let X have geometric distribution with density function:
P(zx) = pq®, z=0,1,....
Then, D-CRE of the this distribution is

d(X) = =) q'logq'
=1

e .
= —logg Z iq’
i=1

= —%bgq
p
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We show below that D-CRE dominates the discrete Shannon entropy.

Theorem 3.1. Let X be a discrete random variable with probability
mass function and survival function p(i) and R(i), i = 0,1...;b, b < oo,
respectively. Then,

H(X) )
1—p(0)”

d€(X) = Cexp(
where H(X) is discrete Shannon entropy of X and

Cc = exp[

=g (0)08P(0) + (1= p(0)) log(1.— p(0)

b

+ Y p(@)log(R(z)|log R(x)))) |

=1
Proof. Using the log-sum inequality, we have

b

b
> () logR(x)p(:C) > Y p)l 25z P2) (5)

logR@)] = =" 550 R(x)|log R()
oo 1ee (L P(O)
= (1-p(0))log FEX)

If d¢(X) is infinite, then the proof is trivial. The left-hand side (LHS)
in (5) equals to

b
—H(X) = p(0)logp(0) — Y _ p(x) log[R()|log R(x)]].

r=1

H(X) 1

T=p(0) " T=p(0)
b

+_ p(a) log(R(2)|log R(@)])) <logd¢(X).  (6)

x=1

(p(0)10g p(0) + (1 = p(0)) log(1 - p(0))

Exponentiating both sides of (6), the proof is completed. O

In the following theorem, based on the D-CRE, we find an upper bound
for the expectation of the absolute value of the difference between two
random variables.
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Theorem 3.2. If X and Y be two iid discrete random variables with
support {0,1,2,...,b},
b < o, then

E(IX — Y|) < 2d¢(X).
Proof. By noting that X and Y are iid, we have
P(maz(X,Y) >t)) = 2R(t) — R%(t)
and
P(min(X,Y) > t) = R%(t),
where R(t) = P(X >t
E(|X-Y|) = E(maz(X,Y)—min(X,Y))

) is survival function of X. Thus,

b
= Y P(max(X,Y)>t) - Y P(min(X,Y) > t)
t=1 t=1

b
= 23 (R() - FA()
t=1

b
< 2) P(X >1t)|log P(X > t)] (7)
_ 2e(x)

where (7) is obtained by z(1 — x) < z|logz|, 0 <z < 1. O

4 Relations between D-CRE and some
Measures in Reliability

In this section, we have some theorems and examples. In the follow-
ing theorem, using stochastic ordering concept, an upper bound for the
difference between two D-CRE is obtained.

Theorem 4.1. Let X and Y be two discrete random variables with
support {0,1,2,...,b},

b < oo and finite expectations E(X) and E(Y'), respectively. If X <4 Y,
then

E(Y)

E(X)

dg(X) — d§(Y) < E(X)log
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Proof. By log-sum inequality, we have

b
> P(X >
ZPX>x)logP(X7 ZPX>w)logZ“” il x)
Thus,

BE(X)
E(Y)

b
dé(X) < =) P(X > 1)log P(Y > z) — E(X)log
=1
By definition of X <g4 Y, we have P(X > z) < P(Y > z), which
concludes that
b
d¢(X) < =) P(Y > 2)log P(Y > z) + E(X)log

=1

EY)
E(X)

Thus the proof is completed. O

The following corollary is concluded from Theorem 4.1.

Corollary 4.1. Let X and Y be two discrete random variables with
support {0,1,2, ..., b},

b < oo and finite expectations E(X) and E(Y), respectively. If X <g&Y
and

E(X)=E(), then

d§(X) < d§(Y).

Theorem 4.2. Let X be a discrete random wvariable with support
{0,1,2,...,b}, b< oo and SFR, rj, then

-SSPz )

=1 j5=1

Proof. To prove the result note that

ZZ P(X>i) = ZZlog P(X > 1)

i=1 j=1 zljl
R(0) .
= log —=P(X >
Zong’ (X > 1)
b

= —> P(X>i)logP(X >1i)
=1

= d¢(X). 0
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In the following theorem, we show in the case that the underlying dis-
tribution F' is discrete, the D-CRE is greater than E(MRL(X)).

Theorem 4.3. Let X be a discrete random wvariable with support
{0,1,2,....,b}, b< oo and D-CRE, d§(X), then

dg§(X) = E(MRL(X)), (8)
and equality holds if and only if X be degenerate.

Proof. To prove the result, note that by Theorem 4.2,

L RG-1) .
de(X) = ;;bg WP(X > )
b b .
= > D log R(I‘;(_)l)P(X > i)
j=1i=j
S U)
= lo , P(X >1)
; SRG+1) 1_12;1
b—1 b—1
= > r+ 1)) P(X =i+1)
Jj=0 1=j
b—1 oo v b—1
= e+ == S ez i) )
— pa
2—1 b—1 ]b—l 00 (h(j))" b—1
= D MNP it )+ [d Y I P(X 2 i)
j=0 i=j Jj=0 n=2 i=j

— E(MRL(X))+e¢

> FE(MRL(X)),
where € = 22;5[270;2 W Z?;; P(X > i+1)] is nonnegative. In
equality (9), we used equality (3) and power series of —In(1—~h(j)). The
proof of the if and only if part is trivial. Hence, the proof is complete.
O

The representation in (8) is useful in the sense that in many statisti-
cal models one may has information about the MRL and its behaviour.
Thus, we can find a lower bound for d§(X). Let us look at the following
example.
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Example 4.1. Let X have geometric distribution with density func-
tion:
P(x) = pq®, z=0,1,..,

then its MRL is computed as follows:

MRL(k) = iw

Hence,
E(MRL(X)) =

SRS

In Example 3.1(b) we showed that,

d¢(X) = —]%lnq.

Now by using equality In(z) < x — 1, for 0 < z < 1, we get
q q

g1

p p

Thus, d¢(X) > E(MRL(X))

Remark 4.1. Let random variable X with support N = {0,1,2,...,b},b <
oo be D-NWUE, then based on representation (4), we get

E(X) < E(MRL(X)) < d¢(X).

This gives lower and upper bounds for E(MRL(X)) of the statistical
models which are in the class of D-NWUE distributions. Also, when F'
is D-NWUE one can easily conclude that D-CRE of it is greater than
mean of F'. See the example below for more details.

Example 4.3. Let X be distributed as Waring with probability

density function:

(c—a)(a+z—1)l!
cla—1)(c+ x)!

P(z) = x=0,1,... ¢>a>0.
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It has decreasing D-FR (see Gupta et al. (1997)). Thus, it is NWUE
and a lower bound for the D-CRE is given by

a

< d¢(X).

c—a—1"7"
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