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1 Introduction

Numerous results are available in connection with the distribution of
ratios of quadratic forms in normal random variables. However, to our
knowledge, the case of quadratic forms and quadratic expressions in
possibly singular normal vectors and their ratios has yet to be fully
developed. In particular, when dealing with quadratic forms in singular
normal vectors, it has been assumed in the literature that the rank of
the matrix of the quadratic form is greater than or equal to that of
the covariance matrix of the singular normal vector. This is the case
for instance, in Representation 3.1a.5 in [21] and Equation (1) in [38]
which do not involve a linear term. Such a term is present in the general
representation given in Equation (3).

This paper provides a methodology that yields very accurate ap-
proximations to the density and distribution functions of any quadratic
form or expression in singular normal vectors. Such quadratic forms are
involved for instance in singular linear models as pointed out in [29],
in least-squares estimators as discussed in [13] and in genetic studies in
connection with genome scans and the determination of haplotype fre-
quencies as explained in [38]. It should be noted that the computational
routines that are currently available for determining the distribution of
quadratic forms do not address the singular case. Conditions for the
independence of quadratic expressions and quadratic forms in singular
normal vectors are discussed for example in [36] and [27]. The latter
as well as [13] also provide necessary and sufficient conditions for such
quadratic forms to follow a chi-square distribution.

One of the first papers that extended the study of quadratic forms to
the study of their ratios is due to [30]. The notion of mixture distribu-
tions was utilized to obtain convergent series expansions for the distribu-
tion of a positive definite quadratic form as well as that of certain ratios
thereof; the distribution function of the ratio of two independent central
positive definite quadratic forms in normal variables was obtained as
a double infinite series of beta distributions. A mixture representation
is utilized in [2] to derive the moments of the ratios. Inequalities ap-
plying to ratios of quadratic forms in independent normal variates were
obtained in [16].

Ratios of independent quadratic forms involving chi-squares having
even degrees of freedom are considered in [3]. An inversion formula for
the distribution of ratios of linear combinations of chi-square random
variables is derived in [10]. An expressions for the moments of the ratios
of certain quadratic forms as well as conditions for their existence is
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provided in [19]. Other results on the moments of ratios of quadratic
forms may be found in [18], [15], [34] and [31].

The moments of the quantity @Q1/Q2 with Q1 = > a;X; + > ¢ Z;
and Q2 = > b;Y; + > d;Z; where X;,Y;, Z; are mutually independent
chi-square random variables, are derived in [5]; a representation of the
moments about the origin of the ratio Q1 /Q2 was obtained in closed form
in [24]. Representations of the distribution function of ratios of sums of
gamma random variables were derived in [25] and [26]. The fractional
moments of certain quadratic expressions were obtained in [20]. Some
versions of Cochran’s theorem for generalized quadratic expressions are
discussed in [41].

Numerous estimators and test statistics can be expressed as ratios of
quadratic forms. For example, the ratio of the mean square successive
differences to the variance is studied in [40]; a statistic involved in a two-
stage test is considered in [39]; test statistics having this structure are
derived in connection with a two-way analysis of variance for stationary
periodic time series in [37]; certain ratios used in time series analysis were
investigated in [7] and [23]; and test statistics related to some general
linear models are considered in [17].

Ratios of quadratic forms that are connected to certain analysis of
variance problems such as the determination of the effects of inequality
of variance and of correlation between errors in the two-way classifi-
cation, are considered in [4]. Another example is the sample circular
serial correlation coefficient associated with a first order Gaussian auto-
regressive process, X;, which, in [42], was taken to be an estimator of
the parameter p in the stochastic difference equation X; = pX;—1 + Us
where the U] s are independent standard normal variables. The first few
terms for the series expansions of the first and second moments of this
serial correlation coefficient are derived in [32]. An approximation to the
distribution of the ratio of two quadratic forms in connection with time
series valued designs is discussed in [37]. A statistic whose structure is
a ratio of two sums of gamma variables for the problem of testing the
equality of two gamma populations with common shape parameter is
derived in [33]. The sample serial correlation coefficient as defined in [1]
and discussed in [28] as well as the sample innovation cross-correlation
function for an ARMA time series whose asymptotic distribution was
derived in [22], also have such a structure. Certain ratios of quadratic
forms are investigated in [17] in the context of the general linear model.
An approximation to the null distribution of the Durbin-Watson statistic
which tests for autoregressive disturbances in a linear regression model
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with a lagged dependent variable is considered in [14].

A decomposition of noncentral indefinite quadratic expressions in
possibly singular Gaussian vectors is provided in Section 2. It should
be noted that only real Gaussian vectors are being considered in this
paper. The moments of such quadratic expressions are determined from
a certain recursive relationship involving their cumulants in Section 3.
Approximations to the distribution of quadratic expressions by means of
gamma-type distributions and polynomially adjusted density functions
are introduced in Section 4. Ratios of quadratic forms are discussed in
Section 5. More specifically, ratios whose distribution can be determined
from that of the difference of positive definite quadratic forms and ratios
involving idempotent or positive definite matrices in their denominators
are being considered, and suitable approaches are proposed for approx-
imating their distributions. Several illustrative examples are provided
including applications to the Durbin-Watson statistic and Burg’s esti-
mator. Section 6 focuses on the case of ratios of quadratic expressions
in singular normal vectors.

2 A Decomposition for Indefinite Quadratic
Expressions

A decomposition of noncentral indefinite quadratic expressions in pos-
sibly singular normal vectors is given in terms of the difference of two
positive definite quadratic forms and an independently distributed nor-
mal random variable. Their moments are determined from a certain
recursive relationship involving their cumulants.

Let Q*(X) = X’AX +a’X +d be a quadratic expression in a possibly
singular normal vector X where X ~ N p(u, X), ¥ >0, Ais a p X p real
symmetric matrix, a is a p-dimensional vector and d is a scalar constant.
Let the rank of ¥ be r < p; we make use of the spectral decomposition
theorem to express ¥ as UWU' where W is a diagonal matrix whose
first r diagonal elements are positive, the remaining diagonal elements,
if any, being equal to zero. Next, we let By, ,, = U W1/2 and remove the
p — 1 last columns of B*, which are null vectors, to obtain the matrix
Bypxr. Then, it can be verified that ¥ = BB’. When ¥ is nonsingular,
B is taken to be the symmetric square root of ¥, that is, »1/2 whose
dimension is p X p. On expressing X as u + BZ where Z ~ N,.(0,1),
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r < p, one has

Q*(X)

Q" (Z)=(p+ BZ)A(p+ BZ)+a'(u+ BZ)+d
= pWAp+20WABZ +7Z'B'ABZ +a'BZ + a'pu +d.

Let P be an r x r orthogonal matrix such that P"B’ABP = Diag()\,

..y Ar), where A\q,..., \,, are the positive eigenvalues of B’AB, A, 11

=+ = Ay40 = 0 and A\ 4941,..., A are the negative eigenvalues of

B'AB, m’' = (my,...,m,) =a'BP, b* = (b%,...,b5) = W/ABP, d is a

scalar constant, B’AB # O and ¢; = p/Ap + @’ + d. Then, on letting
W = P'Z and noting that W = (W1, ..., W,.)’ ~ N,.(0, I,.), one has

Q" (X)

= Q"(W)=2b"W + W'Diag(A1,...,\,) W+ m'W + ¢
(m' + 2b*" YW + W'Diag(\1, ..., A\ )W + 1

T 1 . '
= 2Z(§mj HOOW; 4+ > MW+

j=1 j=1
r1 71 r r
= QZTLJ‘W]‘—FZ)\J'W]-Z-FQ Z anj— Z ‘)\j’sz
Jj=1 Jj=1 Jj=ri+6+1 j=r1+0+1
r1+6
+2 Z n;W; +c1
j=ri+1
1 i 2 r T 2 r1+0
= YW+ = Y I+ 2 Y W
j=1 J j=r14+6+1 J j=ri+1
N
Jj=1 j=r1+6+1
r1+0
= QW) = QW )+2 Y nW;+n
Jj=r1+1
= QW) —Qa(W™) + T, (2.1)

where Q1(W™) and Q2(W ™) are positive definite quadratic forms with
W+ = (W1+n1/)\17 R 7WT‘1 +n1“1/)\7“1)/ ~ er(ylal)a vy = (nl/)\la R
n7‘1/)\7’1 )/7 W™ = (Wr1+9+1+nrl+0+l/)\r1+9+17 SRR WT’_'_n’I‘/AT)/ ~ Nrfmf%
(vo,I), va = (Npy40+1/Ary40+1s-- -5/ Ar)', 0 being number of null

: N SN X _ _\ " 2 .\’ 2 .
eigenvalues, n; = 3m;+b7, k1 = <61 2N /A = e nj/)\J>
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and T = (2 Z;g?ﬂ njWj + k1) ~ N(k1, 4Z§1t19+1 n3). Note that
T} = k1 whenever rank(AX) = rank(X).

When p = 0, a central quadratic expression can be represented as
follows:

Q(X) = D NWI+Y mW,+d
j=1 j=1

r1+06
= QW)= QW)+ > mWj+rj
Jj=ri+1
= QW) — QW) + 17, (2:2)

where Q1(W7) and Q2(W7) are positive definite quadratic forms with
Wii_ = (Wl + ml/(2)‘1)’ N mrl/(2)\7’1))/ ~ er(pfl’l)v H =
(ml/(2)‘1)> SRR mﬁ/(2)‘r1))/7 Wl_ = (WT1+9+1+mr1+9+1/(2)‘7’1 +9+1)7 s
Wr+mr/(2)‘ ) ~ Ni—ri—o(bo, D), o = (Mg 1041/ 2Ny 041)s- -,/

@0 = (4= S5y m? [ (40) = Sy sppam3/ (4)) and Tf =
<2;;tf+1 miWi + w5) ~ N(wF, 500 m).

When a = 0 and d = 0, one has a quadratic form in a possibly
singular normal vector whose representation is

QX) = XAX = QZb;Zj +Z)\JZJZ + ¢

j=1 j=1
1 b*\ 2 r b\ 2
- Sy S i)
j=1 I j=ri+6+1 J
r1+6
+2 > biZj+ k"
j=r1+1
= Q1(W1) — Q2(Wa) +T7, (2.3)

where Q1(W1) and Q2(W3) are positive definite quadratic forms with
W1 = (Wl, cee ,er)/, WQ = (Wr1+0+17 cee ,W ), and W' = Zj + b;/Aj,

= “/Alj’a K" = (C* - Z] lb;z/)‘ Z] ri+6+1 j /)‘ ) and T% =
+ +6 .

2 U2+ R~ N (%, 457500 03%). Tt should be pointed out

that the representation (2.3) is new as it was previously assumed in the

statistical literature that the rank of A is greater than or equal to that

of 3, which is quite restrictive; see for instance Representation 3.1a.5 in

[21] and Equation (1) in [38].
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The representation of a quadratic expression given in Equation (2.1)
also holds for indefinite quadratic expressions in nonsingular normal vec-
tors. In that case, r = p in the derivation and the quadratic expression is
also expressed as the difference of independently distributed linear com-
binations of non-central chi-square random variables having one degree
of freedom each (or equivalently the difference of two positive definite
quadratic forms) plus an independently distributed linear combination
of standard normal random variable. In particular, a noncentral indefi-
nite quadratic form in a nonsingular normal vector can be represented as
the difference of two positive definite quadratic forms. When g = 0, the
representations involve central chi-square random variables. When the
matrix A is positive semidefinite, so is ), and then, Q ~ Q1. Moreover,
if A is not symmetric, it suffices to replace this matrix by (A+A")/2in a
quadratic form. Accordingly, it is assumed without any loss of generality
that the matrices associated with all the quadratic forms appearing in
this paper are symmetric.

3 Cumulants and Moments of Quadratic
Expressions

Expressions for the characteristic function and the cumulant generating
function of a quadratic expression in central normal vectors are for in-
stance available from [8]. Representation of the cumulants of quadratic
forms and quadratic expressions in nonsingular normal vectors, which
are useful for estimating the parameters of the density approximants,
are provided in this section.

Let X ~ N,(p, %), ¥ >0, A= A’ abea p—dimensional constant
vector, d be a scalar constant, Q*(X) = X’AX + a’X + d and Q(X) =
X’AX; then, the A" cumulants of Q*(X) and Q(X), are respectively

k*(h) = 2h1h!{tr(‘4]f)h + ia’(EA)h’2§]a + 1/ (AD) T Ap
+a’(EA)h_1Au}, for h>2
= tr(AY)+p'Ap+a'u+d, for h=1; (3.1)
and
k(h) = zh—lh!{“(AhZ)h + (AR T Apy,  for B2

= tr(AY) +p'Ap  for h=1. (3.2)
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These expressions are derived in [21]. Alternatively, the A*" cumulant of
Q(X) = X’AX can be expressed as

k(h) = 2h*1h!iA§L(b§+1/h) =2 h—1) 6, (3.3)

j=1
where A1, ..., )\, are the eigenvalues of E%AE% ( ) denotes the trace
of (), b = (by,...,by) = (P/z—%u)'and O = S0 (B2 + 1), h =

1,2,.... Note that tr(AX)" = ] 1 )\?
In the case of a quadratic expression in a singular normal vector
whose associated covariance matrix ¥ has rank r < p, the A" cumulant

k*(h) = 2 1hl {(1/h)tr(B’AB)h +(1/4)a' B(B'AB)"2B'a
+ W AB(B'AB)" 2B/ Ap + a’B(B’AB)h_QB’Au}
2h=1p) {(1/h)tr(AZ)h +(1/4)a (SA)"2%a

S (AS) L Ap + a’(ZA)h_lu} : (3.4)

where ¥ = BB’, B being of dimension p x r, and by assumption B’AB #
0.

In general, the moments of a random variable can be obtained from
its cumulants by means of a recursive relationship given in [35], which
can be deduced for instance from Theorem 3.2b.2 of [21]. Accordingly,
the '™ moment of Q*(X) can be obtained as follows:

h—1
K (h— i) (3.5)

_1_2 lzl
1:0

where k*(h) is as specified in (3.4).

4 Approximate Distributions for Quadratic
Expressions

Since the representations of indefinite quadratic expressions involve @) =
Q1 — Q2 where @1 and ()2 are independently distributed positive definite
quadratic forms, some approximations to the density function of ) are
proposed in Sections 4.1 and 4.2.
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Letting Q(X) = Q1(X1)—Q2(X2), f1(q1) L7, 00) (q1) [2(2) L(7y,00)(92)
and h(q) Zn(q) respectively denote the approximate densities of Q1(X7) >
0, Q2(X2) > 0 and Q(X) where X’ = (X, X}%) and X; and X; are in-
dependently distributed, Z4(.) being the indicator function with respect
to the set A, an approximation to density function of the indefinite
quadratic form Q(X) can be obtained as follows via the transformation
of variables technique:

h(q) = hnl@) Z(—co, 7y —2) (@) + Pp(@) Li7y 1y, 00) (@), (4.1)
where
i) = |  hWhi- 0 (4.2
and
mo) = [ B R =0 dy. (43)

In Equation (2.1), a quadratic expression is represented as the differ-
ence of two positive definite quadratic forms plus 77, an independently
distributed normal random variable. One can make use of Equation
(4.1) to obtain an approximation to the distribution of Q = Q1 (W) —
Q2(W7). Then, on noting that @ and 7} are independently distributed,
one has that their joint density function is f(q,t) = h(q) n(t) where n(t)
is the density function of T;. In order to determine an approximation
to the distribution of V' = Q + T, it suffices to apply transformation
of variables technique. Letting U = T, the joint density function of U
and V is g(v, u) = f(v—u, uw)|J| where J is the Jacobian of the inverse
transformation. Thus, the density function of V is

oo

s(v) = / g(v,u)du. (4.4)
—0o0

Approximations to the distribution of quadratic expressions by means

of gamma-type distributions are discussed in the next subsection. As

explained in Section 4.2, one can improve upon such approximations by

resorting to polynomial adjustments.

4.1 Approximations Based on Gamma-Type Distributions

Gamma-type approximations are appropriate to approximate the den-
sity function of noncentral quadratic forms. First, let us consider the
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gamma, distribution whose density function is given by

xa—le—x/ﬁ
P(x) = WI[O’OO)(I‘), for a >0 and 3 > 0. (4.5)
Let the raw moments of a noncentral quadratic form be denoted by p;,
j = 1,2,...; then, a gamma approximation can obtained by equating

the first two moments associated with (4.5) to 1 and g, respectively,
and evaluating o and 3. In this case, a3 = py and a(a +1)8% = puo,
which yields
_ M M2
o= 5
M2 — py 1
A generalized gamma density function can be expressed in the fol-
lowing form:

@) = gy @7 Tosg (@) (4.6)

where a > 0, 8 > 0 andy > 0. Denoting its moments by m;, j =
0,1,..., one has,

_ BT +3/7)

T (4.7)

m;

When () is used to approximate the distribution of a noncentral
quadratic form, the parameters «, § and ~ are determined by solving
simultaneously the equations

i =mj  for j=1,2,3, (4.8)
which are nonlinear.

A four-parameter gamma or shifted generalized gamma density func-
tion is given by

() = W (@ — ) e 5 I, ) (2) (4.9)

where a« > 0, >0, v >0 and 7 € R.

Letting 71 = 70 = 0 in Equation (4.1) and making use of gamma
approximations as specified by (4.5), the density function of Q(X) =
Q1(X) — Q2(X) is given by hn(q) Z(—oo,0)(9) + hp(q) Zjo, o) (q), with
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hnlg) = /Oooﬁ(y)fz(y—Q)dy

_ ﬁl_al BZ_O‘Q eq/ﬁz 19,(&1+a2)/2 6719(1/2 (_q)(a1+a272)/2
I(az)

XWias—ar)/2,(1—a1—as)/2(—=0q) (4.10)

and

hp(q) = /Oofl(y)h(y—Q)dy

B By oo g-(ar+az)/2 —94/2 ffortar-2)/2
I'(a1)

XW(a1—o¢2)/2,(1—a1—0¢2)/2(ﬁQ) (411)

where ¥ = Bézﬁ"’, Vg #0,01 >0,a0>0,01 >0,082>0,(l—a1—a)is
not a negative integer or zero and W (-) denotes the Whittaker function,
which on making use of some identities given in Sections 9.220 and

9.210.1 of [9] can be expressed as follows:

F(—Q/j,) u—i—l —z/2 1
W = PR (=14 20+ 1
l#(z) F(%—M—l)z 2e 141 { @ l+27 p+ 1z
I'(2 1
bt (e o)

where 1 F(a,b,z) = > 72 %

Consider the singular quadratic expression Q*(X) and its decomposi-
tion, that is, Q1 (W) —Qo(W ™ )+T;. The approximate density function
of @ = Q1 (WT) — Q2(W7) is as specified in (4.10) and (4.11) while
Ty ~ Nk, 4 370 n2) is distributed 1ndependently of Q1(WT)

j=r1+1 7Y
and Q2( W7). The den81ty function of T} being n(t) = (1/( \/27ra
e (t=51)%/(29) where o2 = 4Z§1+rf+1 n;, it follows from Equation (4.4)
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that the approximate density function of V = @ + T is

s(v) = /_0; g(v, u)du = /_O; h(v —u)n(u) du
= /_OO (hn(v —u
(

= / hn(v —u)

(sn(v) + 5p(v))

(—00,0) (’U - u)”(u)
hp(0 = 1) T 0y (v — W)y (1) ) du

)T,
n(u)du + /_v hyp(v — u) n(u) du
Iy(v)

(4.12)

with

o

sp(v) = n(v n(u) du

S~

05 =2, (v—r1)?/(20%) B2 04651 2b=0 k=2

hn(v —u)
{fk'F a2

|
wmg

X

(1 a2)2r(k T3 g2 Pl ka2 + DT —a)

«T(2 - a) (\fﬁwr (1(k+ a)) R (;(kz—i- a); 1;<>

“2(o* + o - ) T (55T ) R (PR )
1

BiT(a1 )T (k + a) V280 (k + ax)
x[(a = 1l(a )(fﬁzar (“1) 1F1<k+1,1,¢)

—2(0® +vBs — Bor1) T (];-Fl) 1F1 <k+2, 3,C)>

1
@)k + a)

<520F (k;1> 1Fy <k+l, 1,C> \f(02+vﬂ2—ﬂ2/€1)

-T <§+1> 1F1<k+2,3,C>} (4.13)

X (0o)* +

201k + a1)'(a — D)I'(a)
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and

hp v—u)n(u)du

—00

sp(v) =

\

(v—r1)?

00 { fa2k'r(a1)2)_12§*26_ 252 ﬂ]__O“/BQ_QQ_Z

Il
I~

(1 — ag)r(k —a -+ 2)F(042))

22 BT (k + a1)T(1 — a)T(a)

X

A
x<\fﬁgar< k:+a)> 1 <;(k+a);;;c>
+2 (0 +vfBs — Pok1) T (;(k—l—a—i—l))

X1k (;(IH—aJr 1); ;;C) (=7 (252 <

)
xT(a)T(k — as + T2 — a)T'(a — 1 By0T (k + 1)
r

X1F1<k+171,C>+\[(U + vy — Pak1) ( >

n(239)

where a3 > 0, ag > 0, 81 > 0, B2 >0, a = a1 +as, b = B1 + Ba,
9= (B1+B2)/(B1B2), ¢ = (02 +vPa— Bak1)?/(28%0?), and it is assumed
that a1 and ay are not positive integers and that (1 — a3 — ag) is not a
negative integer or zero.

4.2 Polynomially Adjusted Density Functions

In this section, the approximate densities are adjusted with polynomials
whose coeflicients are such that the first n moments of the approximation
coincide with the first n moments of a given quadratic form.

In order to approximate the density function of a noncentral indefi-
nite quadratic form Q(X) = Q1(X) — Q2(X), one should first approxi-
mate the density functions of the two positive definite quadratic forms,
Q1(X) and Q2(X). According to Equation (3.5), the moments of the
positive definite quadratic form Q1(X) denoted by uﬁ-”, j=12,...,
can be obtained recursively from its cumulants. Then, on the basis of
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the first » moments of Q1(X), a density approximation of the following
form is assumed for Q;(X):

ful@) = p(z) ) &al (4.14)
j=0

where (z) is an initial density approximant referred to as base density
function, which could be for instance, a gamma, generalized gamma or
shifted generalized gamma density.

In order to determine the polynomial coefficients, §;, we equate the
h" moment of Q1(X) to the A" moment of the approximate distribution
specified by fy,(x), that is,

WD = / () Gaide =3 g / 2 () de
T =0 =0 T1

1

n
= Zgj Mh+j, h=0,1,...,n,
7=0

where my; is the (b + 7)™ moment determined from ¢(z). For the
generalized gamma, m; is given by Equation (4.7). This leads to a
linear system of (n+ 1) equations in (n+ 1) unknowns whose solution is

_ - _ -1 -

b
o mo  mi o s My M(())
1
&1 _ | om2 e Mpg Ng )

L {n _ L Mp Mp41 - mon | L M%l) ]

The resulting representation of the density function of @1(X) will be
referred to as a polynomially adjusted density approximant, which can
be readily evaluated. As long as higher moments are available and the
calculations can be carried out with sufficient precision, more accurate
approximations can be obtained by making use of additional moments.

The density function of Q2(X) can be approximated by making use
of the same procedure. An approximate density for Q1 (X) — Q2(X) can
then be obtained via Equation (4.1).

Example 4.1. Consider the singular quadratic expression Q*(X) =
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B
i
&

L L L L L
100 200 300 400 500

Figure 1: Approximate cdf of U; (dots) and simulated cdf

X'AX + a’X +d where X ~ N5(u, ¥),

4 41 2 1 33320
4 4 1 2 1 33320

A=11 100 0 |-%=|[3 35 2 0 [>
2 2 0 0 0 2 2 2 20
1 100 1 000 0 1

p=0,a =(1,2,3,4,5) and d = 6. The rank of ¥ being 4, the ma-
trix B is obtained as explained in Section 2. The eigenvalues of B’AB
are \1 = 76.8865, Ao = 0.9121, A3 = 0 and Ay = —0.79856. Refer-
ring to the representation specified by Equation (2.2), r = 4, r; = 2,
0 =1, u; = (—0.0509184, —0.946023)", us = —1.42496, k7 = 6.30293
and 251;;19 11 mj2 = 20.7175. The approximate density function was then
determined from Equation (4.12). Figure 1 indicates that the gamma
approximation and the simulated distribution (based on 1,000,000 repli-
cations) are in close agreement.

5 The Distribution of Ratios of Quadratic Forms

5.1 The Distribution of Ratios Expressed in terms of that
of Indefinite Quadratic Forms

Let R = Q1(X)/Q2(X) = X'AX/X'BX where the matrices of A and B
can be indefinite, the rank of B being at least one and X ~ N, (u, X);
then, one has

X'AX _ to) — Py (X’(A —tyB)X < 0) . (5.1)

< =
Pr(R < to) = Pr (X,BX <
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Table 1: Two polynomially-adjusted approximations (d = 10) to the
distribution function of D evaluated at certain percentage points (Sim.
%) obtained by simulation

CDF Sim. % Gam. Poly G. Gam. Poly

0.01  1.36069 0.010435 0.010420*
0.05 1.64792 0.050280 0.050377*
0.10  1.80977 0.099761 0.099770*
0.50  2.39014 0.495934 0.495953*
0.90  2.93742 0.902156 0.902100*
0.95 3.07679 0.952783 0.952781*
0.99  3.31005 0.991466 0.991457*

On letting U = X'(A — toB)X, U can be re-expressed as a difference
of two positive quadratic forms plus a constant or a linear combination
of independently distributed standard normal random variables, as ex-
plained in Section 2. This approach is illustrated by the next example
which involves the Durbin-Watson statistic.

Example 5.1. The statistic proposed by Durbin and Watson in [6],
which in fact assesses whether the disturbances in the linear regression
model Y = X3 + € are uncorrelated, can be expressed as D = & A*e /
&'e where € = Y — X3 is the vector of residuals, 8 = (X'X)"!XY being
the ordinary least-squares estimator of 3, and A* = (a;‘j) is a symmetric
tridiagonal matrix with aj; = aj,, = 1;aj; =2, fori =2,...,p—1; a;; =
—Llifi—j| =1;and aj; = 0if [i—j| > 2. Assuming that the error vector
is normally distributed, one has € ~ N,(0, I) under the null hypothesis.
Then, on writing € as MY where My, = I — X(X'X)"1X' = M’ is an
idempotent matrix of rank p — k, the test statistic can be expressed as
the following ratio of quadratic forms:
Z'MA*MZ

D = A (5.2)
where Z ~ N,(0,I); this can be seen from the fact that MY and MZ
are identically distributed singular normal vectors with mean vector 0
and covariance matrix M M’. The cumulative distribution function of
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D at ty is
Pr(D < tg) = Pr (Z’M(A*M —t])Z < 0), (5.3)

where Uy = Z'M(A*M — toI)Z is an indefinite quadratic from with
A= M(A*M —toI), p = 0 and ¥ = I. One can obtain the moments
and the various approximations of the density functions of U; from Equa-
tions (3.5) and (4.1). An 8*'-degree polynomially adjusted gamma cdf
approximant is plotted in Figure 1.

We make use of a data set that is provided in [12]. In this case, there
are k = 5 independent variables, p = 18, the observed value of D is 0.96,
and the 13 non-zero eigenvalues of M (A*M — tol) are those of M A*M
minus t3. The non-zero eigenvalues of M A*M are 3.92807,3.82025,
3.68089, 3.38335, 3.22043, 2.9572, 2.35303, 2.25696, 1.79483, 1.48804,
0.948635, 0.742294 and 0.378736. For instance, when to = 1.80977,
which corresponds to the 10" percentile of the simulated cumulative
distribution functions resulting from 1,000,000 replications, the eigenval-
ues of the positive definite quadratic form @;(X) are 2.11817, 2.01035,
1.87099, 1.57345, 1.41053, 1.14734, 0.54-313 and 0.44706, while those of
Q2(X) are 0.01507, 0.3218, 0.86126, 1.06761 and 1.43116.

Polynomially adjusted density functions were obtained for D with
gamma and generalized gamma base density functions. The correspond-
ing cumulative distribution functions were evaluated at certain per-
centiles of the distribution obtained by simulation. The results reported
in Table 1 suggest that the polynomially adjusted generalized gamma
approximation (G. Gam. Poly) is slightly more accurate. (The closer
approximations are indicated with an asterisk.)

5.2 Denominators Involving Idempotent Matrices

Let R = X'AX/X'BX where X ~ Np(p, ¥), A is indefinite and B
is idempotent. Then, as stated in [11], the A*® moment of the ratio of
such quadratic forms is equal to the ratio of their A moments, that is,
E(R") = E[(X’AX)" /E[(X'BX)"]. As a matter of fact, the previous
example involves such a ratio.

Example 5.2. In Example 5.1, M, the matrix of the quadratic form
appearing in the denominator of D, is indeed idempotent. Thus, the A™®
moment of D can be obtained as E(Z'M A*MZ)"/E(Z' MZ)", and poly-
nomially adjusted generalized gamma density approximants as defined
in Section 4.2 can be directly determined from the exact moments of D.
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Table 2: Approximate cdf’s based on the moments of D

CDF Sim. % G.Gam. G. Gam. Poly

0.01 1.36069 0.011744  0.010365*
0.05 1.64792 0.050061* 0.050308

0.25 2.08536 0.243139  0.247947*
0.50  2.39014 0.495703  0.495807*
0.75  2.68610 0.754125  0.748325*
0.95 3.07679 0.952770  0.952614*
0.99 3.31005 0.989273* 0.991458

A polynomial adjustment of degree d = 10 was made. The approximate
cumulative distribution functions resulting from the generalized gamma
and the polynomially adjusted generalized gamma were evaluated at cer-
tain percentiles obtained from the empirical distribution generated from
1,000,000 replications. The results reported in Table 2 indicate that the
proposed approximations are very accurate.

5.3 Denominators Involving Positive Definite Matrices

In this section, we consider ratios of quadratic forms for which the
quadratic form in the denominator is positive definite. Accordingly,
let R = X'AX/X’'BX where A is indefinite and B is positive definite.
Then, one has the integral representation of the A" moment of R given
in (5.4) whenever it exists.

Letting Q1 = X’AX and Q» = X’BX,

E(R)" = E[(X’AX)h(X’BX)—h}
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Y e
N F(h)A y dsh (MQLQQ(Sv _y) |s:0)dy

- L /Oo yht (dh | I — 2sA% + 2yBY | ~V/?| ) dy
F(h) 0 dSh B

1 /Oo h—1 | sx—1 (1/2
), ¢ 1

d" ~1/2
X(@’Z —2sA+2yB | /\s:o)dy

where Mg, ,(s,y) is the joint moment generating function of Q1(X)
and Qg (X)

In the next example, we determine the moments of Burg’s estimator
of an autoregressive parameter, as well as its approximate distribution.

Example 5.3. Burg’s estimator of the parameter o in an AR(1)
process is defined as & = 231, xyai1/ >y (2 + x7_;) , which can
be expressed as @ = X'B1X/X'ByX where

0 1 0 0 1 0 0 0
1 0 1 0 0 2 0 0
Bi=1| o 0| Bo=1]o 0
0 1 0 1 0 0 2 0
0 0 1 0 0 0 0 1

and X ~ N,(0,X), the inverse of the covariance matrix of an AR(1)
process being

1 —« 0 0
—a 14> —a 0
2t o= 0 0
0 —a 14+a®> -«
0 0 —« 1

In light of Equation (5.4), the A" moment of Burg’s estimator is
given by E(a)" = E [(X'B1X)"(X'ByX)~"] . Thus letting Q> = X'ByX
and Q1 = X’B1X, one has
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E@" = E’< h F(lh)/oooyh—le—@y) dy

1 /oO h—1 | v—1 (1/2
) 41

d* -1 ~1/2
% (@ | 571 —2sB1 +2yBo |71?[s=0 ) dy. (5.4)

In this case, the matrix ¥ ~! — 2sB; + 2y By is tridiagonal, which simpli-
fies the calculations. Since the support of the distribution is finite, we
approximate the distribution of R by making use of a beta distribution
as base density function on the basis of the moments of Burg’s estimator.
The proposed methodology comprises the following steps:

1. The moments of @ with n = 50 and o = 0.5 are determined from
Equation (5.4).
2. Consider the following beta density function as base density
1 a—1 B—1
= 1-— Z , a>0, >0,
6@) = gragr e (=2 T (@), a> 0.

where B(a, ) = I'(a) I'(8)/T'(a + f).
3. The support (g, r) of y is mapped onto the interval (0,1) with the affine
transformation, x = (y — q)/(r — q), which implies that y = z(r — q) +¢q.

4. The transformed moments on (0, 1) are determined from the binomial
expansion.

5. The parameters of the beta density are evaluated as follows:

1- 2 1-—
a:—M1+( ,U1)M17 ﬁ:—l—oH—( Ml):“l‘
2 2
Mo — K Ho — Hi

6. Approximate densities are obtained with and without polynomial
adjustments using the procedure described in Section 4.2.

A polynomial adjustment of degree d = 7 was made. The cumulative
distribution functions of the beta and the polynomially adjusted beta
approximations were evaluated at certain empirical percentiles which
were determined from 1,000,000 replications. The results reported in
Table 3 clearly indicate that the proposed polynomially adjusted beta
approximation is indeed very accurate.
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Table 3: Approximate cdf’s based on the moments of @ (n = 50 and
a=0.5)

CDF Sim. %  Beta Beta poly

0.001 0.034102 0.000595 0.001177*
0.01  0.157475 0.008215 0.010906*
0.05  0.263371 0.048012 0.051062*
0.50  0.490013 0.508722 0.500073*
0.95 0.667366 0.944097 0.949802*
0.99  0.727433 0.986898 0.989970*
0.999 0.785393 0.998254 0.999007*

6 Ratios of Quadratic Expressions in Singular
Vectors

Let A; = A} and Ay = A} be indefinite matrices, X be a p x 1 vector
with E(X)=p, Cov(X) =X >0, p(X)=r<p, ¥ =BB', B being
a p X r matrix, a; and as be p-dimensional constant vectors and d; and
d2 be scalar constants. Then, letting Q% (X) = X'A;X + a} X + d; and
Q5(X) = X' 43X + a4 X + do, the distribution of the ratio of quadratic
expressions

. X’AlX + a’1X + dl
X' AX +alX +dy

R (6.1)

can be determined by noting that

Fr(to) = Pr(R < to) =Pr(Q1(X) - tQ3(X) < 0)
= Pr((X'A;1X +a)X +dy) —to(X A2 X + atX +ds) < 0)
= Pr(X'AX +a'X+d<0) (6.2)

where A = Al —tQAQ, a' = a’l —toa’2 and d = dl —ton.

According to (2.1), the distribution of R can be obtained in terms
of that of a difference of two positive quadratic forms plus a constant or
an independently distributed normal random variable.
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