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1 Introduction

The skew-normal is a class of distributions that includes the normal
one as a special case. In particular, a random variable Z is said to be
skew-normal with shape parameter A, written Z ~ SN (A), if its density
function at z is

f(z:A) =20(2)P(N\z)  z,A € R, (1)

where ¢ and ® denote the N(0,1) density and distribution functions,
respectively. We note that, when A = 0, Z is a standard normal variable,
while otherwise the sign of A gives the sign of the skewness.

In practice, it is common to work with a location and scale transfor-
mation Y = p+ oZ with p € R and o > 0. Hence, the density for the
random variable Y, written Y ~ SN (u, 0, A), is

2 y—p Yy —
Flys X s 0) = —p(F—=)2(AT—=). (2)
Liseo and Loperfido (2004) showed that, in standard form of skew-
normal distribution when all the observations have the same sign, MLE is
infinite and the probability of this to occur is given by [(0.5—arctan\)"™+
(0.54arctan))”]. There are some methods for solving this problem which
are proposed by Sartori (2006) and Bayes and Branco (2007).

A systematic treatment of the skew-normal distribution has been
given in Azzalini (1985, 1986) and Henze (1986). Generalizations to
the multivariate case are given in Azzalini and Dalla-Valle (1996) and
Azzalini and Capitanio (1999). Also, Arellano-Valle et al. (2002) show
that many of the properties of the multivariate skew-normal distribution
hold for a general class of skewed distributions. These are obtained from
a symmetric class, defined in terms of independence conditions on signs
and absolute values and give a general formula to obtain skewed pdf’s.
From these results, Arellano and Genton (2005) introduced the class
of fundamental skewed distributions, and gave an unified approach to
obtain multivariate skew distributions starting from symmetric ones. In
this paper, we shall use a modified version of the multivariate skew-
normal distribution, proposed by Azzalini and Dalla-Valle (1996) which
is a special case of the fundamental skew-normal distribution proposed
by Arellano-Valle and Genton (2005).

We assume a p X 1 random vector Y follows a SN distribution with
p % 1 location vector w, p X p positive definite dispersion matrix 3 and
p % 1 skewness parameter vector X, and we write Y ~ SN, (p, 3, X), if
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its probability density function (pdf) is given by

Fy) = 20p(ylp, D) N (y — p)), (3)

where ¢, (.|p, X) stands for the pdf of the p-variate normal distribution
with mean vector p and covariance matrix 3 shown as Np(u,3). Note
that for 4 = 0 and ¥ = I, expression (3) reduces to standardized
multivariate skew-normal distribution with skewness parameter vector
A, denoted by SN, (A) also for A = 0 reduces to the symmetric N, (p, X)-
pdf, while for non-zero value of A, it produces a perturbed (asymmetric)
family of N,(u, X)-pdf’s.
Expectation of Y if Y ~ SNy(u, 3, A), is given by:

2 A
E[Y] = +21/2><5\f, 0= ——,
Y= 7r VI+ XA

(Arellano-Valle and Genton, 2005).

Some properties concerning this form of multivariate skew-normal
distribution are referred by Azzalini and Della-Valle (1996), Azzalini
and Capitanio (1999) and Arellano-Valle and Genton (2005).

Our focus in this article is on longitudinal data analysis. Longitudi-
nal studies represent one of the principal research strategies employ in
medical and social research. The defining feature of such studies is that
subjects are measured repeatedly through time. A pervasive problem
that arises in the context of analysis of longitudinal data is presence of
missing data. In some cases, a subject may be missing one of several
measurement occasions; however, it is more likely that there are missing
data due to drop-out. Drop-out, refers to a subject removing himself or
herself from the study, prior to the end of the study. Consequently, the
data record for this subject prematurely terminates.

Rubin (1976) provided a framework for the incomplete data by in-
troducing the important taxonomy of missing data mechanisms, consist
of missing completely at random (MCAR), missing at random (MAR)
and missing not at random (MNAR). A mechanism is said MCAR, if
missing values are independent of both unobserved and observed data,
and MAR if, conditional on the observed data, the missing values are
independent of the missing measurements and otherwise the missing pro-
cess is termed MNAR. In addition, Diggle and Kenward (1994) defined
dropout process to be completely random dropout (CRD) if it is MCAR,
random dropout (RD) if it is MAR and non-random dropout (NRD) if
drop-out is dependent on missing outcomes.
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Several simple approaches to this problem have been proposed, none
of which are statistically satisfactory, for instance the simplest approach
is complete case analysis where limits the analysis to only those sub-
jects that are completed for all time points. Unfortunately, the available
sample at the end of the study may have little resemblance to the sam-
ple initially randomized. Reasons for not completing the study may be
confounded with the effects that the study was designed to investigate.
Another method that belong to a class of semi-parametric regression
techniques is generalized estimating equations (GEE). Method of GEE
is used to fit the parameters of a generalized linear model where cor-
relation between responses of the same individual has to be taken into
account. The GEE allows for correlation without explicitly defining a
model for the origin of the dependency, hence it is most suitable when
the random effects and their variances are not of direct interest, also this
method is useful under MCAR. They are frequently applied in longitu-
dinal studies as they can handle many types of unmeasured dependence.
In Section 3.2 these methods are explained and compared with proposed
methodology in this paper.

Even though the assumption of likelihood ignorability encompasses
both MAR and the more stringent and often implausible MCAR mech-
anisms, in most real settings it is impossible to exclude the possibility
of a more general missingness mechanism, i.e. MNAR. A solution is
to fit an MNAR model, consider a general pattern of missing data and
let R; denote the associated vector of missingness indicator related to
Y;, such that R;; = 1 if Y; is observed and otherwise R;; = 0. When
missing mechanism is MNAR, three frameworks modelling approaches
may be used to joint model the missing mechanism and responses: se-
lection, pattern-mixture and shared parameter models. These models
are defined by the conditional factorization of the joint distribution of
Y, and R;.

The selection model factorization is based on

f(yiril0,v) = f(yil€0)f(rily:, ), (4)

where 0 and v denote parameter vector of measurements and miss-
ingness mechanism, respectively. The two vectors of parameters are
assumed to be distinct. The first factor in (4) is the marginal density
of the measurement process and the second one is the density of the
missingness process, conditional on the outcomes.

An alternative model is based on so-called pattern-mixture models
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(Little 1993, 1994, 1995). These are based on the factorization

f(yiri|0,%) = f(yilri, 0)f(rily).

The third model is referred to as shared-parameter models:

f(yi,ril0, ¥, by) = f(yilri, 0, b;)f(ri|e, b;),

where the model explicitly include a vector of unit-specific latent (or
random) effects b; of which one or more components are shared be-
tween both components in the joint distribution. Some references to
such model are Wu and Carroll (1988) and Wu and Bailey (1988, 1989).
Particular studies on non-random drop-out, when Y is distributed as
normal distribution are considered by Diggle and Kenward (1994), Ken-
ward (1998) and Crouchley and Ganjali (2002). In dropout pattern
usually R; is replaced by D;, where D; is the dropout location of the
first missing value in Y;.

Most of the above mentioned statistical methods are based on nor-
mal symmetric distribution and when asymmetric and consequently ab-
normality are observed in the data sets, some simple data-based trans-
formations have proposed which maybe helpful in reducing skewness.
Nevertheless the achievement of joint normality is rarely satisfied in mul-
tivariate cases. Furthermore, sometimes skewness is an inherent factor
of population and ignoring them maybe lead to bias parameter esti-
mates and subsequently misrepresentation of the results. Over the last
two decades, there has been a growing interest in proposing the para-
metric family of multivariate skew-normal distribution that attracts the
attention of researches to confront with skewness problems in the data
sets. This distribution include multivariate normal family, when vector
of skewness parameter is equal to zero, and have more flexibility of shape
and some other characteristic such as skewness, kurtosis and dependence
structure.

Some application of skew-normal family can be found in Arellano-
Valle et al. (2005b) for measurement error model, Cancho et al. (2008)
for non-linear regression model, Arellano-Valle et al. (2005a) and La-
chos et al. (2007) for linear mixed model, Bolfarine et al. (2006) and
Bolfarine and Lachos (2007) for binary regression and probit measure-
ment error model, respectively. Also, there are some discussion about
Baysian inference for skew-normal family in Liseo and Loperfido (2004).

Ibrahim et al. (2001) discussed nonignorable missingness in gener-
alised linear mixed model. The use of skew-normal family for analyzing
data with missing values has considered by Lin and Chen (2009) and
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Baghfalaki and Ganjali (2011). Lin and Chen (2009) formulated Ex-
pectation Conditional Maximization (ECM) algorithm for calculating
parameter estimation of incomplete skew data and they used Gibbs sam-
pling for performing a Bayesian inference on model parameters to create
multiple imputations for missing values. Baghfalaki and Ganjali (2011)
developed EM algorithm to obtain the maximum likelihood estimates
of parameters in bivariate skew-normal distribution for analyzing longi-
tudinal skew-normal data with non-monotone missing values. However,
both of these applications are under MAR, mechanism. Although these
methods will have reasonable results at the suitable condition, under
MNAR (NRD) mechanism, they are unusable. In this paper, under a
NRD assumption, we extend non-random dropout model of Diggle and
Kenward (1994) for the analysis of multivariate skew-normal models
when missing values occur in the responses.

In the context of non-random missingness the use of a selection
model does not involve any identifiably problem for parameter estima-
tion. However, as it is mentioned use of this method should be ap-
proached with caution (Glynn et al., 1986). The suggestion is the use
of sensitivity analysis when one uses selection method (Molenberghs et
al., 2003). We have some sensitivity analysis in the application Section.

The plan of this article is as follows, in Section 2, the selection model
using multivariate skew-normal distribution is explained. Section 3 re-
ports results of a simulation study, Section 4 reports applications to
a real data sets indicating the usefulness of the approach and the last
Section contains conclusions.

2 Non-ignorable Model for Longitudinal Data
with Dropout: Using Multivariate
Skew-Normal Distribution

The use of joint models for analyzing missing data in longitudinal studies
first proposed by Heckman (1979) in the econometrics literature. More
recently, Leigh et al. (1993) present an article on implementation of this
approach. In its original formulation, the use of joint model involves
two stages which are either performed separately. The first stage is
to develop a predictive model for whether or not a subject drops out,
using variables usually obtained prior to the dropout, often the variables
measured at baseline or time-varying covariates. This model of dropout
provides a predicted dropout probability or propensity score for each
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subject. These dropout propensity scores are then used in the second
stage of longitudinal data model as a covariate to adjust for the potential
influence of dropout. Stated in another way, this approach combines
a marginal Gaussian regression model for the response, as might be
used in the absence of missing data, with a Gaussian-based threshold
model (in trust of a probit regression model) for the probability of a
value being missing. This basic structure underlies the simplest form
of a selection model that has been proposed for longitudinal data in
the biometric setting by Diggle and Kenward (1994). Especially for a
continuous response, these models can be constructed in a fairly obvious
way, combining the multivariate Gaussian linear model with a suitable
dropout model. Diggle and Kenward (1994) extend this approach by
augmenting a logistic dropout model with past values of the dependent
variable and multivariate Gaussian unobserved dependent variable at the
time of dropout and this extent was also a development of the model of
Greenlees et al. (1982) for nonrandom missingness in a cross-sectional
setting.

Multivariate skew-normal distribution has good properties as men-
tioned in introduction (see, Azzalini, 1985, 1986, 2005). Furthermore in
incomplete data literatures, because of missing values, one can not be
insured about distribution of dependence variables. Since skew-normal
family include normal one, estimation of skewness in skew-normal dis-
tribution is authorized to data and if data already have became from
normal population, the skewness parameters will not be estimate signif-
icant, therefore using skew-normal distribution instead of normal one is
more useful for missing responses in above models.

We consider a linear regression model where the error distribution
follows the multivariate skew-normal distribution; also the probit regres-
sion model given outcomes is used as the probability of an observation
to be missing. We obtain a compact form for the likelihood which does
not need any approximation for integrals.

Suppose that we have n independent subjects, each corresponding
to a vector Y; of repeated measurements and each one be a sequence of
measurements Y;; designed to be measured at occasions j (=1,2,...,T).
Let Y; ~ SNr(p;, £,X). This experiment is a balanced experiment
because of the same number of repeated measurements planned for all
participating subjects, at fixed points in times. Associated with indi-
vidual 7 we assume a known 7' X p covariate matrix X;, which we use
to specify the linear predictor pu; = X;3, where 3 is a p-dimensional
vector of unknown regression coefficients. If dropout occurs, Y; is only
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partially observed. We denote the occasion at which dropout occurs by
D; > 1 and Y is split into the (D; — 1)-dimensional observed compo-
nents, Y¢, and the (T — D; + 1)-dimensional missing components, Y.
In the case of no dropout, we let D; =T + 1, and Y; equals to Y. In
the selection model, the joint distribution of Y; and D; is factorized as
the marginal distribution of Y; and the conditional distribution of D;
given Y;, thus

[y, dil0,4) = f(y;10) f(dily;, ¥),

then, the likelihood of the i** subject based on the observed data (y?,D; =
d;), is proportional to the following marginal density function

Pt o, v) = [ Fwidlo. wdy?
= [ 1wil6) x f(dilys, ) dy?

This terminology is due to Heckman (1979), which in that a marginal
model for Y; is combined with a model for the dropout process, con-
ditional on the responses, and where @ and 1 are distinct vectors of
unknown parameters in the measurement model and dropout model,
respectively.

Let h;j = (Y1, .., ¥i,j—1) denote the observed history of subject ¢ up
to time ¢; ;_1, also suppose, the conditional probability for dropout at
occasion j, given that the subject was still observed at previous occasion,
to be dependent on the history h;;, through y; ;_1, and the possibly
unobserved current outcome y;;, but not on the future outcomes y;1,, k >
j. Therefore these conditional probabilities are given by:

p(Di = j|D;i > j,hij, yij, ) = @(Yo + Y1yij + Yoyij—1). (5)

The special case of model (5) corresponding to RD and CRD are ob-
tained from setting ¥ = 0 and ¥ = ¥y = 0, respectively. In the
first case, dropout is no longer allowed to be dependent on the current
measurement, and in the second case, dropout is independent of all out-
comes. This probability depends on the last observed response and the
current value of response which if not missing, could have been observed.
The ¢ and 9 are parameters which should be estimated.

The main result of this paper is based on the following proposition by
which we obtain the observed likelihood function, f(y°,d|@, ). Here
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Y is distributed as multivariate skew-normal with location parameter
u; = X3, dispersion matrix ¥ and skewness parameter vector .

The following lemma, proved by Arellano-Valle et al. (2005a), is a
useful lemma that will be used in the following proposition.

Lemma 2.1. LetY ~ N,(u,X). Then, for any fized k-dimensional
vector a and k x n matriz B,

E[®4(a+ BY|n, Q)] = &4(aln — Bu, Q2 + BEB).

Proposition 2.1. Let Y; ~ SNp(p;, 2,N), p; = X8, and we
have model (5) for dropout. Then the joint distribution of the observed
measurement and missing process for j = 3,...,T (see Molenberghs and
Kenward, 2007, pp. 186) is given by:

f(y7,di=4|0,¢) = (jﬂl[l = (o + Yryix + 1/12yi(k1))]>

k=2

X

(20;-1(y7 |11, X11)

Do(Ayj + upiy|0, I + uXo u’))

X

where, if ¢ = (11,0,0,---,0) is a vector of dimension T — j + 1, then
_ Yo + 1yij—1 '
7/ = (7,1 7/2) =32 1/2a Al] = < /o , y U= C/ .
Y1Yi — Y My 72
and

Hip = Mo + 22121_11 (y{ — mi1),
Too1 = oo — B B Do

where p; = (plhy  piy)' is the partitioned location vector of two sets of
variables, Y7 and Y, where p;; is the location vector for variables in

)
Y? and p;y is the location vector for variables in Y7", also

Y X
Y= ,
< 31 Mg
is the partitioned scale matrix for these variables, where 311 is (7 —1) X
( — 1), corresponds to variables Y, 399 is (I'—j+ 1) x (T'—j +1),
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m

corresponds to Y, and 319 is (j—1) x (T'—j+1), corresponds to scale
matriz of Y and Y.

Proof. Suppose y7 = (i1, ¥i2, '--7%(3’—1)), and y;" = (yij7yi(j+1)v e i)'
we have

f(y?7d2 :j|07¢> ‘
= / (@(% + 1yij + Yoyij-1) X if;ll[l — ®(¢po + Pryar, + ¢2yi(k—1))]>
< 207 (yilpg, DRNS T (y; — wy))dy"

i1
= (an[l — O (Yo + Y1y + @bzyi(k—n)]) X 2¢-1(y7 i, E11)

< [ oAy +uyll0. Dérsi (7 o, Exo )y

- (jﬁl[l — D (o + Y1y + ¢2yz‘(k—1))]>

k=2
20;-1(Yf i1, B11) X Po(Ayj +uph|0, T +ugy '),

X

since,

(1o + 1yij + Payij—1) X P(V1YF + Yoyt — ')

=y (WO P Vet g g
Y1Yi T V2Yi YKy

Yo + Yoy i1 ¢ m
— , n 10, T
2 (( Y1Y] — Y vy )Y |
= &y (Ay; +uy’l0,1).

In selection models, inference is based on the joint distribution of
missingness indicator and observed outcome. Therefore, the correspond-
ing likelihood function can be written as multiplication of the following
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observed density function for all individual:

2¢-1(y7 i1, 11) j=2
X Do (Ayj + uppH|0, I + uXgu’)

2¢j71(yfluﬂ, 1) J=3,..T
XDo(Ajj +up|0,I +uXg u')
o . i1
fy7,di = j|0,) = X k1}2[1 — (o + V1Y + Yavi—1))]
207 (y;| X8, %) j=T+1

xdNE 2 (y, — X,0))
X kli[l — @ (o + V1Y + Yavi—1))]

Computation of the derivation of ¢ = In(Lps), needed for optimization
and for estimation of parameters may be followed by the same method of
Diggle and Kenward (1994). This likelihood can be maximized directly
by using existing statistical softwares such as R or S-plus or Matlab or
other programmable software, for example in R and Matlab, one may use
function nlminb and fmincon, respectively, for optimization of observed
likelihood.

3 Simulation Study

3.1 Simulation Study for Joint Model

In this section, a simulation study was conducted to evaluate the useful-
ness of the proposed model. The study was replicated three times: first
assuming completely random dropout, then assuming random dropout
and finally assuming non-random dropout. The criteria used for com-
parison is the standardized bias of the estimators which introduced by

Demirtas (2007), according to him: If the parameter of interest is 6, the
E)—6
SE(H)
standardized bias exceeds 0.4 in a positive or negative direction, then
the bias begins to have a noticeable adverse impact on efficiency. Let

start the studies.

, where SE stands for standard error. If the

standardized bias is

1. Completely Random Dropout Assumption
In our simulation study we generate 500 samples with sample size
n = 100 and n = 300. Here, we have simulated data according to
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the following longitudinal linear regression model with two time
point:

Yij = Bo + Pitij + Paui; + Batijui +ei5, ©:1,2,.,mn, j:1,2

where #;; = j, were coded 1,2 for two time points and wu;; were
uniformly generated from —3 to 3. The regression coefficients were
defined to be: By =5, 51 = —2, 2 =0, B3 = 1, and the following
scale and skewness parameters

e (104 (2
> —<0.4 1)’ >‘_<2 ’

also, we consider three rates of missingness 10%, 20% and 30%. For
this purpose, we consider the following ignorable dropout mecha-
nisms

p(D = 2’ylay27¢k) = q)(w()k)’ k= 17 2a3 (6)

Such that, for 19 = —1.281, g2 = —0.842 and 193 = —0.524
rates of missing are 0.1, 0.2 and 0.3, respectively. The parameter
estimates, standard errors and standard biases of this simulation
are presented in Table 1. All of the results confirm goodness of
fit of the proposed methodology. Note that in all tables of this
section Dq1, D12 and Dy are the distinct elements of the matrix
/2. There is no considerable bias in Table 1.

Random Dropout Assumption

Simulation study for this part is similar to simulation under CRD
assumption in previous part with one difference that the following
ignorable mechanisms is used instead of equation (6),

p(D = 2|y1ay27¢k) = @(7/1% + w2ky1)a k= 1a 2a3 (7)
Such that, for ¢ = 1 and 91 = —0.95 expected rate of miss-
ingness is 0.10, for ¥g2 = 1 and 9y = —0.7 expected rate of

missingness is 0.20 and finally for ¢p3 = 1 and 93 = —0.4 ex-
pected missing response is 0.30. Table 2 shows the results of this
simulation. There is no considerable bias for this case.

Non-Random Dropout Assumption
This simulation study is under NRD and is similar to the pervi-
ous parts. The following non-ignorable mechanism are considered
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instead of equation (6) or (7),

(D = 2ly1, Y2, %) = P(Yor + Y1rye +oryr), k=1,2,3. (8)

also for three rate of missingness, 0.10, 0.20 and 0.30, the sets
of parameters o1 = 1, 11 = —0.3 and Y21 = —0.9; YPp2 = 1,
1o = —0.7 and Y9 = —0.6; Yoz = 1, 913 = —0.4 and 3 = —0.4
are used, respectively. Results of this study are given in Table 3.
Considerable bias is for one element of 3'/2 (D12) which happens
for moderate sample size (n = 100) with high missing rate.

3.2 Generalized Estimating Equation Simulation

One viewpoint, in achievement a parametric class of distribution, is in-
creasing the degree of flexibility by suitability increasing the number of
parameters. Such a construction, under appropriate conditions on the
achievable degree of approximation to an arbitrary target distribution,
builds a bridge between the parametric and the non-parametric context
and the skew-normal distribution is the useful one that adapted to this
concept (Azzalini, 2005). This outline prepare the way for comparison
between our methodology in employing multivariate skew-normal distri-
bution for analyzing incomplete data via the joint model and a famous
class of semi-parametric method such as generalized estimating equation
(GEE).

The analysis of correlated data arising from repeated measurements
when the measurements are assumed to be multivariate normal has been
studied extensively. However, the normality assumption might not al-
ways be reasonable. GEE provide a practical method for estimating
regression and association parameters without specify the entire likeli-
hood to analyze such data.

Liang and Zeger (1986) introduced GEE as a method of dealing
with correlated data when, except for the correlation among responses,
the data can be modelled as a generalized linear model. The GEE
methodology is based on solving the equations

N

op; -1
Vi(y; i~ M) =0 9
;:1 85( (v:) (y; — 1) 9)

1/2

where, the marginal covariance matrix V' (y;) is decomposed into ¢A;

RiAZ1 / 2, with A; the matrix with the marginal variances on the main di-
agonal and zeros elsewhere, R; = R;(a) the marginal correlation matrix,
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Table 1: Results of Simulation Study for 500 Samples under Complectly Random Dropout, (Bold numbers are
estimated parameters with standardized bias > 0.4).

Model Parametricmodel GEE
rateof %10 %20 %30 %10 %20 %30
missing

True Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std. Est.(S.E.) Std.B.

B.

Parameter Samplesizen = 100
Bo 5.000 4.994(0.046) -0.123 4.994(0.054) -0.105 4.981(0.066) -0.287 5.615(0.187) 3.297 5.613(0.193) 3.181 5.637(0.198) 3.215
B1 -2.000 -1.998(0.045) 0.026 -1.997(0.047) 0.046 -2.006(0.080) -0.075 -1.987(0.112) 0.117 -1.989(0.118) 0.095 -2.006(0.123) -0.051
B2 0.000 -0.001(0.039) -0.025 -0.004(0.049) -0.070 0.002(0.077) 0.029 -0.015(0.116) -0.128 0.003(0.116) 0.025 0.007(0.110) 0.065
B3 1.000 0.992(0.033) -0.226 0.986(0.044) -0.308 0.973(0.071) -0.367 1.006(0.076) 0.078 0.997(0.078) -0.035 0.996(0.069) -0.055
Di1 1.000 0.993(0.041) -0.170 0.983(0.051) -0.330 0.983(0.071) -0.233 - - - - - -
Dqo 0.400 0.395(0.038) -0.113 0.388(0.045) -0.251 0.383(0.077) -0.219 - - - - - -
Dao 1.000 1.009(0.042) 0.234 1.014(0.055) 0.255 1.034(0.084) 0.409 - - - - - -
A1 2.000 2.002(0.046) 0.054 1.999(0.049) -0.018 2.002(0.083) 0.026 - - - - - -
Ao 2.000 1.986(0.045) -0.294 1.991(0.049) -0.184 1.977(0.086) -0.263 - - - - - -
Parameter Samplesizen = 300
Bo 5.000 4.996(0.035) -0.126 4.995(0.053) -0.089 4.964(0.21) -0.167 5.633(0.105) 6.009 5.628(0.117) 5.353 5.648(0.106) 6.135
B1 -2.000 -2.001(0.031) -0.023 -1.998(0.047) 0.041 -1.996(0.130) 0.026 -2.002(0.067) -0.033 -1.998(0.074) 0.017 -2.012(0.068) -0.183
B2 0.000 0.001(0.027) 0.022 -0.000(0.042) -0.011 -0.020(0.215) -0.093 0.009(0.062) 0.161 -0.011(0.064) -0.167 -0.006(0.076) -0.075
B3 1.000 0.991(0.023) -0.385 0.984(0.048) -0.328 0.991(0.214) -0.042 0.994(0.039) -0.145 1.005(0.040) 0.115 1.003(0.048) 0.052
Dy 1.000 0.995(0.029) -0.167 0.985(0.046) -0.326 0.978(0.210) -0.101 - - - - - -
Dqo 0.400 0.396(0.027) -0.130 0.388(0.045) -0.256 0.366(0.209) -0.163 - - - - - -
Dao 1.000 1.009(0.033) 0.273 1.013(0.048) 0.268 1.077(0.216) 0.358 - - - - - -
A1 2.000 2.001(0.034) 0.017 1.995(0.047) -0.108 2.012(0.223) 0.054 - - - - - -
A2 2.000 1.994(0.038) -0.163 1.984(0.054) -0.287 1.962(0.220) -0.171 - - - - - -
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Table 2: Results of Simulation Study for 500 Samples under Random Dropout, (Bold numbers are estimated param-

eters with standardized bias > 0.4).

Model Parametricmodel GEE
. rateof %10 %20 %30 %10 %20 %30
: missing

0 True Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std. Est.(S.E.) Std.B.
=) B.

m Parameter Samplesizen = 100
.IVw Bo 5.000 5.004(0.044) 0.083 4.987(0.069) -0.164 4.995(0.065) -0.074 5.859(0.192) 4.478 5.801(0.113) 7.072 6.132(0.195) 5.809
o] B1 -2.000 -2.004(0.045) -0.092 -1.991(0.070) 0.116 -2.002(0.070) -0.032 -2.115(0.121) —0.945 -2.086(0.071) —1.215 -2.255(0.129) —1.967
S B2 0.000 0.002(0.039) 0.043 0.009(0.063) 0.140 -0.009(0.062) -0.147 -0.184(0.109) —1.694 -0.045(0.069) —0.644 -0.292(0.141) —2.074
A B3 1.000 0.989(0.034) -0.322 0.979(0.058) -0.350 0.983(0.046) -0.370 1.095(0.064) 1.469 1.022(0.046) 0.481 1.145(0.084) 1.725
. Dy 1.000 0.988(0.041) -0.278 0.989(0.058) -0.179 0.982(0.061) -0.293 - - - - - -

Q Dqo 0.400 0.392(0.038) -0.200 0.391(0.046) -0.183 0.383(0.057) -0.291 - - - - - -
= Dao 1.000 1.007(0.051) 0.135 1.015(0.063) 0.240 1.019(0.062) 0.313 - - - - - -
d A1 2.000 2.003(0.055) 0.067 2.004(0.063) 0.062 1.999(0.078) -0.013 - - - - - -
e g 2.000 2.001(0.045) 0.026 1.993(0.071) -0.101 1.989(0.076) -0.139 - - - - - -

Q Parameter Samplesizen = 300

M Bo 5.000 4.997(0.033) -0.086 5.006(0.041) 0.167 5.011(0.087) 0.127 5.871(0.102) 8.520 5.780(0.197) 3.953 6.116(0.129) 8.667
+~ B1 -2.000 -1.999(0.031) 0.009 -1.976(0.063) 0.380 -1.998(0.072) 0.026 -2.126(0.064) —1.981 -2.082(0.127) —0.647 -2.241(0.082) —2.933
= B2 0.000 0.006(0.030) 0.206 0.011(0.038) 0.304 0.009(0.065) 1.137 -0.175(0.068) —2.572 -0.046(0.126) -0.369 -0.302(0.083) —3.638
Q B3 1.000 0.989(0.028) -0.386 0.987(0.058) -0.214 0.976(0.069) -0.336 1.088(0.042) 2.093 1.023(0.075) 0.311 1.154(0.050) 3.064
m.. Dy 1.000 0.994(0.028) -0.192 0.991(0.038) -0.129 0.983(0.061) -0.266 - - - - - -

= Dqo 0.400 0.397(0.029) -0.090 0.395(0.031) -0.145 0.379(0.065) -0.321 - - - - - -

D Dao 1.000 1.009(0.034) 0.270 0.995(0.038) -0.129 1.016(0.081) 0.199 - - - - - -

A1 2.000 1.995(0.029) -0.163 1.991(0.042) -0.200 1.989(0.082) -0.133 - - - - - -

m Ao 2.000 1.995(0.033) -0.141 1.994(0.034) -0.178 1.983(0.088) -0.186 - - - - - -

e

=

<

4

=}

=
<g
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Table 3: Results of Simulation Study for 500 Samples under Random Dropout, (Bold numbers are estimated param-
eters with standardized bias > 0.4).

Model Parametricmodel GEE
rateof %10 %20 %30 %10 %20 %30
missing

True Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std.B. Est.(S.E.) Std. Est.(S.E.) Std.B.

B.

Parameter Samplesizen = 100
Bo 5.000 4.989(0.084) -0.126 5.002(0.157) 0.012 5.014(0.157) 0.088 5.574(0.185) 3.105 5.660(0.193) 3.410 5.359(0.291) 1.234
B1 -2.000 -1.972(0.070) 0.399 -1.964(0.130) 0.277 -1.967(0.131) 0.253 -1.940(0.116) 0.517 -1.971(0.127) 0.224 -1.711(0.216) 1.340
B2 0.000 -0.008(0.068) -0.123 0.001(0.125) 0.007 -0.018(0.123) -0.152 0.063(0.108) 0.585 0.043(0.127) 0.337 0.153(0.169) 0.905
B3 1.000 0.988(0.049) -0.240 0.979(0.096) -0.212 0.981(0.103) -0.182 0.940(0.069) —0.860 0.949(0.084) —0.605 0.842(0.128) —1.234
Di1 1.000 0.984(0.065) -0.238 0.982(0.113) -0.159 0.993(0.121) -0.052 - - - - - -
Dqo 0.400 0.375(0.067) -0.375 0.330(0.115) —0.607 0.334(0.111) —0.600 - - - - - -
Dao 1.000 0.996(0.073) -0.056 1.005(0.141) 0.038 0.988(0.142) -0.081 - - - - - -
A1 2.000 1.986(0.085) -0.168 1.946(0.163) -0.325 1.992(0.207) -0.040 - - - - - -
Ag 2.000 1.979(0.091) -0.233 1.998(0.166) -0.007 1.962(0.159) -0.241 - - - - - -
Parameter Samplesizen = 300
Bo 5.000 5.002(0.027) 0.080 5.001(0.072) 0.013 4.978(0.179) -0.124 5.562(0.110) 5.095 5.631(0.114) 5.524 5.316(0.162) 1.946
B1 -2.000 -1.993(0.023) 0.291 -1.966(0.075) 0.453 -1.933(0.142) 0.472 -1.929(0.070) 1.001 -1.951(0.073) 0.662 -1.684(0.118) 2.669
B2 0.000 -0.001(0.022) -0.045 0.000(0.064) 0.000 -0.002(0.142) -0.016 0.061(0.069) 0.878 0.040(0.069) 0.576 0.164(0.088) 1.866
B3 1.000 0.994(0.018) -0.309 0.999(0.076) -0.013 0.965(0.116) -0.298 0.939(0.044) —1.371 0.950(0.047) —1.050 0.835(0.067) —2.464
Dy 1.000 1.000(0.023) -0.009 0.998(0.079) -0.025 0.982(0.121) -0.144 - - - - - -
Dqo 0.400 0.397(0.019) -0.174 0.371(0.091) -0.318 0.355(0.111) -0.396 - - - - - -
Dao 1.000 0.997(0.023) -0.114 0.996(0.072) -0.055 1.001(0.145) 0.008 - - - - - -
A1 2.000 1.997(0.024) -0.135 1.973(0.084) -0.321 1.954(0.167) -0.273 - - - - - -
A2 2.000 1.994(0.026) -0.244 1.998(0.087) -0.022 1.944(0.179) -0.314 - - - - - -
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often referred to as the working correlation matrix, and ¢ an overdis-
persion parameter. Some discussion of GEE method can be found in
Hardin and Hilbe (2003), Molenberghs and Kenward (2007) and Dig-
gle et al. (2002). These GEE define an unbiased estimator only under
MCAR (CRD).

We also conduct a simulation study using GEE for estimation of
regression coefficient in the skew-normal longitudinal regression model.
For this purpose, we have considered a model and real values the same
as those in section 3.1 and we use the standard bias as a criterian to
compare operation of joint model methodology and GEE for bivariate
skew-normal longitudinal regression model. The Six last columns of
tables 1-3 show the results of this simulation study. These results can be
computed using SAS, proc genmod, or MATLAB, GEEQBOX toolbox.
Results show, in spite of the relatively good operation of GEE in CRD,
that the parameters estimate are bias in RD and NRD situation. Thus
using joint model is more efficient than that of GEE for skew population.
In addition, the joint model can estimate scale parameter, skewness
parameter, and can recognize missingness mechanism in the data set.

In this section, we have simulated from GEE but one can compare
results of GEE with other semi-parametric method such as WGEE or
inverse probability weighted Generalized Estimating Equations WGEE
(Robins et al., 1995; Yi and Cook, 2002) for future works.

4 Applications

4.1 Application 1: Mastitis in Dairy Cattle

We illustrate the usefulness of the proposed method by applying it to
Mastitis data. These data, concerning the occurrence of the infectious
disease called Mastitis in dairy cows, was introduced by Diggle and
Kenward (1994). Data were available of the milk yields (in thousands
of litres) of 107 dairy cows from a single herd in two consecutive years.
In the first year all animals were free of Mastitis, in the second year
27 became infected. Mastitis typically reduces milk yield and these are
considered as missing data. Further background details are given in
Diggle and Kenward (1994) and in its accompanying discussion. An
additional covariate, the year of first lactation of each cow, is ignored
here as its inclusion in the analysis had a negligible impact (see Kenward,
1998, Crouchley and Ganjali, 2002). Clearly the occurrence of infection
in second year can be represented as one of dropout in longitudinal data,
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with the occurrence of Mastitis corresponding to dropout. In addition,
Molenberghs et al. (2001) and Crouchley and Ganjali (2002) found 3
outliers (cows 4, 5 and 66) in these data.

Using bivariate skew-normal distribution, we consider two situations.
Firstly whole data are considered where using likelihood ratio test we
found a CRD mechanism. Parameter estimates and standard errors
under three different models (NRD, RD and CRD) are given in Table
6. We use observed information matrix for calculating standard errors.
According to the expectation of multivariate skew-normal distribution,
in Mastitis data by using the results of Table 6, E[Y] = (5.762,6.606)’.

Secondly, for our subsequent analysis, we deleted outliers, results of
this situation (under NRD, RD and CRD) are presented in Table 7. Also,
for these data a CRD mechanism is found and E[Y] = (5.798,6.724)’.

Note that, using bivariate skew-normal distribution a CRD mech-
anism is obtained. These results are interesting because, before this
for Mastitis data a NRD mechanism is found (Kenward, 1998; Diggle
and Kenward, 1994; Ganjali and Ranji, 2008) using bivariate normal
distribution. Tables 8 and 9 show the results of normal model. These
different results are a consequence of using bivariate skew-normal dis-
tribution and the existence of a significant skewness parameter. Notice
also that Kenward (1998), using a t distribution for the response in the
second year, find a RD mechanism for whole data.

Figure 1 displays the scatter plot of (Y7,Y3) for whole data with
superimposed contours of the fitted skew-normal (right panel) and nor-
mal distribution (left panel) after fitting the joint models (the results of
Table 6 and Table 8), which confirm similar fitness in normal and skew-
normal model for the whole Mastitis data. Figure 2 displays the same
plot as that of Figure 1 for the results of mastitis data after removing
outliers.

There are some important points which have to be mentioned: at
first, about the estimated variance of the parameter estimates in using
normal and skew-normal distribution, we would like to mention that
the increase of standard errors of using skew-normal distribution may
be due to estimating two more parameters related to skewness. Also,
consider that the roles of parameters in using normal and skew-normal
distribution are different. For example p; is the mean of Y7 in using
normal distribution, but this parameter is not the mean of Y7 in using
skew-normal distribution. Tables 6 and 8, also, show the results using
RD and CRD assumptions. As it can be seen the results of the skew-
normal distribution gives a better fit to the data (deviance= 622.718-



A Non-Random Dropout Model for Analyzing ... 119

Table 4: Parameter estimates and standard errors under CRD, RD and
NRD assumptions for analyzing the whole Mastitis data using bivariate
skew normal distribution for response, 011, 012 and o9y are distinct
components of $1/2.

NRD RD CRD
Parameter Est. S.E. Est. S.E. Est. S.E.
I35 5.955 0.270 5.973 0.268 5.974 0.269
12 5.789 0.307 5.763 0.305 5.763 0.305
o11 0.927 0.093 0.931 0.096 0.931 0.096
o132 0.204 0.092 0.207 0.084 0.207 0.084
099 1.402 0.294 1.330 0.193 1.330 0.193
A1 -1.021 0.540 -1.023 0.543 -1.023 0.544
Ay 1.860 0.786 1.724 0.657 1.724 0.658
Yo -2.300 1.714 -1.603 0.860 -0.667 0.132
Py 0.272 0.507 - - - -
o -0.033 0.376 0.161 0.145 - -
—2logL 614.885 615.107 616.349

615.107=7.611, with two degrees of freedom, p-value=0.022) under RD
assumption. Results under assumption of CRD also show a better fit
of using skew-normal distribution. The main point is that the use of
normal distribution (which cannot find out the skewness of the data)
misleads one to find that missing mechanism is not random. We notice
that the use of the correct distribution (skew-normal distribution) gives
a CRD mechanism. Note that skew-normal family include normal family
so if the nature of data be symmetric, that reflect with nonsignificant
skewness parameter. This does not occur in our data set. For one
who uses normal distribution effect of skewness goes to a significant
nonignorable parameter in dropout mechanism which gives a misleading
conclusion (although gives nearly the same -2log likelihood).

Finally we investigate the sensitivity of the parameter estimates
of ua (see Molenberghs et al., 2001, for the importance of this) and
value of —2logL of the model by imposing different values for non-
ignitability parameter of ¢ in model (5). For this we fix values 11
for ¢ : —0.5,—0.045, ..., 0.5 and found estimate of ue and —2logL; these
results, presented in Table 10, confirm a RD mechanism for Mastitis
data as —2logL and the estimate of puo do not change considerably.
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Table 5: Parameter estimates and standard errors under CRD, DR and
NRD assumptions for analyzing the Mastitis data without outliers using
bivariate skew normal distribution for response, o11, 012 and o9 are
distinet components of £1/2.

NRD RD CRD
Parameter Est. S.E. Est. S. E. Est. S. E.
I35 5.168 0.212 5.145 0.197 5.145 0.197
I 6.571 0.442 6.459 0.272 6.459 0.272
o11 1.029 0.135 1.046 0.131 1.046 0.131
o012 0.312 0.090 0.303 0.095 0.303 0.095
0992 1.027 0.143 0.999 0.087 0.999 0.087
A1 2.634 1.141 2.616 1.116 2.616 1.116
Aoy -1.066 0.819 -1.009 0.734 -1.009 0.734
(N -2.103 1.743 -1.497 0.908 -0.644 0.132
(0 0.457 1.210 - - - -
o -0.268 1.166 0.146 0.153 - -
—2logL 546.382 546.518 547.429

Table 6: Parameter estimates and standard errors under CRD, DR and
NRD assumptions and bivariate normal model for analyzing the whole
Mastitis Data, 011, 012 and 099 are distinct components of »i/2,

NRD RD CRD
Parameter Est. S.E. Est. S.E. Est. S. E.
I3 5.765 0.090 5.765 0.090 5.765 0.090
I 6.080 0.146 6.484 0.122 6.484 0.121
o11 0.894 0.060 0.877 0.056 0.877 0.058
o012 0.260 0.056 0.312 0.053 0.313 0.053
0992 1.246 0.113 1.094 0.083 1.094 0.083
(N 0.369 1.433 -1.603 0.860 -0.667 0.131
T -1.499 0.440 - - - -
Vo 1.298 0.392 0.161 0.146 - -

—2logL 617.490 622.718 623.962
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Table 7: Parameter estimates and standard errors under CRD, DR and
NRD assumptions and bivariate normal nodel for analyzing the Mastitis
data without outliers, 011, 012 and 092 are distinct components of »i/2,

NRD RD CRD

Parameter Est. S.E. Est. S.E. Est. S.E.
1 5.798 0.085 5.798 0.085 5.7985 0.085
2 6.415 0.445 6.399 0.110 6.3993 0.110
o11 0.786 0.053 0.787 0.052 0.7873 0.052
012 0.376 0.053 0.375 0.049 0.3752 0.049
0923 0.973 0.093 0.971 0.073 0.9719 0.073
Yo -1.599 2.924 -1.497 0.908 0.6445 0.132
o 0.071 1.926 - - -

o 0.084 1.672 0.146 0.153 -

—2logL 551.937 551.939 552.850

Table 8: Estimates of ps and values of —2logL under different predeter-
mined values of the non- random dropout parameter (1) as a sensitivity
analysis (*: the value of the parameter estimated by the NRD model).

U1 2 —2logL
-0.50 5.639 615.501
-0.35 5.681 615.513
-0.30 5.694 615.483
-0.25 5.707 6153439
-0.20 5.720 615.383
0.00 5.763 615.107
0.05 5.771 615.041
0.10 5.778 614.884
0.15 5.783 614.937
0.20 5.787 614.904

0.272* 5.789 614.880
0.30 5.790 614.888
0.35 5.788 614.909
0.40 5.784 614.954
0.45 5.779 615.024
0.50 9.771 615.121
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Figure 1: Mastitis data: scatter plot of the milk yield in first year
versus that of the second year after imputation of missing values using
generation of f(y2|y1) along with the contour plot of the fitted bivariate
skew-normal distribution for all data (right panel) and the same plot
after fitting bivariate normal distribution (left panel).

4.2 Application 2: Rats Data

We will now consider a relatively small example with a three-variate
response. These data come from a randomized experiment designed
to study the effect of the inhibition of testosterone production in rats
(Department of Orthodontics of the Catholic University of Leuven in
Belgium (Verbeke and Lesaffre 1997; Verbeke and Molenberghs 2000).
A total of 50 male Wistar rats were randomized to either the control or
one of the two treatment groups (low or high dose of the drug Decapeptyl
(triptorelin), a testosterone production inhibitor) and analyzed before
this in Molenberghs and Verbeke (2001) and Verbeke and Molenberghs
(2004). Treatment started at the age of 45 days, and measurements
were taken every 10 days, with the first observation taken at the age
of 50 days. The response measurement is a characterization of the size
of the skull, taken under anaesthesia. The investigators’ impression is
that dropout is independent of the measurements. We consider three
beginning time points and the individual profiles are shown in Figure 3.
To linearize, we use the logarithmic transformation ¢;; = In(1 + (Age —
45)/10) and we consider the following model,

Yij = Bo+ BiLli+ BoH; + Bstij + PaLitij + BsHitij +€i5  (10)
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Figure 2: Mastitis data after removing outliers: scatter plot of the milk
yield in first year versus that of the second year after imputation of
missing values using generation of f(y2|y1) along with the contour plot
of the fitted bivariate skew-normal distribution (right panel) and the
same plot after fitting bivariate normal distribution (left panel).

Bo+ B1+ (B3 + Ba) tij +ei5  if low dose
= Bo + B2+ (B3 + Bs) tij +ei5 if high dose
Bo + B3 tij + €4j if control,

where Y; is a vector of order three containing the response values for the
ith animal, I; and H; are indicator variables such that

L _{ 1 if low dose

0 otherwise,

I — 1 if high dose
"1 0 otherwise.

The joint model under skew normal distribution and normal distribution
are used to obtain the parameter estimates of this model in the presence
of dropout. Also, the estimates of standard errors have been obtained
using the observed information matrix . The results are shown in Table
9. Results show that the use of multivariate skew normal gives a NRD
mechanism. On the other hand the multivariate skew normal gives a
CRD mechanism, but strong significance of skewness parameters A1 and
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A3. Also according to Table 9, in skew-normal model the interaction of
time and low dose of the drug, furthermore, the interaction of time and
the high dose of the drug are not significant, while these two parameters
are significant in normal one. In this manner, while the high dose of the
drug is significant in skew normal model, is not significant under normal
assumption.

Table 9: Parameter estimates and standard errors of the fit of the mul-
tivariate skew normal distribution on the rats data.

Skew Normal Scenario Normal Scenario
Parameter Est. S.E. Est. S.E.
5o 70.525 1.849 67.294 1.226
51 0.150 0.879 0.191 0.738
B -2.554 1.909 -0.538 0.702
53 4.841 1.783 6.809 3.482
B4 0.091 0.633 3.273 1.033
55 -0.035 1.546 2.360 0.913
o011 9.541 2.902 19.865 5.949
012 3.987 2.112 7.002 2.828
013 1.499 1.709 5.607 4.580
099 5.934 2.168 8.140 2.995
0923 4.307 1.649 3.122 1.913
033 6.315 3.087 8.752 2.709
A1 -3.080 1.711 - -
A9 4.091 2.329 - -
A3 5.409 1.723 - -
o 0.042 1.484 -0.598 0.697
U -2.295 2.526 -3.769 1.102
9 2.214 1.518 3.602 1.193
—2logL 636.380 674.098

5 Conclusion

In this paper, we concentrated on using of a new family of distribution
named as skew-normal in dropout problems. At first we used this distri-
bution in some sets of simulated data and studied the effects of different
factors, like rate of missingness and sample size, in estimating the pa-
rameters in a bivariate skew-normal distribution. Our study was under
a NRD framework applying the non-ignorable model, which is the most
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Figure 3: Rats data: Individual growth curves for each of the treatment
groups in the rats experiment data.

popular approach in analysing incomplete data studies. Our simulation
studies showed that increasing sample size and decreasing missing rate
decrease bias of parameter estimates and standard deviations.

We also used a bivariate skew-normal to study and analyze well-
known Mastitis data. Diggle and Kenward (1994) had studied this prob-
lem. Crouchley and Ganjali (2002) also studied it in two situations: one
with outliers and another without outliers, they used a selection model
and multivariate normal distribution in their study and obtained a NRD
and RD mechanism in analyzing whole data and data without outliers,
respectively. We used bivariate skew-normal distribution for the two re-
sponses and a probit regression as a model for missingness mechanism to
analyze the data. Considering all data we found a RD mechanism and
considering data without outliers we found a CRD mechanism. We found
that the skew parameters is significant and not considering this skew-
ness may mislead the analysis to have a NRD mechanism. In analyzing
another three-variate response data we reached to the same conclusion.
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