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Abstract. Consider a problem of predicting a response variable using
a set of covariates in a linear regression model. If it is a priori known
or suspected that a subset of the covariates do not significantly con-
tribute to the overall fit of the model, a restricted model that excludes
these covariates, may be sufficient. If, on the other hand, the sub-
set provides useful information, shrinkage method combines restricted
and unrestricted estimators to obtain the parameter estimates. Such
an estimator outperforms the classical maximum likelihood estimators.
Any prior information may be validated through preliminary test (or
pretest), and depending on the validity, may be incorporated in the
model as a parametric restriction. Thus, pretest estimator chooses be-
tween the restricted and unrestricted estimators depending on the out-
come of the preliminary test. Examples using three real life data sets are
provided to illustrate the application of shrinkage and pretest estimation.
Performance of positive-shrinkage and pretest estimators are compared
with unrestricted estimator under varying degree of uncertainty of the
prior information. Monte Carlo study reconfirms the asymptotic prop-
erties of the estimators available in the literature.
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1 Introduction

Regression analysis is one of the most mature and widely applied branch
in statistics. Least squares estimation and related procedures, mostly
having a parametric flavor, have received considerable attention from
theoretical as well as application perspectives. Statistical models, both
linear and non-linear, are used to obtain information about unknown
parameters. Whether such model fits the data well or whether the es-
timated parameters are of much use depends on the validity of certain
assumptions. In this setup, the estimates are obtained to have insights
about the parameters. However, in many practical situations, it is the
researchers who provide the estimation of the parameters utilizing the
information contained in the sample and other relevant information.
The “other” information may be considered as non-sample information
(NSI). This is also known as uncertain prior information (UPI), or sim-
ply prior information. The non-sample information may or may not
positively contribute in the estimation procedure. Nevertheless, it may
be advantageous to use the NSI in the estimation process when sample-
information may be rather limited.

The quality of the fit and of the estimated parameters depend largely
on the quality of the data used to obtain them. Only reliable infor-
mation leads to useful results. However, in many practical situations,
uncertainty arises as to whether the available information is of much
use. It is widely accepted that in applied science, an experiment is often
performed with some prior knowledge of the outcomes, or to confirm a
hypothetical result, or to re-establish existing results.

With this keeping in mind, it is however, important to note that the
consequences of incorporating non-sample information depend on the
quality or usefulness of the information being added in the estimation
process. Any uncertain prior information may be tested before they
are incorporated in the model. Based on the idea of Bancroft (1944),
uncertain prior information may be validated through preliminary test,
and depending on the validity, may be incorporated in as a parametric
restriction, and choose between the restricted or unrestricted estimation
procedure depending on the outcome of the preliminary test.

Later, Stein (1956) introduced shrinkage estimation. In this frame-
work, the shrinkage estimator or Stein-type estimator takes a hybrid
approach by shrinking the base estimator to a plausible alternative es-
timator utilizing the non-sample information if it proves to be useful.
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1.1 Review of Literature

Since the beginning, shrinkage estimation have received considerable at-
tention from the researchers. Since 1987, Ahmed and his co-researchers
are among others who have analytically demonstrated that shrinkage
estimators outshine the classical maximum likelihood estimator. Asymp-
totic properties of shrinkage and preliminary test estimators using quadr-
atic loss function have been studied, and their dominance over the usual
maximum likelihood estimators demonstrated in numerous studies in the
literature. Ahmed (1997) gave a detailed description of shrinkage esti-
mation, and discussed large sample estimation techniques in a regression
model with non-normal errors.

Khan and Ahmed (2003) considered the problem of estimating the
coefficient vector of a classical regression model, and demonstrated ana-
lytically and numerically that the positive-part of Stein-type estimator,
and the improved preliminary test estimator dominate the usual Stein-
type, and pretest estimators, respectively.

Estimation of the mean vector of a multivariate normal distribution,
under the uncertain prior information that component means are equal
but unknown, was studied by Khan and Ahmed (2006). Ahmed and
Nicol (2010) among others, considered various large sample estimation
techniques in a nonlinear regression model. Nonparametric estimation of
the location parameter vector when uncertain prior information about
the regression parameters is available was considered by Ahmed and
Saleh (1999).

In this paper, we review positive shrinkage, and pretest estimators
to compare their performance when certain information about a subset
of the covariates are available a priori. In particular, we apply shrinkage
estimation on three real life data sets to show the usability of positive-
shrinkage and pretest estimators for practical purposes.

2 Statement of the Problem

Consider a regression model of the form

Y = X3 +e¢, (2.1)
where Y = (y1,¥2,...,yn) is a vector of responses, X is an n X p fixed
design matrix, 8 = (f1,...,0p) is an unknown parameter vector and
e = (1,€9,...,&,)" is the vector of unobservable random errors, and the

superscript (') denotes the transpose of a vector or matrix.
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We do not make any distributional assumption for the errors, only
that es have a cumulative distribution function F(e) with E(e) = 0,
and E(e€’) = 021, where o is finite. We make the following two as-
sumptions, also called the regularity conditions

i) max x}(X'X) 'x; — 0 as n — oo, where x} is the ith row of

1<i<n
X
X'X
ii) lim < ) = C,,, where C,, is a finite positive-definite matrix.
n—oo n

In our case, suppose that 3 may be partitioned as 8 = (87,35)’.
The sub-vectors B; and (3, are assumed to have dimensions p; and po
respectively, and p; + ps = p, p; > 0 for i = 1,2. Here, (31 is the coef-
ficient vector for main effects, and B2 is a vector for “nuisance” effects.
We are essentially interested in the estimation of 31 when it is plausible
that B2 do not contribute significantly in predicting the response. Such
a situation may arise when there is over-modeling and one wishes to cut
down the irrelevant part from the model (2.1). For example, in studying
the relationship between the level of prostate specific antigen (PSA) and
some clinical measures, the log cancer volume and log prostate weight
can be considered as the main effects while age, log of benign prostate
hyperplasia amount, seminal vesicle invasion and others can be regarded
as nuisance variables. In this situation, inference about 31 may benefit
from shrinking the regression coefficients of the full model towards the
restricted space while utilizing the available information contained in
the nuisance covariates. Thus, the parameter space can be partitioned,
and it is plausible that B9 is near some specified 39, which, without loss
of generality, may be set to a null vector. The prior information about
the subset of B can be written in terms of a restriction, H3 = h. Here,
H is a known py X p matrix and h is py X 1 vector of known constants.

2.1 Organization of the Paper

The paper is organized as follows. The statistical model is introduced
in section 3. Shrinkage, positive-shrinkage, and pretest estimators are
defined in this section. Examples using three real life data sets are
presented in section 4. Positive-shrinkage and pretest estimators are
obtained, and their performance are compared using cross-validation.
Monte Carlo simulation study is described in section 5. Asymptotic
bias and risk expressions for the shrinkage estimators are presented in
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section 6. Finally, conclusions and future directions are presented in
section 7.

3 The Model and Estimation Strategies
The unrestricted least-squares estimator of 3 is given by
BUR — (X/X)le/Y — C*lX/Y’

where C' = (X'X). Under the restriction H3 = h, the restricted esti-
mator is given by

BR _ BUR _ C—IH/(HC—IH/)—I(HBUR _ h),

which is a linear function of the unrestricted estimator. Let us define
the estimator of o2 by

2 (Y= XBY (Y - XB"%)

n—p

We may consider testing the restriction in the form of testing the null
hypothesis
Ho : Hﬁ = h.

The test statistic is defined by

(HBY® — h)(HC'H') ' (HBF — h)

2
Se

¢n:

: 3.1)

which, under Hy, follows a chi-square distribution with ps degrees of
freedom.

3.1 Shrinkage Estimator
A Stein-type estimator (STE) 33 of 81 can be defined as

B =A%+ (BYR — B {1 — k'), where k =po —2, py > 3.

where 1, is defined in (3.1).

One problem with STE is that its components may have a different
sign from the coordinates of BPR. This could happen if (p2 — 1)y, !
is larger than unity. One possibility is when ps = 2 and ¢, < 1.
From the practical point of view, the change of sign would affect its
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interpretability. However, this behavior does not adversely affect the
risk performance of STE. To overcome the sign problem, we define a
positive-rule Stein-type semiparametric estimator (PSTE) by retaining
the positive-part of the STE. A PSTE has the form

A A A A —1 Tt
%JFZIB{{—'_( PR_ﬁﬁ){l_ﬁwnl} ) p223
where 2zt = max(0, 2). Alternatively, this can be written as

3 =B+ (B - B {1 — ey (W < k), p2 >3,

Ahmed (2001) and others studied the asymptotic properties of Stein-
type estimators in various contexts.

3.2 Preliminary Test Estimator

The preliminary test estimator or pretest estimator for the regression
parameter 3; is obtained as

3T = AU~ (B~ BRI < cna), @2)

where I(-) is an indicator function, and ¢, is the upper 100(1 — «)
percentage point of the test statistic v,,.

In a pretest estimation problem, the prior information is tested
before choosing the estimator for practical purposes, while shrinkage
and positive-shrinkage estimator incorporates in the estimation process
whatever prior information is available.

Pretest estimator either accepts of rejects the restricted estimator
([9?) based on whether v, < ¢, o, while shrinkage estimator is a smoothed
version of the pretest estimator.

4 Examples

In the following, we study three real life examples. For each data set, we
fit linear regression models to predict the variable of interest form the
available regressors. Shrinkage and pretest estimates are then obtained
for the regression parameters. Performance of shrinkage and pretest es-
timators are assessed as per the criteria outlined in the following section.
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4.1 Assessment Criteria

In shrinkage and pretest estimation, we utilize the full-model and sub-
model estimates, and combine them in a way that shrinks the least-
squares estimates towards the sub-model estimates. In this framework,
we utilize, if available, the information contained in the restricted sub-
space if they contribute significantly in predicting the response. How-
ever, in the absence of prior information about the nuisance subset, one
might do usual variable selection to filter the nuisance subset out of
the covariates. In that, one initiates the process with the model hav-
ing all the covariates. Then the best subset may be selected based on
AIC, BIC or other model selection criteria. Separate estimates from full-
and restricted models are then combined to obtain shrinkage estimates.
Finally, a model with shrunken coefficients is obtained, which reduces
overall prediction error.

We obtain pretest and positive-shrinkage estimates using different
sub-models. Performance of each pair of full- and sub-models was evalu-
ated by estimating the prediction error based on K-fold cross validation.
In a cross validation, the data set is randomly divided into K subsets
of roughly equal size. One subset is left aside, and termed as test data,
while the remaining K — 1 subsets, called training set, are used to fit
the model. The fitted model is then used to predict the responses of
the test data set. Finally, prediction errors are obtained by taking the
squared deviation of the observed and predicted values in the test set.

We consider K = 5,10. Both raw cross validation estimate (CVE),
and bias corrected cross validation estimate of prediction errors are ob-
tained for each configuration. The bias corrected cross validation esti-
mate is the adjusted cross-validation estimate designed to compensate
for the bias introduced by not using leave-one-out cross-validation (Tib-
shirani and Tibshirani, 2009).

Since cross validation is a random process, the estimated prediction
error varies across runs, and for different values of K. To account for the
random variation, we repeat the cross validation process 5000 times, and
estimate the average prediction errors along with their standard errors.
The number of repetitions was initially varied, and settled with this as
no noticeable variations in the standard errors were observed for higher
values.

4.2 Prostate Data

Hastie et al. (2009) demonstrated various model selection techniques by
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fitting linear regression model to the prostate data. Specifically, the
log of prostate-specific antigen (1psa) was modeled by the log cancer
volume (lcavol), log prostate weight (lweight), age (age), log benign
prostatic hyperplasia amount (1bph), seminal vesicle invasion (svi), log
capsular penetration (lcp), Gleason score (gleason), and percentage
Gleason scores 4 or 5 (pggd5). The idea is to predict lpsa from the
measured variables.

The predictors were first standardized to have zero mean and unit
standard deviation before fitting the model. Several model selection
criteria and shrinkage methods were tried—details of which may be found
in (Hastie et al., 2009, Table 3.3, page 63). We consider the models
obtained by AIC, BIC, and best subset selection (BSS) criteria, and
consider them as our sub-models. They are listed in Table 1.

Table 1: Full and candidate sub-models for prostate data.

Selection

Criterion Model: Response ~ Covariates

Full Model 1psa™ lcavol + lweight + svi + lbph + age + lcp
+ gleason + pgg4b

AIC lpsa” lcavol + lweight + svi + lbph + age
BIC lpsa” lcavol + lweight + svi
BSS lpsa” lcavol + lweight

Average prediction errors, and their standard deviations for pretest
and shrinkage estimators for various sub-models are shown in Table 2.
Prediction errors are based on five- and ten-fold cross validation. Av-
erage and standard errors are obtained after repeating the process 5000
times.

Looking at the bias corrected cross validation estimate of the predic-
tion errors, on an average, restricted and the pretest estimators based on
AIC have the smallest prediction errors. This is followed by pretest and
the restricted estimators based on BIC. Interestingly, average prediction
errors based on the sub-model given by BSS is much higher than those
obtained from the models based on AIC or BIC. For instance, restricted
model based on BSS has average prediction error 0.576, and the same for
pretest estimator is 0.605. For the same sub-model, positive-shrinkage
estimator has average prediction error 0.536, which is much less than
R(BSS), and PT(BSS). Clearly, positive shrinkage estimator is beating
the restricted and pretest estimators for this sub-model. This is a clas-
sic example where utility of positive-shrinkage estimator is practically
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Table 2: Average prediction errors for various estimators based on K-
fold cross validation repeated 5000 times for prostate data. Numbers in
smaller font are the corresponding standard errors.

Raw CVE Bias Corrected CVE
Estimator K =5 K =10 K=5 K =10
UR .556 030  .548 018 543 026 .542.017

R(AIC) 935,023 529 914 525,020 523013
R(BIC) D37 000 533012 529018 529011
R(BSS) 582017  .578010 .D76.015 576 o9

PS(AIC) .554,029 ~547.018 .540.025 .541,017
PS(BIC) 546 g2 541 916 533,023  .535015
PS(BSS) -549.026 -542.016 .536.023 .536,015

PT(AIC) 536021 529014 526021 525,014
PT(BIC) 538021 533012 529010 .529011
PT(BSS) 59903 .601g2s  .60203 -605029

realized. Restricted and/or pretest estimation may perform better un-
der correct specification of the model (e.g., the models given by AIC
and BIC for this data set), whereas, positive-shrinkage estimator is less
sensitive to model misspecification.

Apparently, in the presence of imprecise subspace information, re-
stricted and pretest estimators fail to produce the best estimates that
reduce average prediction errors. On the other hand, positive-shrinkage
estimator maintains a steady risk-superiority under model misspecifica-
tion. This behaviour is illustrated in more detail through a Monte Carlo
study in section 5.

4.3 State Data

Faraway (2002) illustrated variable selection methods on a data set called
state. There are 97 observations (cases) on 9 variables. The variables
are: population estimate as of July 1, 1975; per capita income (1974);
illiteracy (1970, percent of population); life expectancy in years (1969-
71); murder and non-negligent manslaughter rate per 100,000 population
(1976); percent high-school graduates (1970); mean number of days with
minimum temperature 32 degrees (1931-1960) in capital or large city;
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and land area in square miles. We consider life expectancy as the re-
sponse. It was found that population, murder, high school graduates,
and temperature produce the best model based on AIC or BIC. A model
based on CP statistic that includes population, high school graduates,
and temperature showed the largest adjusted R?. All the models are
listed in Table 3.

Table 3: Full and candidate sub-models for state data.

Selection
Criterion Model: Response ~ Covariates
Full Life.exp™ Population + Murder + Hs.grad + Frost +

Income + Illiteracy + Area
AIC/BIC Life.exp” Population + Murder + Hs.grad + Frost
CP Life.exp™ Murder + Hs.grad + Frost

Table 4: Average prediction errors (thousands) for various estimators
based on K-fold cross validation, repeated 5000 times for state data.
Numbers in smaller font are the corresponding standard errors.

Raw CVE Bias Corrected CVE
Estimator K =5 K =10 K=5 K =10
UR 879 144 847 056 819119 .820 79

R(AIC) 637063 .614.036 599 052 .597 033
R(CP) 639058 .639.033 626,048 626 031

PS(AIC)  .740.124 .690 74 696104 .671 068
PS(CP) 768 106 746063 127 090 .T27 058

PT(AIC) .637066 -614936 599 054 597 033
PT(CP) 662 069 .639 035 629 059 626 030

When the models are correctly specified, it is obvious that restricted
estimator will perform the best. Such is the scenario for the state data,
where the model given by AIC and BIC are the same, and the restricted
estimator has the smallest prediction error. Under model uncertainty,
however, the scenario will change completely as restricted estimator be-
comes unbounded when the sub-model deviates from the true structure.
This is explored in the simulation study presented in section 5. For the
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correctly specified models, such as in Table 4, we see that restricted and
pretest estimators have the smallest average prediction errors for both
five-fold and ten-fold cross validation. The bias corrected version of the
cross validation errors are exactly the same for the restricted and pretest
estimators.

4.4 Galapagos Data

Faraway (2002) analyzed the data about species diversity on the Gala-
pagos islands. The Galapagos data contains 30 rows and seven variables.
Each row represents an island, and the covariates represent various geo-
graphic measurements. The relationship between the number of species
of tortoise and several geographic variables is of interest. The data set
has the following covariates: Species represents the number of species
of tortoise found on the island, Endemics represents the number of en-
demic species, Area represents the area of the island (km?), Elevation
measures the highest elevation of the island (m), Nearest is the distance
from the nearest island (km), Scruz measures the distance from Santa
Cruz island (km), Adjacent measures the area of the adjacent island
(km?). The original data set contained missing values for some of the
covariates, which have been imputed by Faraway (2002) for convenience.

The full model and the sub-models based on AIC and BIC are shown
in Table 5.

Table 5: Full and candidate sub-models for Galapagos data.

Selection

Criterion Model: Response ~ Covariates

Full Species” Endemics + Area + Elevation + Nearest +
Scruz + Adjacent

AIC Species” Endemics + Area + Elevation

BIC Species” Endemics

We obtain restricted, pretest, and positive-shrinkage estimates of the
regression parameters of the Galapagos data. Average prediction errors
along with their standard errors for unrestricted (UR), restricted (R),
positive-shrinkage (PS), and preliminary test or pretest (PT) estimators
are presented in Table 6. Prediction errors and the standard errors are
shown in thousands. PS(AIC) represents positive shrinkage estimates
based on sub-model given by AIC, and PS(BIC) represents the same
based on BIC. PT(AIC) and PT(BIC) are similarly defined for pretest
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estimators.

Table 6: Average prediction errors (thousands) for various estimators
based on K-fold cross validation, repeated 5000 times for Galapagos
data. Numbers in smaller font are the corresponding standard errors.

Raw CVE Bias Corrected CVE
Estimator K =5 K =10 K=5 K =10
UR 13.87536 12.634.36 11.3170 11.48393

R(AIC) 1245696 11.62425  10.10557 10.533s5
R(BIC) 1.780.59 1.650,24 1.460,43 1.510,29

PS(AIC) 13.1975 11.98429  10.75627 10.88387
PS(BIC) 9.076.53 7.963.75 7.545.94 7.323.38

PT(AIC) 1250608 11.634.29 10.145 55 10.545 g6
PT(BIC) 5-397.56 3~906.16 4406.08 3'555.56

For this example as well, since we have selected our sub-models based
on AIC or BIC, they are likely to be true, which results in restricted and
pretest estimators being the best estimators in terms of prediction er-
rors. We notice that, models based on BIC are smaller in size, and their
average prediction errors are smaller than those of the AIC models. The
difference in average prediction errors for the two sub-models is notice-
ably large. Such a large difference between the competing sub-models
shows us about the uncertainty in model specification, and the conse-
quences that it cause. Monte Carlo study conducted later in the paper
(section 5) reveals the sensitivity of restricted and pretest estimators,
and shows that pretest and restricted estimators are outperformed by
positive-shrinkage estimators when the underlying model is misspecified.

It is noted here that the prediction errors are unusually large for this
data set. This indicates that the predictors are not quite capturing the
variability in the response.

5 Simulation Studies

Monte Carlo simulation experiments have been conducted to examine
the quadratic risk performance of positive-shrinkage and pretest estima-
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tors. We simulate the response from the following model:
Yi = xliﬁl +x2iﬁ2 +--'7+xpiﬁp+5’i7 = 17"'777‘7

where z1; = (CS))Q + Ci(l) + &14, To; = (CS))Q + Ci(l) +2€9;, x5i = (Cg))Q +
¢ with ¢V iid. ~ N(0,1), ¢ iid. ~ N(0,1), & ~Bernoulli(0.45)
and &z; ~Bernoulli(0.45) for all s =3,...,pand i = 1,...,n. Moreover,
g; are i.i.d. N(0,1).

We are interested in testing the hypothesis Hy : B; = 0, for j =
p1+ 1,p1+2,...,p1 + po, with p = p1 + p2. Accordingly, we partition
the regression coefficients as 8 = (81,82) = (81,0). We show results
for 81 = (1,1,1), and B; = (1,1,1,1) only.

The number of simulations were initially varied. Finally, each real-
ization was repeated 2000 times to obtain stable results. For each real-
ization, we calculated bias of the estimators. We defined A = ||@—B8)],
where 80 = (3,,0), and || -|| is the Euclidean norm. To determine the
behavior of the estimators for A > 0, further data sets were generated
from those distributions under local alternative hypothesis. Various A
values between [0,1] have been considered.

The risk performance of an estimator of (31 was measured by com-
paring its MSE with that of the unrestricted estimator as defined below:

3UR
RMSE(BVR - ;) = MoEBL ) (5.1)
MSE(8,)
where B; is one of the estimators considered in this study. The amount
by which an RMSE is larger than unity indicates the degree of superiority
of the estimator ,BT over ,BPR.

RMSEs for the positive-shrinkage and pretest estimators were com-
puted for n = 30, 50,100, p; = 3,6,9, and ps = 4,6,9. Since the results
are similar for all the configurations, we list the RMSEs in Table 7 for
n = 50. Comparative RMSEs for positive-shrinkage and pretest esti-
mators for (p1,p2) = (3, 3), (3, 6), (4, 3), and (4, 6) are illustrated in
Figure 1.

51 Casel: A=0

Clearly, for A = 0, the restricted estimator outperforms all other es-
timators for all the cases considered in the simulation study. As the
restriction moves away from A = 0, the restricted estimator becomes
unbounded (see the sharply decaying curve that goes below the hori-
zontal line at BPR/ BT =1 for A > 0). The positive-shrinkage estimator
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Figure 1: Relative mean squared error for restricted, positive-shrinkage,
and pretest estimators for n = 50, and (p1,p2) = (3, 3), (3, 6), (4, 3),
and (4, 5)

approaches 1 at the slowest rate (for a range of A) as we move away
from A = 0. This indicates that in the event of imprecise subspace
information (i.e., even if B2 # 0), it has the smallest quadratic risk
among all other estimators for a range of A. Pretest estimator out-
shines shrinkage estimators when A is in the neighbourhood of zero.
Otherwise, it becomes unbounded at a faster rate than the restricted
estimator. However, with the increase of A, at some point, RMSE of
pretest estimator approaches 1 from below. This phenomenon suggests
that neither pretest nor restricted estimator is uniformly better than the
other when A > 0.

5.2 Case 2: A>0

Simulation results suggest that positive shrinkage estimator maintains
its superiority over the restricted and pretest estimators for a wide range
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Table 7: Simulated relative mean squared error for restricted, positive-
shrinkage, and pretest estimators with respect to unrestricted estimator
for p1 = 4, and py = 6 for different A when n = 50.

& B By ap
0.00 3.25 217 2.59
0.05 3.10 2.06 2.30
0.11 263 1.83 1.77
0.16 2.02 1.57 1.31
021 1.60 139 1.04
026 1.23 1.27 091
032 098 1.20 0.89
037 0.77 1.15 0.89
042 063 1.12 0.93
0.47 0.51 1.09 0.96
0.53 042 1.07 0.98
0.58 0.36 1.06 0.99
0.63 031 1.06 1.00
0.68 0.27v 1.06 1.00
0.74 0.23 1.04 1.00
0.79 0.20 1.03 1.00
0.84 0.18 1.03 1.00
0.89 0.16 1.02 1.00
095 0.15 1.03 1.00
1.00 0.13 1.02 1.00

of A. In particular, when ps = 3, the performance of positive-shrinkage
estimator is superior for A up to around 0.35, after which point it is
as good as the unrestricted estimator (panels a) and c¢) in Figure 1).
However, when py = 6, positive-shrinkage estimator maintains its risk-
superiority over all other estimators for a wider range of A (see panels
b) and d) in Figure 1). This clearly suggests that a positive-shrinkage
estimator is preferred as there always remains uncertainty in specifying
statistical models correctly. Moreover, one cannot go wrong with the
positive-shrinkage estimators even if the assumed model is grossly wrong.
In such cases, the estimates are as good or equal to the unrestricted (i.e.,
full model) estimates.

In the following sections, we review the asymptotic properties of the
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estimators, and analytically present their bias and risk expressions.

6 Asymptotic Distribution of the Estimators

In this section we present the asymptotic distributions of the estimators,
and the test statistic ¢,,. This facilitates in finding the asymptotic distri-
butional bias (ADB), asymptotic quadratic distributional bias (AQDB),
and quadratic risk (AQDR) of the estimator of 3.

Under fixed alternative, the asymptotic distribution of \/n(8*—3)/s.
is equivalent to /n(8YR — B)/se. This suggest that in asymptotic
setup, there is not much to investigate under a fixed alternative such
as HB # h. Therefore, to obtain meaningful asymptotics, a class of
local alternatives, { K}, is considered, which is given by

w
K, H3=h+ — 6.1

niHB=h+ 2, (6.1)

where w = (wi,wa, -+ ,wp,)’ € RP? is a fixed vector. We notice that

w = 0 implies HB = h, i.e., the fixed alternative is a particular case of
(6.1). In the following, we evaluate the performance of each estimators
under local alternative.

For an estimator 3* and a positive-definite matrix W, we define the
loss function of the form

L(B*;8) =n(B" — B)W(B" - B).

These loss functions are generally known as weighted quadratic loss func-
tions, where W is the weighting matrix. For W = I, it is the simple
squared error loss function.

The expectation of the loss function

E[L(B", B); W] = R[(B", B); W],
is called the risk function, which can be written as
R(B",B); W) =nE[(B" — B)W (8" - B)]

=ntr[W{E(B* - 8)(B8" —8)'}]
= tr(WT™), (6.2)

where I'* is the covariance matrix of 3*.
The performance of the estimators can be evaluated by comparing
the risk functions with a suitable matrix W. An estimator with a smaller
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risk is preferred. The estimator 3* will be called inadmissible if there
exists another estimator 3% such that

R(B°,8) < R(B*,8) Y(B,W) (6.3)

with strict inequality holds for some 3. In such case, we say that the
estimator 3° dominates 3*. If, however, instead of (6.3) holding for
every m, we have

lim R(8°,8) < lim R(B",8) V8, (6.4)

with strict inequality for some (3, then 3* is termed as asymptotically
inadmissible estimator of 3. The expression in (6.3) is not easy to prove.
An alternative is to consider the asymptotic distributional quadratic risk
(ADQR) for the sequence of local alternative {K,}.

Consider the asymptotic cumulative distribution function (cdf) of
Vn(B* — B)/se under {K,,} exists, and defined as

G(y) = lim P[vn(B" —B)/sc < yl.

This is known as the asymptotic distribution function (ADF) of 8*.

Further let
Fz//---/yy’G(y)

be the dispersion matrix which is obtained from ADF, the ADQR may
be defined as
R(B*;3) = tr(WT). (6.5)
An estimator B* is said to dominate an estimator 3° asymptotically
if R(B*;8) < R(B% B). Further, B* strictly dominates 8° if R(3*; 3) <
R(B%; B) for some (B,W). The asymptotic risk may be obtained by
replacing I" with the limit of the actual dispersion matrix of v/n(8* — 3)
in the ADQR function. However, this may require some extra regularity
conditions. Sen (1986), and Saleh and Sen (1985) among others, have
explained this point in various other contexts.

6.1 Asymptotic Bias and Risk Performance

To obtain the asymptotic distribution of the proposed estimators, and
the test statistic v, we consider the following theorem.

Theorem 6.1. Under the regularity conditions, and if 02> < oo, as
n — oo,

Vi sZHBYE - B) L N, (0,C7Y).
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6.1.1 Bias Performance

The asymptotic distributional bias (ADB) of an estimator d is defined
as

ADB(9) :nli_)rr;OE{n%((s—,Bl)}.

Theorem 6.2. Under the assumed reqularity conditions and theorem
above, and under {K,}, the ADB of the estimators are as follows:

ADB(BVF) = (6.6)
ADB(ﬁl )=-C,'HB 'w (6.7)
ADB(B{T) = —CT'HB "6 H,p,10(x2, 03 ) (6.8)
ADB(B*) = ~C T HB | Hyya(p = 2% A)+ (2 — 20 B{ G 2(A) |
+E {X;22+2(A)I(X§2+2(A) > - 2)f] (6.9)

where ~
EOGH(A) = /0 2 ddy (3 A)

and ®,(z;A) is the cdf of a p-variate normal distribution with mean
vector 0, and covariance matrix, A.

The bias expressions for all the estimators are not in the scalar form.
We therefore take recourse by converting them into the quadratic form.
Let us define the asymptotic quadratic distributional bias (AQDB) of
an estimator & of 31 by

AQDB(8) = [ADB(8)'S[ADB(6)]

where 7! = ¢2C ! is the dispersion matrix of BUR as n — oo.

Using the definition, and following Ahmed (1997), the asymptotic
quadratic distributional bias of the various estimators are presented be-
low.

AQDB(BR) =0, (6.10)
AQDB(AI) = % (
AQDB(BT) = A {Hp,12(xp, 05 ) } (
ADQB(B}Y) = A [Hypnlp — 2:8) + (2 — 2B {1, 2(0)}
(

+E {X;22+2(A)I(X1222+2(A) = P2 2)}]

=A 6.11)

2 6.12)

6.13)
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6.1.2 Risk Performance

Following Ahmed (1997), we present the risk expressions of the estima-
tors.

Theorem 6.3. Under the assumed reqularity conditions, and local al-
ternative { Ky}, the ADQR expressions are as follows:

R(BVR: W) = oc*tr(WC™) (6.14)
R(BY: W) = c*tr(WC™) — 0tr(Q) + w' B71Quw (6.15)
R(BYW) = c*tr(WC™) — (pa — 2)0*tr(Q11)

x {2EDGE(8)] = (72 — 2) Bt ()]}

+ (12 = 2) (02 + 6)(NQuN) BG4 (D) (6.16)
R(B{; W) = a*tx(WC™) = 0*tx(Q) Hpy12(xp, 0 D)

+ W BT w {2y 150, 01 8) — Hppra03, 05 0)} (6.17)
R(BY" ;W) = R(BY; W) + (p2 — 2)0°tr(Q)

x [E{G 220108, 12(8) < —2)}

— (02 = DE { X212 (AT (G 2(8) < p2 —2) }]

— 0tr(Q) Hpy12(p2 — 2 A)
+ W' B7'Qw {2H,, 14(p2 — 2, A)}
— (12 = 2w B71Qu 2B 3, 23 0(A) 102, 12(8) < 2 —2)}
~2E {324 (A) (0, 4(A) < p2 - 2)}
T (12 = 2B { s (D) (Gra(D) < 2= 2)} | (618)
where Q = HC™'WC~'H'B~.
Ahmed (1997) have studied the statistical properties of various shrink-
age and pretest estimators. It was remarked that none of the unre-

stricted, restricted, and pretest estimators is inadmissible with respect
to any of the others. However, at A = 0,

AR . AP . AUR
B =P =B
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Therefore, for all (A; W) and py > 3,
R(BY; W) < R(BY; W) < R(BY™; W)

is satisfied. Thus, we conclude that Bf’* performs better than BPR in
the entire parameter space induced by A. The gain in risk over B/% is
substantial when A = 0 or near.

7 Discussion

In this paper, we reviewed positive-shrinkage and pretest estimation in
the context of a multiple linear regression model. In our study, we
presented asymptotic bias and the risk expressions for the estimators.

When we have prior information about certain covariates, shrinkage
estimators are directly obtained by combining the full and sub-model
estimates. On the other hand, if a priori information is not available,
shrinkage estimation takes a two-step approach in obtaining the esti-
mates. In the first step, a set of covariates are selected based on a
suitable model selection criterion such as AIC, BIC or best subset se-
lection. Consequently, the remaining covariates become nuisance, which
forms a parametric restriction on the full model. In the second step,
full and sub-model estimates are combined in a way that minimizes the
quadratic risk.

To illustrate the methods, three different data sets have been con-
sidered to obtain restricted, positive shrinkage, and pretest estimators.
Average prediction errors based on repeated cross validation estimate of
the error rates shows that pretest and restricted estimators have superior
risk performance compared to the unrestricted, and positive-shrinkage
estimators when the underlying model is correctly specified. This is not
unusual since the restricted estimator dominates all other estimators
when the prior information is correct. Since the data considered in this
study have been interactively analyzed using various model selection cri-
teria, it is expected that the sub-models consist of the best subsets of
the available covariates for the respective data sets. Theoretically, this is
equivalent to the case where A = 0, or very close to zero. The real data
examples, however, do not tell us how sensitive are the prediction errors
under model misspecification. Therefore, we conduct Monte Carlo sim-
ulation to study such characteristics for positive-shrinkage and pretest
estimators under varying A, and different sizes of the nuisance subsets.

In Monte Carlo study, we numerically computed relative mean squared
errors for the restricted, positive-shrinkage, and pretest estimators with
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respect to the unrestricted estimator. Our study re-established the fact
that the restricted estimator outperforms the unrestricted estimator at
or near the pivot (A = 0). However, as we deviate from the pivot
(A > 0), risk of the restricted estimator becomes unbounded. Pretest
estimator becomes unbounded even faster than the restricted estimator
for the cases considered in the simulation. However, as the A increases,
pretest estimator performs better for some A, and approaches from be-
low to merge with the line where RMSE is unity. On the other hand,
positive-shrinkage estimator decays at the slowest rate with the increase
of A, and perform steadily throughout a wider range of the alternative
parameter subspace. In particular, when the nuisance subset is large,
positive-shrinkage estimators outperforms all other estimators, which
can be seen in panels b) and d) in Figure 1.

7.1 Future Directions

Pretest estimator either selects restricted or unrestricted estimator de-
pending on the significance based on a test statistic, while positive-
shrinkage estimator shrinks the covariates towards the restricted sub-
space. The nuisance subset is ideally a null space when they do not
contribute significantly in the estimation process. In this sense, shrink-
age estimators resemble penalized estimators such as the least absolute
penalty and selection operator, lasso. Proposed by Tibshirani (1996),
lasso is a member of the penalized least squares (PLS) family, which per-
forms variable selection and parameter estimation simultaneously. Lasso
is closely related with ridge regression, which is obtained by minimizing
the penalized residual sum of squares,

_ n P1+p2 P1+p2
Bridge = argmﬁin Z(yz - ﬁO - Z xijﬁj)2 + Z 5]2
i=1 j=1 j=1

Here, ~ is the tuning parameter which controls the amount of shrinkage.
Lasso solutions are similarly defined by replacing the squared penalty
Z?S{p ? 5]2 in the ridge solution with the absolute penalty Z?Sp *1B;] in
the lasso,

n p1+p2 p1+p2

Blasso = argmﬁin Z(yz - ﬁO - Z xijﬁj)Q + Z ’ﬁ]’
=1 j=1

=1

Although the change apparently looks subtle, the absolute penalty term
made it impossible to have analytic solution for the lasso. Originally,
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lasso solutions were obtained via quadratic programming. Nowadays,
faster algorithm, such as cyclical coordinate descent, is used to obtain
lasso estimates.

Shrinkage estimation does variable selection by shrinking the co-
efficients towards the restricted sub-space. In doing so, some of the
coefficients shrink towards zero, while some over-shrinks—producing a
negative sign for the coefficient. The change of sign may be uncomfort-
able for practitioners, although it does not affect the risk performance.
The positive-part shrinkage estimator takes care of the negative sign by
setting the coefficient to exactly zero. In the process, most of the co-
efficients are shrunk while some of them are eliminated by shrinking to
ZEro.

Since the introduction of lasso, there has been a tremendous amount
of development in lasso and related absolute penalty estimation (APE)
during the past one and a half decade. Although the lasso and shrink-
age methods have been around for quite some time, little work has been
done to compare their relative performance. Recently, Ahmed et al.
(2007) compared positive shrinkage and lasso in a partially linear regres-
sion setup. However, no comparative study for shrinkage and absolute
penalty estimators in multiple linear regression model has been found
in the reviewed literature. We are currently working on this front, and
the findings will be disseminated through future communications.
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