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Abstract. The classical integer valued first-order autoregressive (INA-
R(1)) model has been defined on the basis of Poisson innovations. This
model has Poisson marginal distribution and is suitable for modeling
equidispersed count data. In this paper, we introduce an modification of
the INAR(1) model with geometric innovations (INARG(1)) for model-
ing overdispersed count data. We discuss some structural mathematical
properties of the process comparing with classical INAR(1). Also, the
superiority of the model in contrast with the INAR(1) is shown by some
real time series.
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1 Introduction

Recently there has been growing interest in modeling discrete-time de-
pendent integer valued time series. In developing such models the integer
valued first-order autoregressive (INAR(1)) process, introduced indepen-
dently by McKenzie (1985) and Al-Osh and Alzaid (1987), has received
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considerable attention. This model has been defined on the basis of
binomial thinning operator o of Steutel and van Harn (1979).

Definition 1.1. Let X be a nonnegative integer valued random vari-
able (r.v.). Then for any « € [0, 1] the operator o is defined by

X
aoX =Y Bi(a), (1)
=1

where counting series B;(«) is a sequence of independent identically
distributed (iid) binary r.v.’s with P(Bj(a) =1) =1 — P(B;(a) =0) =
.

Definition 1.2. A discrete-time dependent integer valued time series
{X}} is said to follow an INAR(1) model, if

Xt:CkOXt_1+Wt, t:0,1,2,..., (2)

where {W;} are iid nonnegative integer valued r.v.’s with some discrete
distribution and independent of all the counting series B;(a)’s in (1) and
Xi1.

Note that o € (0,1) implies a stationary dependent integer val-
ued time series, whereas @ = 0 and a = 1 imply independence and
non-stationarity for X;, respectively. The process X; satisfying (2) is
second-order stationary if 0 < «a < 1, with autocovariance function
Cov (X, X;_) = 02a® (Al-Osh and Alzaid, 1987; Du and Li, 1991).

The coefficient « can be interpreted as the proportion of observations
counted at time ¢ — 1 that still remains at time ¢. W; is known as the
innovations (or repositions) produced at time ¢ and « o X;_; can be
interpreted as the number of survivors at time ¢ from the previous period.
The INAR(1) process as defined by (2) can be viewed as both a Markov
process and a GaltonWatson branching process with immigration.

Al-Osh and Alzaid (1987) provide the following representation for
the marginal distribution of the INAR(1) model expressed in terms of
the innovation sequence Wi,

Xi=> aoWiy . (3)
=0

The above representation implies that the marginal distribution of a
stationary INAR(1) process is discrete self-decomposable, i.e., the prob-
ability generating function (pgf) of X, denoted by ¢x(s), satisfies

¢x(s) = ¢x (1 — a+ as)du(s) (4)
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where ¢,, is the pgf of innovations W;. In fact, assuming that the
INAR(1) process is stationary, the pgf of X; satisfies (4). Thus, one
can choose any member of the class of discrete self-decomposable dis-
tributions as the marginal distribution of a stationary INAR(1) model.
It is known that discrete self-decomposability implies infinite divisibility
and unimodality (see Steutel and Van Harn, 2004). Subsequently, the
stationary marginal distribution of a stationary INAR(1) is infinitely
divisible and unimodal. Further, a stationary INAR(1) process has a
Poisson marginal distribution (with mean 6) if and only if the inno-
vations also follow a Poisson distribution (with mean (1 — «)f@). So,
INAR(1) with Poisson innovations is a suitable model for equidispersed
count data wherein the mean and variance are the same. For more
structural and asymptotic properties in INAR(1) process with Poisson
marginal, we refer the reader to Silva and Oliveira (2004), Pavlopoulos
and Karlis (2006) and Park and Oh(1997).

Autoregressive moving-average processes with Poisson marginal dis-
tribution are appropriate for equidispersed time series of counts (where
the mean is the same as the variance). In practice, however, some
discrete time dependence count data may be overdispersed, i.e., the
variance is greater than the mean. McKenzie (1986) developed autore-
gressive moving-average processes with negative binomial and geomet-
ric marginal distributions as analogues of well-known continuous vari-
ates models for gamma and negative exponential variates. Also, Alzaid
and Al-Osh (1988) considered INAR(1) processes (2) with geometric
marginal distribution for time series of overdispersed counts. They de-
noted the model by GINAR(1) and showed that the innovations are
distributed as a mixture of a degenerated distribution at zero with mass
a and a geometric distribution with mass 1 — .

Time series of overdispersed counts can also be modeled through
overdispersed innovations. Let y,, and o2, be the mean and variance of

the innovations, then the mean and variance of the stationary solution
of INAR(1) model (2) are

2
Hw and o® = Var(X;) = Al 1 04y

a (X1) 1—a 1—a?

Y

respectively. Thus, the index of dispersion of the solution, ID(X) =
o2 /u, is related to that of the innovations, ID(W) = 02 /1, according
to the formula

ID(X) = [1+ ID(W)/a]/[1 +1/al.
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showing that the marginal distribution of the solution {X;} is overdis-
persed (i.e., 02 > p) if and only if the distribution of the innovations{;}
is overdispersed too (i.e., 02 > p,). Also, for any fixed value of a,
ID(X) increases when I D(W') does, which in turn implies that in order
for INAR(1) to be a suitable model for a series of counts with arbitrary
large (sample) ID(X), the distribution of innovations must necessarily
be such as to allow for quite large values of ID(W) too, in a rather flex-
ible way. In light of this reasoning, e.g., Pavlopoulos and Karlis (2008)
considered INAR(1) process (2) with innovations from finite mixtures of

Poisson distributions.

In this paper, we study the INAR(1) process (2) with geometric
innovations, denoted by INARG(1). The motivation for such a process
arises from its potential in the modeling of some overdispersed integer-
valued time series.

We also suppose here that a geometric r.v. (innovation) W, denoted
by W ~ Ge(m), has probability mass function (pmf)

P(W =k) = (1 — )T, (k), ()

where m € (0,1) and the indicator function I4(z) equals to 1, if x € A
else equals to zero. Also, the pgf of W is given by
T
Puls) = 1—(1—m)s

It is easy to show that the mean and the variance of W with the
pmf (5) are pu,, = (1 — m)/7 and o2 = (1 — 7)/7?, respectively, with
IDW)=1/m> 1.

The contents of this paper are organized as follows. Some mathe-
matical and structural properties of the INARG(1) process are derived
in Section 2. In Section 3, we discuss parameter estimation and fore-
casting for our models. In Section 4, we use simulation to study the
marginal distribution of INARG(1) process and comparing two maxi-
mum likelihood based estimation approaches. Finally, in Section 5, we
fit both Poisson INAR(1) and INARG(1) models on some real time se-
ries to show the superiority of the INARG(1) model over the traditional
INAR(1) with Poisson innovations.

2 INAR(1) With Geometric Innovations

In this section we introduce an INAR(1) process with geometric inno-
vations and derive some mathematical and structural properties of the
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corresponding marginal distribution of the process, e.g., the mean, vari-
ance, autocovariance and (conditional) likelihood functions. Also, we
compare the average run length of zeros and proportions of zeros in the
INARG(1) process and classic INAR(1) process with Poisson innova-
tions to derive a simple check on the distribution of innovations in the
INAR(1) processes.

We modify classic INAR(1) model of McKenzie (1985) and Al-Osh
and Alzaid (1987) and Alzaid and Al-Osh(1988) as follow.

Definition 2.1. {X;} is said to follow a INAR(1) process with geo-
metric innovation, denoted by INARG(1), if

Xt:CtOXt_l—f—Wt, t:0,1,2,..., (6)

where {W;} are iid Ge(r) r.v.’s independent of X;_; and operator o as
defined in (1).

2.1 Some Mathematical Properties

In the following theorems, suppose that {X;} follow an INARG(1) pro-
cess (6) with Ge(w) innovations.

Theorem 2.1. The mean and variance of X; are

1=
h= (1l — )
and
o l—m
7= (1 —a)’
respectively.

Proof. We have
EXi|Xi—1] = Elao X1+ Wi Xi—1]
Eloo Xy 1| Xi—1] + E[W| X—1]
= aXy 1+ (1 —m)/m 9)

and

Var[X¢|X;—1] = Varlao X1+ Wi|Xi—1]
= Var[ao X;_1|Xi—1] + Var[W;| X;_1]
a(l—a)Xi 1+ (1 —m)/n° (10)
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Hence, by (9), we get
w=FEEX)|Xi ] =ap+ (1 —7m)/m

which implies that the mean of the INARG(1) process is as (7).
Also, by (9) and (10), we have

o® = Var(B[X¢|X;-1]) + E(Var[X;|X;_1])
= Var[aX;_ 1 + (1 —n)/7] + Ela(l — ) X1 + (1 — 7) /7%
?o’+a(l—a)u+ (1 —7)/n°

which implies that the variance of the INARG(1) process is as (8). O

Remark 2.1. By asimilar argument used for INAR(1) (see Al-Osh and
Alzaid, 1987) we can show that the INARG(1) is second-order stationary
for all 0 < a < 1, with Cov(X;, Xy_) = o2a* which depends only on
the lag k. Also, the variance-to-mean ratio (index of dispersion) of X;
is ID(X¢) = 0%/u = 1/m so the INARG(1) is a model for overdispersed
integer-valued time series.

The following theorem implies that X is a unimodal infinitely divis-
ible r.v.

Theorem 2.2. X, is a discrete self-decomposable r.v.

Proof. Clearly, by a recursive substitution, X; can be written as (3)
wherein the innovations Wy’s are iid Ge(w) r.v.’s with the pgf ¢, (s) =
/[l — (1 — m)s]. Thus, the pgf of X is

ox(s) = Hgbw(l—ai—l-ais)

i=0
= S 11
g 1—(1—m)s (11)
where
T
= — , =0,1,.... 12
7TZ ’7'[' + (1 _ 7'[')&27 Z ) 7 ( )

Clearly, the pgf of ¢x(s) satisfies (4), i.e, X; is self-decomposable. [
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Remark 2.2. By (11), X; can be written as
o
X =Yz (13)
=0

oo
=1

where Z;’s ~ Ge(m;) are independent r.v.’s and Zy ~ Ge(my) has the
same distribution as the innovations W; and, consequently, we have

aoXt_l i ZZZ (14)
i=1

with the pgf
U

qbX(l—oz—l—as):Hm.

=1

Therefore, by (13) and (14), the stationary INARG(1) time series X;
and « o X; can be represented as an infinite sum of Ge(m;) r.v.’s with
growing parameter 7; given by (12). It follows that for small « and large
7 the marginal distribution will itself approximate a geometric.

2.2 Marginal and Joint Distribution

The INARG(1) model with innovations W; ~ Ge(w) r.v.’s forms a sta-
tionary discrete time Markov chain with transition probabilities

pij = P(Xy=j|Xi1=1)
Plao Xy 1 + Wi = jl X1 =1)
min (%,5)
= Y PlaoX, 1 =kX, 1 =i))P(W,=j—k)
k=0
min (4,5) ; 4 .
= > () ) e R G - )
k=0

i,j=0,1,...

giving the probability of going from state i to state j in a single step.
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Then, the marginal probability function of X; is given by
pj = P(Xi=)) (15)
o0
= ZpijP(thl =)
i=0

=0 k=0

min (4,5) .
1 i— i .
(4 )= = 1.0 (- Bl
j=0,1,...

which is a mixture distribution.
In order to find the joint probability function, we use the first order
dependence of the process. It leads to the following simplified expression:

f(il,ig, ,’Ln)EP(Xl = il,XQ = ’iQ, ,Xn = Zn) (16)

= P(Xl :il)P(XQ :i2’X1 :il)P(X3:i3|X2:i2)~'-
P(Xn = in|Xn71 = infl)

n—1min (is,is4+1) i ) i
s=1 k=0

X

Ioa,. 3 (isy1 — k)]

2.3 Distribution of Zeros

The introduction of the INARG(1) model is motivated by the presence of
overdispersion in a nonnegative integer valued series. Since excess zeros
are a common feature of overdispersed count data, we therefore consider
the distribution of zero values in such a series. For the INARG(1) process
the transition probabilities from a zero to zero and nonzero values are
equal to m and 1 — 7 , respectively. The run length of zeros in the
process is defined as the number of zeros between two nonzero values
and follows a geometric distribution with termination probability 1 — .
Thus, the average run length of zeros in the INARG(1) time series is
independent of a and is given by n = 1/(1 — 7) that is longer than the
average run length of zeros for the INAR(1) with Po()) innovations, for
A > —log(m).
Also, by the proof of Theorem 2.2, we have the following theorem.

Theorem 2.3.  The proportion of zeros in the INARG(1) process is
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given by
= T
(X:=0) gﬂ—i-(l—ﬂ)oﬂ
whereas the proportion of zeros in the INAR(1) process (with Poisson
innovations) is P(X; = 0) = e~V (1=a),

Remark 2.3. The proportion of zeros in the INAR(1) process (with
Po(\) innovations) is exponentially related to the marginal mean A/(1—
@), i.e., P(X; = 0) = e P(X2) But there is no such a relation between
the marginal mean E(X;) = (1—m)/[r(1—«)] and the proportion of zeros
P(X; = 0) for the marginal of the INARG(1) process given by Theorem
2.3. In fact a simulation study on the INARG(1) process indicates that
in this case P(X; = 0) > e P(X1) This suggests a simple check on
the distribution of innovations in the INAR(1) processes regarding the
proportions of zeros. Consider a time series x1, 9, ..., £, with sample

mean T and proportion of zeros fo = #0/n. Then, fo = e~ favors
Poisson innovations while fy > ™% favors geometric innovations.

3 Parameter Estimation and Forecasting

Let x = (x1,22,...,2,) be an observed time series following INAR(1)
model (2) with Ge(r) innovations and with mean and variance p and
o2 given by (7) and (8), respectively. We shall present two maximum
likelihood approaches for estimation of the parameters of the model.

3.1 Maximum Likelihood Estimation

From the joint probability function (16), we can write the likelihood
function as

L(m,alx) = f(x1,22,...,24,)

n—1min (z;,z;41) (

=]l X
i=1 k=0

x I,y (@iv1 — k)],

where p, is the pmf for z;. Since the marginal distribution is intractable
in general, a simple approach is to condition on the observed X, essen-
tially ignoring its contribution and estimating the parameters by condi-
tional maximum likelihood (CML).
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Alternatively, as noted in Remark 2.2, for large m and small « the
marginal distribution will itself approximate a Ge(7*). Equating first
moment we find

so an approximate full maximum likelihood (AFML) estimation is found
by maximizing

n—1 min (l‘i,CCH_l) <

L\ p,alx) = 77*(1 - ﬂ-*)zl H Z iﬁz > ak(l — Oé)xi*k'
=1 k=0

x [r(1— W)xiH_kI{O,l,...}(mi-&-l — k)]

In the next section, we use simulation to study the limiting marginal
distribution and comparative performance of AFML and CML estima-
tion.

3.2 Forecasting

One of the most common procedures for forecasting the mean value is
to use conditional expectation. Applying the properties of the binomial
thinning operator o leads to the following predictor of the mean:

Xepn| X1 = E[Xein] Xi-1], h=0,1,..

By conditioning arguments as in the proof of Theorem 2.1, and recursive
substitution, we have

h
EX i) Xia] = oaMLX, 4 Hw Z o
k=0
1l -«

1-—

il h+1
« + Xt—l +

where i, is the mean of Wy’s. Clearly, limp,_, oo E[X¢1n|Xi—1] = po/(1—
«), which is the unconditional (marginal) mean of the process.
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Also, the conditional variance of X;,j is given by

h
Var[Xypn| Xe1] = Var[o"™ o X, 1| X, 1] + Var[>  oF o Wypp_g] X 1]
k=0

h
= ah+1(1 - ah+1)Xt_1 + Z[ak(l — ") + 04%012“}
k=0

1 — a1 — ol

— h+1 1— h+1X
o o)X 1—a(l—a)

9 1— a?h—Z

e S
Y 1—a?

where o2 is the variance of W;’s. This variance converges to fi,/[1 —
a(l —a)]+02/[1 —a? as h — co.

In practice the values of m and a will be replaced by their corre-
sponding maximum likelihood estimates.

4 Simulation

Figure 1 shows the sample paths of simulated INAR(1) processes with
Ge(m) innovations for 7 = 0.1,0.5 and a = 0.2,0.5. As we can see from
(7) and (8), for larger v and less ™ we have larger mean and variance so
a tendency to yield larger values, but for smaller values of a and larger
7w sample paths tend to smaller values and frequently returns to zero
with less mean and variance.

Figure 2 and the corresponding Table 1 illustrate the marginal distri-
butions of the simulated series as described above. The bar plots show
that for large m and small «, the empirical marginal distribution decays
geometrically, whereas for smaller 7, and particularly for larger «, the
marginal distribution begins to resemble a more complex mixture, as
we expected by Remark 2.2 and the pmf (15). We propose negative
binomial for the limiting marginal distribution of the INARG(1), be-
cause negative binomial distribution, nb(r, p), can arise as a mixture of
Poisson distributions with mean distributed as a Gamma(r, (1 — p)/p)
distribution. In this model, the mean and variance are r(1 — p)/p and
r(1 — p)/p?, respectively, wherein p and 7 can be easily estimated via
moment method. The goodness-of-fit tests confirm that in this case the
negative binomial gives a reasonable fit to the marginal distribution.
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Table 1: Goodness of fit of negative binomial model for marginal distri-

bution of INARG(1)

(7, a)

(0.1,0.2) (0.1,0.5) (0.5,0.2) (0.5,0.5)
0.114 0.139 0.555 0.622
1.431 2.947 1.497 3.305

x>-Statistic  58.136  67.279  9.323 6.990

p-value 0.050 0.090 0.156 0.430

=<3

Table 2 contains the mean and mean squared error (MSE) of es-
timates by the conditional maximum likelihood (CML) estimation and
approximate full maximum likelihood (AFML) estimation methods. The
estimates were computed by simulating 100 series (of length 100) from
the INARG(1) processes for some chosen 7 and a. The AFML, which
uses a (geometric) approximation to the marginal pmf (for larger )
for the first observation, performed very slightly better than the CML
which ignores (conditions on) the first observation. However for smaller
7, when we know that the approximation to the marginal is not as good,
the AFML performs slightly worse. Given these results, there seems to
be no advantage in using AFML for series of length 80 or more (typical
of the real datasets we examine in the next section).

Table 2: Mean (MSE) of estimates from fitting INARG(1) by CML and
AFML

(m, «a) 7 &
(0.1, 0.2) AFML 0.09806 (0.00050) 0.20645 (0.00136
CML 0.10297 (0.00012) 0.20378 (0.00123

(0.1, 0.5) AFML 0.09782 (0.00061) 0.51485 (0.00202
CML  0.10436 (0.00016) 0.50751 (0.00072

( ) (
( ) (
( ) (
( ) (
(0.5,0.2) AFML 0.50398 (0.00183) 0.19586 (0.00689
( ) (
( ) (
( ) (

CML 0.50348 (0.00185) 0.19603 (0.00690

(0.5, 0.5) AFML 0.50718 (0.00175) 0.50712 (0.00352
CML  0.50713 (0.00176) 0.50713 (0.00352

~—_— — — — ~— — — —
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Figure 1: Sample path of INARG(1) process for 7 = 0.1,0.5 and o =
0.2,0.5 .
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Figure 2: Bar-plots of limiting marginal distribution of INARG(1) for
m=0.1,0.5and « =0.2,0.5

5 Data analysis

We now illustrate with some real time series data the ability of the
INARG(1) to improve on the fit of the traditional INAR(1) with Pois-
son innovations. Our data give numbers of submissions to animal health
laboratories, monthly 2003-2009, from a region in New Zealand. The
submissions can be categorized in various ways. Here we consider one
series giving the total number of bovine cases, and several others catego-
rized by presenting symptoms. One such is the number of submissions
with sudden death, given in Table 3. The sample path and autocorrela-
tion function (ACF) of this series are shown in Figure 3. The series has
a large proportion of zero values, and some long runs of zeros. The ACF
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suggests first-order dependence. We would expect some positive correla-
tion in such series because the underlying processes causing disease will
change smoothly in time.

Table 3: Time series: Sudden death (z = 2.024, s = 6.529, fo = 0.357,
e~ =0.132)

2003 2 3 3 0 1 2 3 8 8 8 1 1
2004 2 0 3 5 1 1 2 6 2 2 1 2
2005 O 0 1 2 4 2 0 0 0 3 0 1
2006 O 0 0 0 3 1 1 7 6 4 1 0
2007 O 0 0 0 0 0 0 4 2 3 5} 0
2008 0O 0 0 0 2 3 9 14 5 3 2 1
2009 O 3 1 1 2 2 2 3 0 0 0 0
sample path: Sudden death Sample ACF plot: Sudden death
. Nl m

0 20 40 60 80 0 5 10 15

X Lag

Figure 3: Sample path and ACF plot of Sudden death submissions

We fitted both INAR(1) (with Poisson innovations) and INARG(1)
models to Sudden death series by conditional maximum likelihood. By
comparing their Akaike’s information criterion (AIC) under each model,
we conclude that the INARG(1) model with W; ~ Ge(0.421) innova-
tions,

X = 03170 X1 + Wy, (17)
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yields a much better fit (with AIC=305.999) than the traditional INAR(1)
model (with AIC=346.4521).

By selected model (17), the predicted values of Sudden death series
are

X1=(1-7)/[r(1-a&)] =2.014
and

~

X, = aX,_1+ (1 — ﬁ')/ﬁ'
= 0.317X,;_1 + 1.375,

fori = 2,3,...,84. Figure 4 shows the closeness of these predicted values
to the sample paths of Sudden death series.

This can be repeated with the other laboratory submission series,
giving the results shown in Table 4. We can see that in all cases the im-
provement from the INARG(1) model is highly significant. We also com-
pare the proportion of zeros fo with e=® (Table 5), suggesting for each
series that the proportion of zeros in the data is greater than expected
from INAR(1) with Poisson innovations. It is interesting that even for
the series of total bovine cases, which has few zeros, the INARG(1) fits
better because the mean is large and so zeros would not be expected
under the INAR(1) model.

Table 4: Fitting INAR(1) and INARG(1) models by CML estimation
method

INAR(1) INARG(1)
Data A & AIC 7 & AIC
Bovine 12.023  0.406 1332.840  0.055 0.167 677.1467
Abort 0.982 0.353 309.0855  0.483 0.294 268.6886
Diarrhoea 4103 0.342 7482907  0.164 0.187 482.0749
Tlthrift 2.422 0.385 512.9148 0.252 0.247 406.6647
Anorexia 0.511 0.385 224.4407  0.637 0.315 195.1021

Skin lesions 1.172  0.173 302.5026 0.444 0.118 273.9057
Sudden death  1.240 0.383 346.4521 0.421 0.317  305.999
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Predicted values: Sudden death

12 14
1 1

10
1

sfunl (x)

Figure 4: Predicted values of Sudden death series

Table 5: Observed (INAR(1)) proportion of zeros of the laboratory sub-
mission series

Data fo e ”
Bovine 0.071 1.21E-09
Abort 0.440 0.223
Diarrhoea 0.214 0.002
Tllthrift 0.238 0.020
Anorexia 0.667 0.440
Skin lesions 0.405 0.240

Sudden death 0.357 0.132
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