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Abstract. In this paper we treat a general form of location model. It is
typically assumed that the error term is distributed according to the law
belonging to the class of elliptically contoured distribution. Some sorts
of shrinkage estimators of location and scale parameters are proposed
and their exact bias and MSE expressions are derived. The performance
of the estimators under study are completely analyzed and the condition
of superiority of each estimator is studied in details.
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1 Introduction

In the wake of increasing criticism on the inappropriate use of the normal
distribution to model the errors, there is a growing trend to use, often
more appropriate, heavier/lighter tail models. Fisher (1956, p. 133)
warned against the consequences of inappropriate use of the traditional
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normal model. He (1960, p. 46) also analyzed Darwin’s data (cf. Box and
Taio, 1992, p. 133) by using a non-normal model. In fact the assumption
of normality restricts the range of possible application, especially in flat-
ter densities. Alternatives include elliptical distributions which contain
the normal one. The elliptical distributions are the parametric forms of
the spherical symmetric distributions, which are invariant under orthog-
onal transformations and have equal density on sphere if densities exist.
The elliptic family of multivariate distributions has received considerable
attention in the statistical literature. The works of Fang and Zhang
(1990) and Fang et al. (1990) are two main references on the theory
of the vector-variate elliptic family of multivariate distributions. Some
of the well-known elliptical distributions are the multivariate Gaussian,
Pearson Type II/VII, multivariate Student’s t, multivariate logistics,
multivariate Kotz type, multivariate Laplace, multivariate Bessel and
multivariate power exponential distributions.

There have been many studies in the area of the ‘improved’ esti-
mation following the seminal work of Bancroft (1944) and later Han
and Bancroft (1968). They developed the preliminary test estimator
that uses uncertain non-sample prior information (not in the form of
prior distributions), in addition to the sample information. Stein (1956)
elegant approach dominates the usual maximum likelihood estimators
under the squared error loss function. In a series of papers Saleh and
Sen (1978, 1985) explored the preliminary test approach to Stein-rule
estimation. Many authors have contributed to this area, notably Sclove
et al. (1972), Judge and Bock (1978), Stein (1981), Maatta and Casella
(1990) and Khan and Saleh (1995, 1997), Kibria and Saleh (2004, 2006),
Saleh and Kibria (2011a, b) and Ahmed et al. (2006, 2007). The recent
book of Saleh (2006) presents a comprehensive discussion of this area.

To accompany elliptical treatment, consider a location model with
the response vector Y = (Y1, · · · , Yn)′ such that it satisfies

Y = θ1n + ε, (1.1)

where 1n = (1, · · · , 1)′ is an n-tuples of 1’s, and the error vector ε
belongs to the class of elliptically contoured distributions (ECDs), that
is distributed as n-dimensional ECD, denoted by ε ∼ En(0, σ2Vn, ψ).

Then ε has the following characteristic function

φε(t) = ψ
(
σ2t′Vnt

)
(1.2)

for some functions ψ : [0,∞) → R say characteristic generator (Fang et
al., 1990).
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The mean of ε is the zero-vector and the covariance-matrix of ε is

E(ε′ε) = −2σ2ψ′(0)Vn = σ2
εVn, σ2

ε = −2σ2ψ′(0) (1.3)

In equation (1.3), the expectation exists provided that |ψ′(0)| <∞.
If ε possesses a density, then it can be represented as an integral of

a set of multivariate normal densities given by (Chu, 1973)

g(ε) = dn|σ2V n|− 1
2 f

[
1
σ2

ε′V−1
n ε

]
=

∫ ∞

0
W (t) Nn

(
0, t−1σ2Vn

)
dt, (1.4)

where the weight function W (.) is given by

W (t) =
(

2
π

)n
2

σn|Vn| 12 t−n
2 L−1[g(s)], (1.5)

L−1[g(s)] denotes the inverse Laplace transform of g(s) with s = ε′V−1
n ε

/2σ2, for a normalizing constant dn and for some function f(.) say den-
sity generator. Then we will use the notation ε ∼ En(0, σ2Vn, f). Note
that f and ψ determines each other for each specific member of this fam-
ily. For details on the properties of Laplace transform and its inverse
see Debnath and Bhatta (2007).

On integrating g(.) over R
n, W (.) integrates to 1. Thus for nonneg-

ative function W (.), it is a density and can be interpreted as a scale
mixture of normal distributions (Muirhead, 1982). Note that the mix-
ture of normal distributions is a subclass of the ECDs (Fang, 2006).
Thus our model, contains negative and nonnegative weight functions.

Some explicit representations of h(.) and W (.) for s = ε′V−1
n ε/2σ2

are given in Table 1.

In Table 1, δ(.) is the unit impulse function or the Dirac delta func-
tion with the following properties

1.
∫ ∞
0 δ(t)dt = 1,

2.
∫ ∞
−∞ v(t)δ(t)dt = v(0) for every Borel measurable function v(.).

And δ(m)(t) denotes the mth derivative of δ(t) w.r.t t.
Note that involving equation (1.3), we can formulate the covariance
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Distribution f(s) W (t)

Multivariate Normal |σ2Vn|−1/2e−s

(2π)n/2 δ(t− 1)

Multivariate Pearson Γ(m)|σ2Vn|−1/2

(qπ)n/2Γ(m−n/2)
tm−n/2−1e−qt/2

(q/2)n/2−mΓ(m−n/2)

Type V II ×(1 + 2s/q)−m

Multivariate Student-t νν/2Γ((ν+n)/2)|σ2Vn|−1/2

πn/2Γ(ν/2)
ν(νt/2)ν/2−1e−νt/2

2Γ(ν/2)

with ν d.f. ×(ν + 2s)−(ν+n)/2

Multivariate Laplace Γ(n/2)|σ2Vn|−1/2e−√
2s

2πn/2Γ(n)
δ(t−√

2)

Generalized Slash νs−n/2−ν |σ2Vn|−1/2

(2π)n/2 νtν−1

×[Γ(n/2 + ν) − Γ(n/2 + ν, s)]

Multivariate Kotz type qm−1+n/2Γ(n/2)|σ2Vn|−1/2

πn/2Γ(m−1+n/2)
(2q)m−1+n/2Γ(n/2)

Γ(m−1+n/2)

(2s)m−1e−2qs t−n/2δ(m−1)(t− 2q)

Table 1: Some elliptical densities and the corresponding weight functions

matrix based on the weight function W as

E(ε′ε) =
∫ ∞

0
W (t)Cov

{
Nn(0, t−1σ2Vn)

}
dt

=
∫ ∞

0
W (t)

(
t−1σ2Vn

)
dt

= σ2κ(1)Vn, (1.6)

where

κ(i) =
∫ ∞

0

(
1
t

)i

W (t)dt, (1.7)

provided that the above integral exists.
Subsequently, from (1.3), we get

κ(1) = −2ψ′(0), and σ2
ε = σ2κ(1). (1.8)

For some examples of (1.6), using Table 1, for the multivariate nor-
mal model we have

E(ε′ε) = σ2Vn

∫ ∞

0
t−1δ(t− 1)dt

= σ2Vn,
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and for the multivariate Student-t model with ν d.f., we obtain

E(ε′ε) = σ2Vn

∫ ∞

0
t−1 ν

(
νt
2

) ν
2
−1
e−

νt
2

2Γ
(

ν
2

) dt

=
νσ2

ν − 2
Vn.

Another sub-class of ECDs which includes the above class may be
generated by a signed measure W on the measurable space (R+,B) such
that the pdf g(.) can be expressed as

(i) g(ε) =
∫ ∞

0
Nn(0, t−1σ2Vn)W (dt),

(ii)
∫ ∞

0
t−1W+(dt) <∞,

(iii)
∫ ∞

0
t−1W−(dt) <∞,

where W+ − W− is the Jordan decomposition of W in positive and
negative parts (see for examples Srivastava and Bilodeau, 1989 and Saleh
and Kibria, 2011).

The plan of this paper is as follows. In section 2 unbiased estimators
of θ and σ2 are proposed as well as the test statistic for testing the
imposed restriction θ = θ0. In sequel improved estimates of location
and scale components are also given. Section 3 contains some important
theorems for the bias and MSE expressions of the nominated estimators.
Complete discussion on the performance of the estimators under study
are included in section 4, while a conclusion is given in section 5.

2 Proposed Estimators

In this section, we propose unbiased estimators for the location param-
eter θ as well as the variance component σ2

ε.
It is totally accepted that using LS method, by minimizing the fol-

lowing criterion w.r.t. θ

(Y − θ1n)′V−1
n (Y − θ1n), (2.1)

the unbiased estimator of θ is given by

θ̃n = K−1
1 1′

nV
−1
n Y , K1 = (1′

nV
−1
n 1n) (2.2)
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Accordingly, we have Var(θ̃n) = σ2
εK

−1
1 .

Also the unbiased estimator of σ2
ε is as

S2
u =

1
m

(Y − θ̃n1n)′V−1
n (Y − θ̃n1n), m = n− 1. (2.3)

Theorem 2.1. Suppose Y ∼ En(θ1n, σ
2Vn, f), then the distribution

of θ̃n is

d1

√
K1

σ2
f

[
K1(θ̃n − θ)2

2σ2

]
,

where d1 is the normalizing constant. Also the distribution of S2
u is(

S2
u

) 1
2
m−1

(2σ2)
m
2 Γ

(
m
2

) ∫ ∞

0
t

m
2 e−

tS2
u

2σ2W (t)dt

Proof. The distribution of θ̃n can be written as

fθ̃n
(x) =

∫ ∞

0
W (t)f∗

θ̃n
(x)dt,

where f∗
θ̃n

(.) is the pdf of θ̃n under the assumption θ̃n ∼ N(θ, t−1σ2K−1
1 ).

The result follows using the representation (1.4).
For the distribution of S2

u, define Z1 = V−1/2
n (Y − θ̃n1n), then un-

der the assumption Y ∼ Nn(θ1n, t
−1σ2Vn), it follows t1/2σ−1(In −

A)−1/2Z1 ∼ Nn(0, In), where A = K−1
1 V−1/2

n 1n1′
nV

−1/2
n is a symmet-

ric idempotent matrix and so is (In−A). Then it follows rank(In−A) =
tr(In − A) = n− 1. Therefore we obtain

S2
u|t =

Z′
1(In − A)−1/2(In − A)(In − A)−1/2Z1

n− 1
∼ σ2t−1χ2

m. (2.4)

Thus integrating w.r.t. the weight function W (.), gives the result. �
Consequently we obtain

(i) E
(
S2

u

)
= σ2κ(1), (2.5)

(ii) Var
(
S2

u

)
=

2
(
κ(1)

)2

m
σ4

Now, we state a Theorem due to Anderson et al. (1986) about
estimators and tests.
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Theorem 2.2. (Anderson et al., 1986) Let Ω0 be a set in the space of
(μ,V), V > 0, such that if (μ,V) ∈ Ω0 then (μ, cV) ∈ Ω0 for all c > 0.
Suppose f is such that f(x′x) is a density in �N and y

N
2

f(y) has a finite
positive maximum yf . Suppose that on the basis of an observation x from
|V|−1

2 f
[
(x − μ)′V−1(x − μ)

]
the MLEs under normality (μ̃, Ṽ) ∈ Ω0

exist and are unique and that Ṽ > 0 with probability 1. Then the MLEs
for f are

μ̂ = μ̃, V̂ =
N

yf
Ṽ,

and the maximum of the likelihood is

|V̂|−1
2 f(yf ).

Theorem 2.3. Let

Ω = {(θ, σ,Vn) : θ ∈ R, σ ∈ R
+,Vn > 0}, and,

ω = {(θ, σ,Vn) : θ = θ0, θ0 ∈ R, σ ∈ R
+,Vn > 0}.

Moreover, suppose y
n
2 f(y) has a finite positive maximum yf . Then the

LR criterion for testing the hypothesis H0 : θ = θ0 is given by

Ln = K1
(θ − θ0)2

S2
u

(2.6)

and it has the following modified generalized non-central F -distribution

g∗1,m(Ln) =
∑
r≥0

(
1
m

) 1
2
(1+2r) L

1
2
(2r−1)

n K0
r (Δ2)

r! B
(

2r+1
2 , m

2

) (
1 + 1

mLn

) 1
2
(1+2r+γo)

(2.7)

where Δ2 = ξ/σ2
ε for ξ = K1(θ − θ0)2, and

Kh
r (Δ2) =

∫ ∞

0

e−
Δ2

2

r!

(
−Δ2

2

)r

t−hW (t)dt. (2.8)

Proof. For the test of the null hypothesis H0 : θ = θ0 versus HA : θ �=
θ0, firstly, let

σ̃2
ε = (Y − θ01n)′V−1

n (Y − θ01n). (2.9)
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In the second rate, by making using of Theorem 2.2 we obtain

Λ =
maxω L(y)
maxΩ L(y)

=
dn|σ̂2V|− 1

2 maxy f
[

y′V−1y
2σ2

]
dn|σ̃2V|− 1

2 maxy f
[

y′V−1y
2σ2

] =
(
σ̃

σ̂

)n f(yf)
f(yf)

=

[
(Y − θ̃n1n)′V−1

n (Y − θ̃n1n)
(Y − θ01n)′V−1

n (Y − θ01n)

]n

=
(

mS2
u

mS2
u +K1(θ̃n − θ0)2

)n

=

(
1

1 + 1
mLn

)n

Hence, Ln is the LR test for testing the underlying null hypothesis.
For its non-null distribution, we note that under the assumption ε ∼
Nn(0, σ2t−1V)

Ln =
K1(θ̃n − θ0)2

S2
u

follows the non-central F -distribution with (1,m) d.f. and non-centrality
parameter Δ2

t = K1(θ−θ0)2

t−1σ2 .Then integrating over t w.r.t. the signed
measure W we obtain (2.7). �

Corollary 2.3.1. Under H0, the pdf of Ln is given by

g∗
1,m(Ln) =

(
1
m

) 1
2 L

1
2
−1

n

B
(

1
2 ,

m
2

) (
1 + 1

mLn

) 1
2
(m+1)

,

which is the central F -distribution with (1,m) d.f.

Corollary 2.3.2. The power function at γ-level of significance of Ln,
say, modified generalized non-central F cumulative distribution function
of the statistic Ln is given by

Gp,m(lγ ;Δ2) =
∑
r≥0

1
r!
K0

r (Δ2)Ix

[
1
2

(1 + 2r),
m

2

]
, (2.10)

where Ix(., .) is the incomplete Beta function, x = lγ
m+lγ

and lγ =
F1,m(γ).

In addition to θ̃n and S2
u, we present a few more estimators of θ and

σ2
ε. First, we consider the case when it is a priori suspected that θ may



On Mathematical Characteristics of some Improved Estimators 245

be equal to θ0. In this case, following Bancroft and Han (1968) and
Saleh (2006), we define some estimators given below:
(i) restricted estimator (RE) of θ is

θ̃RE
n = θ̃n − k0(θ̃n − θ0), 0 < k0 < 1. (2.11)

(ii) preliminary test estimator (PTE) of θ is given by

θ̃PT
n = θ̃n − k0(θ̃n − θ0)I(Ln < cα), (2.12)

where I(A) is the indicator function of the set A and cα is the α-level
critical value of the F -distribution with (1,m) d.f.
(iii) shrinkage type estimator (SE) of θ is given by

θ̃S
n = θ̃n − c0k0(θ̃n − θ0)Su√

K1|θ̃n − θ0|
, c0 > 0, 0 < k0 < 1. (2.13)

For the estimation of σ2
ε, we consider the following:

(i) the unrestricted estimator of σ2
ε is S2

u

(ii) restricted estimator of σ2
ε is defined by

(m+ 1)S2
R = mS2

u +K1(θ̃n − θ0)2. (2.14)

Further, the best invariant estimators of σ2
ε are given by

(iii) ˜σ2ε =
mS2

u

m+ 2
(iv) σ̂2

ε =
(m+ 1)S2

R

n+ 3
. (2.15)

Let cα be the α-level critical value of the F -distribution with (1,m) d.f.
then we define three more preliminary test estimators of σ2

ε

(v) S2
PT [1] = Ψ1(Ln)mS2

u (2.16)

(vi) S2
PT [2] = Ψ2(Ln)mS2

u (2.17)

and

(vii) S2
[s] = Ψs(Ln)mS2

u (2.18)

where

Ψ1(Ln) =
1
m
I(Ln ≥ cα) +

(1 + 1
mLn)

m+ 1
I(Ln < cα), (2.19)
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Ψ2(Ln) =
1

m+ 2
I(Ln ≥ cα) +

(1 + 1
mLn)

m+ 3
I(Ln < cα), (2.20)

and

Ψs(Ln) =
1

m+ 2
I
(
Ln ≥ m

m+ 2

)
+

(1 + 1
mLn)

m+ 3
I
(
Ln <

m

m+ 2

)
,(2.21)

respectively.

3 Bias and MSE Expressions

This section contains some lemmas and theorems for the calculation of
bias and MSE expressions for the proposed estimators. We begin with
the following theorem:

Theorem 3.1. If Z follows E1(θ, σ2, f) and φ is a measurable function
of Z2, then
(i) the distribution of Z2 is given by

h1(χ2(Δ2)) =
∑
r≥1

K0
r (Δ2)h1+2r(χ2; 0),

H(x;Δ2) =
∑
r≥1

K0
r (Δ2)H1+2r(x; 0), c ≥ 0

where hν(χ2; 0) and Hν(x; 0) are the pdf and cdf of a central chi-square
distribution with ν d.f.

(ii) E[φ(Z2)] =
∞∑

r=0

K(0)
r (Δ2)EN [φ(χ2

1+2r(0))] = E(0)[φ(χ2
1(Δ))]

(iii) E[Zφ(Z2)] = θE(0)[φ(χ2
3(Δ

2))]

(iv) E[Z2φ(Z2)] = σ2
εE

(1)[φ(χ2
3(Δ

2))] + θ2E(0)[(χ2
5(Δ

2))]

where

E(h)[φ(χ2
ν(Δ2))] =

∞∑
r=0

Kh
r (Δ2)EN [φ(χ2

ν+2r(0))], (3.1)

and

E[t−hφ(χ2
ν(Δ

2
t ))] = σ2h

ε E(h)[φ(χ2
ν(Δ2))] (3.2)

for integer values of h.
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Proof. Under N
(
θ, t−1

)
, Z2 is distributed as χ2

1(Δ
2
t ) with pdf

∞∑
r=0

e−
Δ2

t
2

r!

(
Δ2

t

2

)r

h1+2r(χ2; 0).

Integrating w.r.t. the signed measure W , we have the result given by
h1(χ2

1Δ
2). (ii) is already given.

(iii) E[Zφ(Z2)] = θEtEN [φ(χ2
3(Δ

2
t ))] = θE(0)[φ(χ2

3(Δ
2))], (3.3)

and

(iv) E[Z2φ(Z2)] = Et

{
t−1EN [φ(χ2

3(Δ
2
t ))] + θ2E[φ(χ2

5(Δ
2
t ))]

}
.

Using the formulas (3.1) and (3.2) we have the R.H.S. equal to

= σ2
εE

(1)[φ(χ2
3(Δ

2))] + θ2E(0)[φ(χ2
5(Δ

2))]. (3.4)

�

Theorem 3.2. If Z ∼ E1(θ, σ2, f) and U is an independently dis-
tributed central chi-square variable with m d.f., then the distribution of
F = (mZ2)U−1 is given by the pdf/cdf

g
(0)
1,m(F (Δ2)) =

∞∑
r=0

K(0)
r (Δ2)g1+2r,m(F ; 0) (3.5)

and

G
(0)
1,m(x;Δ2) =

∞∑
r=0

K(0)
r (Δ2)G1+2r,m(x; 0), ν0 > 2, (3.6)

respectively, where gν1,ν2(·) and Gν1,ν2(·) are pdf and cdf of central F-
distribution with (ν1, ν2) d.f.

Thus, one may obtain the formulas

(i) E

[
φ

(
mZ2

U

)]
= E(0)[φ(3F3,m(Δ2))] (3.7)

(ii) E

[
Zφ

(
mZ2

U

)]
= θE(0)[φ(3F3,m(Δ2))]

(iii) E

[
Z2φ

(
mZ2

U

)]
= σ2

εE
(1)[φ(3F3,m(Δ2))] + θ2E(0)[φ(5F5,m(Δ2))]
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where

E(h)[φ(Fν1,ν2(Δ
2))] =

∞∑
r=0

Kh
r (Δ2)EN

[
φ

(
ν1 + 2r
ν1

Fν1+2r,ν2(0)
)]

(3.8)

If Gq,m(cα;Δ2
t ) denotes the non-central F -distribution with (q,m)

d.f. with non-centrality parameter Δ2
t , then

Et

[
t−hGq,m(cα;Δ2

t )
]

=
(
κ(1)

)h
G(h)

q,m(�α;Δ2)

where

G(h)
q,m(�α;Δ2) =

∞∑
r=0

Kh
r (Δ2)I�α

(
1
2
(q + 2r);

m

2

)
(3.9)

with �α = qcα

m+qcα
and Δ2 = θ2

σ2
ε
.

Theorem 3.3. Suppose Y ∼ En(θ1n, σ
2Vn, f), then the distribution

of (θ̃n − θ0)2 is given by σ2K−1
1 h1(χ2(Δ2)).

Proof. From (2.2), (θ̃n − θ0)2|t ∼ σ2t−1K−1
1 χ2

1(Δ
2
t ). Now integrating

w.r.t. the signed measure W , we get the underlying result. �

In the following, we give some expressions for bias and MSE of the
estimators under study classified into theorems.

Theorem 3.4. If Y ∼ En(θ, σ2Vn, f), then the bias expressions of
θ̃n, θ0, θ̂

PT
n , and θ̂S

n are given by

(i) b1(θ̃n) = 0 (3.10)
(ii) b2(θ0) = −k0(θ − θ0) = −k0σεΔ, Δ = (θ − θ0)σ−1

ε

(iii) b3(θ̂PT
n ) = −k0σεΔG

(0)
3,m(�α;Δ2), �α =

cα
m+ cα

(iv) b4(θ̂S
n) = −c0k0cnσε√

K1
Eτ2[2Φ(Δt) − 1], Δt =

(θ − θ0)

t−
1
2

where

cn =

√
2

n− 1
Γ(n

2 )
Γ(n−1

2 )
and EN [

Z

|Z| ] = 1 − 2Φ(−Δt). (3.11)
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Theorem 3.5. If Y ∼ En(θ, σ2Vn, f), then the MSE expressions of
θ̃n, θ0, θ̂

PT
n , and θ̂S

n are given by

(i) M1(θ̃n) =
σ2

ε

K1
(3.12)

(ii) M2(θ̃RE
n ) =

σ2
ε

K1
{(1 − k0)2 + k2

0Δ
2}

(iii) M3(θ̃PT
n ) =

σ2
ε

K1

{
1 − k0(2 − k0)G

(1)
3,m(�α;Δ2)

+ k0Δ2[2G(0)
3,m(�α;Δ2) − (2 − k0)G

(0)
5,m(�α;Δ2)]

}
(iv) M4(θ̃S

n) =
σ2

ε

K1

{
1 − 2

π
c2n

[
2�

(
1

κ(1)Δ2

)
− 1

]}
,

where

� =
∫ ∞

0
e−uW

( u

κ(1)Δ2

)
du

Proof. (i) Since θ̃n is distributed as E1

(
θ, σ2

K1
, f

)
, and E(θ̃n) = θ,

hence M1(θ̃n) = σ2
ε

K1
.

(ii)

M2(θ̃RE
n ) = E(θ̃RE

n − θ)2 = E[(1 − k0)(θ̃n − θ) − k0(θ − θ0)]2

= E[(1 − k0)2(θ̃n − θ)2 + k2
0(θ − θ0)2

−2k0(1 − k0)(θ̃n − θ)(θ − θ0)]

= (1 − k0)2
σ2

ε

K1
+ k2

0σ
2
εΔ

2 =
σ2

ε

K1
[(1 − k0)2 + k2

0Δ
2] (3.13)

(iii)

M3(θ̃PT
n ) = E[(θ̃n − θ) − k0(θ̃n − θ0)I(Ln < cα)]2

= E[(θ̃n − θ)2 − 2k0(θ̃n − θ)(θ̃n − θ0)I(Ln < cα

+k2
0(θ̃n − θ0)2I(Ln < cα)]

=
σ2

ε

K1

{
1 − k0(2 − k0)G

(1)
3,m(

1
3
cα;Δ2)

+ k0Δ2

[
2G(0)

3,m(
1
3
cα;Δ2) −G

(0)
5,m(

1
5
cα;Δ2)

]}
(3.14)
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using (3.8) and (3.9).

(iv)

M4(θ̃S
n ) = E[θ̃S

n − θ]2

= E

[
(θ̃n − θ)− c0k0Su(θ̃n − θ0)√

K1|θ̃n − θ0|

]2

= E

[
(θ̃n − θ)2 +

c20k
2
0S

2
u

K1
− 2c0k0Su(θ̃n − θ)(θ̃n − θ0)√

K1|θ̃n − θ0|

]

=
σ2

ε

K1
+
c20k

2
0σ

2
ε

K1
− 2c0k0cnσ

2
ε

K1

[
Et

{√
2
π
e−

Δ2
t

2

}]
. (3.15)

Choosing k0c0 as k0c
∗
0 to minimize M4(θ̃S

n ) given by

k0c
∗
0 = cn

√
2
π
Et

[
e−

Δ2
t

2

]
= cn

√
2
π

∫ ∞

0
e−

Δ2
t

2 W (t)dt

= cn

√
2
π

(
1

κ(1)Δ2

)∫ ∞

0
e−uW

( u

κ(1)Δ2

)
du

= cn�

√
2
π

(
1

κ(1)Δ2

)

The optimum value of M4(θ̃S
n) reduces to

M4(θ̃S
n) =

σ2
ε

K1

{
1 − 2

π
c2n

[
2�

(
1

κ(1)Δ2

)
− 1

]}
(3.16)

by choosing k0c
∗
0 = cn

√
2
π to make k0c

∗
0 independent of Δ2. �

Theorem 3.6. If Y ∼ En(θ, σ2Vn, f), then the bias expressions of
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S2
U , S

2
R, σ̃

2
ε, σ̂

2
ε, S

2
PT [1], S

2
PT [2] and S2

[s] are given by

(i) b1(S2
U ) = 0, (3.17)

(ii) b2(σ̃2
ε) = − 2σ2

ε

m+ 2

(iii) b3(S2
R) =

σ2
εΔ

2

m+ 1
,

(iv) b4(σ̂2
ε) =

σ2
ε

m+ 3
(Δ2 − 2)

(v) b5(S2
PT [1]) = − σ2

ε

m+ 1

{
G

(1)
1,m+2(�α;Δ2) −G

(1)
3,m(�α;Δ2)

−Δ2G
(0)
5,m(�α;Δ2)

}
(vi) b6(S2

PT [2]) = − σ2
ε

m+ 2
− σ2

ε

(m+ 2)(m+ 3)

[
m(m+ 2)G(1)

1,m+2(�α;Δ2)

+ G
(1)
3,m(�α;Δ2) − Δ2G(0)(�α;Δ2)

]
and

(vii) b7(S2
[s]) = − σ2

ε

m+ 2
− σ2

ε

(m+ 2)(m+ 3)

[
m(m+ 2)G(1)

1,m+2(�α;Δ2)

+ G
(1)
3,m(�α;Δ2) − Δ2G

(0)
5,m(�α;Δ2)

]
.

Proof. (i) - (iv) are simple. For (v) we consider

b5(S2
PT [1]) = E[S2

PT [1] − σ2
ε]

= E[S2
u − (S2

u − S2
R)I(Ln < cα)] − σ2

ε

= −E[(S2
U − S2

R)I(Ln < cα)]. (3.18)

Now
(m+ 1)S2

R = mS2
U +K1(θ̃n − θ0)2.

Then

S2
U − m

m+ 1
S2

U − K1(θ̃n − θ0)2

m+ 1
=

1
m+ 1

[
S2

U −K1(θ̃n − θ0)2
]

(3.19)

so that

E(S2
UI(Ln < cα)] = σ2

εG
(1)
1,m+2(Ln;Δ2), (3.20)
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and

E[K1(θ̃n − θ0)2I(Ln < cα)] = σ2
εG

(1)
3,m(�n;Δ2)

+K1(θ − θ0)2G
(0)
5,m(�α;Δ2), (3.21)

so that

b5(S2
PT [1]) = − σ2

ε

m+ 1

{
G

(1)
1,m+2(�α;Δ2) −G

(1)
3,m(�n;Δ2)

−Δ2G
(0)
5,m(�α;Δ2)

}
(3.22)

by (2.6)–(3.1) and �α = cα
m+cα

.

For (vi) we have

b6(S2
PT [2]) = E(S2

PT [2] − σ2
ε)

= E

[
mS2

U

m+ 2
−

(
mS2

U

m+ 2
− S2

R

m+ 3

)
I(Ln < cα) − σ2

ε

]
= − σ2

ε

m+ 2
− E

(
mS2

U

m+ 2
− mS2

U

(m+ 2)(m+ 3)

− K1(θ̃n − θ0)2

(m+ 2)(m+ 3)

)
I(Ln < cα)

= − σ2
ε

m+ 2
− σ2

ε

m+ 3

[
mG

(1)
1,m+2(�α;Δ2)

− 1
m+ 2

{
G

(1)
3,m(�α;Δ2) + Δ2G

(0)
5,m(�α;Δ2)

}]
= − σε

m+ 2
− σ2

ε

(m+ 2)(m+ 3)

[
m(m+ 2)G(1)

1,m+2(�α;Δ2)

+G(1)
3,m(�α;Δ2) − Δ2G

(0)
5,m(�α;Δ)

]
.

Similarly,

b7(S2
[s]) = − σ2

ε

m+ 2
− σ2

ε

m+ 3

[
mG

(1)
1,m+2(�

∗
α;Δ2)

− 1
m+ 2

{
G

(1)
3,m(�∗α;Δ2) + Δ2G

(0)
5,m(�∗α;Δ2)

}]
= − σ2

ε

m+ 2
− σ2

ε

(m+ 2)(m+ 3)

[
m(m+ 2)G(1)

1,m+2(�
∗
α;Δ2)

+G(1)(�∗α;Δ2) − Δ2G
(0)
5,m(�∗α;Δ2)

]
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with �∗α = m
m+3 . �

Theorem 3.7. If Y ∼ En(θ, σ2Vn, f), then the MSE expressions of
S2

U , S2
R, σ̃2

ε, σ̂
2
ε, S

2
PT [1], S

2
PT [2] and S2

PT [5] are given by

(i) M1(S2
U ) = 2mσ4

ε;

(ii) M2(S2
R) =

{(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
− 1

}
σ4

ε +
Δ2(4 + Δ2)σ4

ε

(m+ 1)2

(iii) M3(σ̃2
ε) =

(
m

m+ 2

)[
κ(2)(
κ(1)

)2

]
σ4

ε − (m− 2)σ4
ε

(m+ 2)

(iv) M4(σ̂2
ε) =

{(
m+ 1
m+ 3

)[
κ(2)(
κ(1)

)2

]
− 1

}
σ4

ε +
σ4

ε(Δ4 − 4Δ2 + 4)
(m+ 3)2

(v) M5(SPT [1]) = M1(S2
U ) − σ4

ε(m+ 2)(2m + 1)
(m+ 1)2

G
(2)
1,m+4(�α;Δ2)

+
σ4

ε

(m+ 1)2

[{
3G(2)

5,m(�α;Δ2) +m(G(2)
3,m+2(�α;Δ2) + 2(m+ 1)

×
[
G

(1)
1,m+2(�α;Δ2) −G

(1)
3,m(�α;Δ2)

]}
+ Δ2

{
6G(1)

7,m(�α;Δ2)

+mG(1)
5,m+2(�α;Δ2) − 2(m+ 1)G(0)

5,m(�α;Δ2)
}

+ Δ2G
(0)
9,m(�α;Δ2)

]
.

M6

(
S2

PT [2]

)
= M3(σ̃2

ε) −
m(2m+ 5)

(m+ 2)(m+ 3)
σ4

εG
2)
1,m+4(�α;Δ2)

+
3σ4

ε

m2(m+ 3)2
G

(2)
5,m(�α;Δ2) +

2σ4
ε

(m+ 3)2
{
G

(2)
3,m+2(�α;Δ2) − (m+ 3)

×G(2)
3,m(�α;Δ2)

}
+

Δ2σ4
ε

(m+ 2)(m+ 3)2
{

2G(2)
5,m+2(�α;Δ2) + 6(m+ 2)

×G(1)
7,m(�α;Δ2) + 2(m+ 3)G(1)

5,m(�α;Δ2)
}

+
Δ4σ4

ε

m2(m+ 3)2
G

(0)
9,m(�α;Δ2)

M7(S2
[s]) = M3(σ̃2

ε) −
m(2m+ 5)

(m+ 2)(m+ 3)
σ4

εG
2)
1,m+4(�

∗
α;Δ2) +

3σ4
ε

m2(m+ 3)2

×G(2)
5,m(�∗α;Δ2) +

2σ4
ε

(m+ 3)2
[
G

(2)
3,m+2(�

∗
α;Δ2) − (m+ 3)G(2)

3,m

]
+

Δ2σ4
ε

(m+ 2)(m+ 3)2
{

2G(2)
5,m+2(�

∗
α;Δ2) + 6(m+ 2)G(1)

7,m(�∗α;Δ2)

+ 2(m+ 3)G(1)
5,m(�∗α;Δ2)

}
+

Δ4σ4
ε

m2(m+ 3)2
G

(0)
9,m(�∗α;Δ2)
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where κ(i) is given by (1.7) and �∗α = m
m+3 .

Proof. Using (2.5) we have

(i) M1(S2
U ) = E(S2

U − σ2
ε)

2

= Var(S2
U ) = 2mσ4

(
κ(1)

)2

= 2mσ4
ε

From (1.8) we have

(ii) Var(S2
R)

= Vart

{
EN [S2

R|t]
}

+ Et

{
VarN [S2

R|t]
}

= Vart

{
σ2t−1

(m+ 1)
EN [χ2

m+1(Δ
2
t )]

}

+Et

{
σ4t−2

(m+ 1)2
VarN [χ2

m+1(Δ
2
t )]

}

=
σ4

(m+ 1)2
Vart

[
(m+ 1)t−1 +

K1(θ − θ0)2

σ2

]

+Et

[
σ4t−2

(m+ 1)2
2((m+ 1) + 2Δ2

t )
]

=
σ4

(m+ 1)2
{(m+ 1)2Vart

(
t−1

)} +
2σ4

(m+ 1)
Et

(
t−2

)
+

4σ2K1(θ − θ0)2

(m+ 1)2
Et

(
t−1

)
=

(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
σ4

ε +
4Δ2σ4

ε

(m+ 1)2
− σ4

ε.

Hence,

M2(S2
R) =

(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
σ4

ε − σ4
ε +

Δ2(4 + Δ2)σ4
ε

(m+ 1)2

=

{(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
− 1

}
σ4

ε +
Δ2(4 + Δ2)σ4

ε

(m+ 1)2
.
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(iii) Var[σ̃2
ε] = Vart

{
EN

( mS2
U

m+ 2

∣∣∣t)}
+ Et

{
VarN

[ mS2
U

m+ 2

∣∣∣t]}
= Vart

(mσ2t−1

m+ 2

)
+ Et

{( σ2

m+ 2

)2
t−2(2m)

}
=

m2

(m+ 2)2
{
σ4Et

(
t−2

) − σ4
ε

}
+

2mσ4

(m+ 2)2
Et

(
t−2

)
=

(
m

m+ 2

)2 {
σ4κ(2) − σ4

ε

}
+

2mσ4κ(2)

(m+ 2)2

=
(

m

m+ 2

)[
κ(2)(
κ(1)

)2

]
σ4

ε − m2σ4
ε

(m+ 2)2
.

M3(σ̃2
ε) =

(
m

m+ 2

)[
κ(2)(
κ(1)

)2

]
σ4

ε − m2σ4
ε

(m+ 2)2
+

4σ4
ε

(m+ 2)2

=
(

m

m+ 2

)[
κ(2)(
κ(1)

)2

]
σ4

ε − (m− 2)σ4
ε

(m+ 2)
.

(iv) Var
[m+ 1
m+ 3

S2
R

]
=

(m+ 1
m+ 3

)2
Var(S2

R)

=
m+ 1
m+ 3

[
κ(2)(
κ(1)

)2

]
σ4

ε − σ4
ε

(
1 − 4Δ2

(m+ 3)2

)
.

M4(σ̂2
ε) =

(
m+ 1
m+ 3

)[
κ(2)(
κ(1)

)2

]
σ4

ε − σ4
ε

(
1 − 4Δ2

(m+ 3)2

)
+
σ4

ε(Δ2 − 2)2

(m+ 3)2

=
(
m+ 1
m+ 3

)[
κ(2)(
κ(1)

)2

]
σ4

ε − σ4
ε +

σ4
ε(Δ4 − 4Δ2 + 4)

(m+ 3)2

=

{(
m+ 1
m+ 3

)[
κ(2)(
κ(1)

)2

]
− 1

}
σ4

ε +
σ4

ε(Δ4 − 4Δ2 + 4)
(m+ 3)2

.

(v) M5(S∗
PT [1]) = E[S2

PT [1] − σ2
ε]

2 = E[S2
U − σ2

ε]
2

− 2
(m+ 1)

E
[
(S2

U − σ2
ε){S2

U −K1(θ̃n − θ0)2}I(Ln < cα)}
]

+
1

(m+ 1)2
E[(S2

U −K1(θ̃n − θo)2)I(Ln < cα)]2



256 Arashi et al.

= M1(S2
U ) − 2m+ 1

(m+ 1)2
E[(S4

UI(Ln < cα)]

+
1

(m+ 1)2
E[K2

1 (θ̃n − θ0)4I(Ln < cα)]

+
m

(m+ 1)2
E[S2

UK1(θ̃n − θ0)2I(Ln < cα)]

+
2σ2

ε

m+ 1
E[S2

UI(Ln < cα)] − 2σ2
ε

m+ 1
E[K1(θ̃n − θ0)2I(Ln < cα)].

Now

E[S2
U I(Ln < cα)] = Et

{
σ2t−1

m
EN

[
χ2

mI

(
χ2

1(Δ
2
t )

χ2
m

<
1
m
cα

)]}
= Et

[
σ2t−1G1,m+2(�α;Δ2

t )
]

= σ2
εG

(1)
1,m+2(�α;Δ2)

by (3.9) where �α = cα
m+cα

.

E[S4
UI(Ln < cα)] = Et

[
σ2t−1

m2
EN

{
χ4

mI

(
χ2

1(Δ
2
t )

χ2
m

<
1
m
cα

)]}
= Et

[
σ4t−2

m2
{m(m+ 2)G1,m+4(�α;Δ2

t )}
]

=
m+ 2
m

σ4
εG

(2)
1,m+4(�α;Δ2) by (3.9).

Next we have,

E
[
K1(θ̃n − θ0)2I(Ln < cα)

]
= Et

{
σ2t−1E

[
χ2

1(Δ
2
t )I

(
χ2

1(Δ
2
t )

χ2
m

<
1
m
Cα

)]}
= Et

{
σ2t−1

{
G3,m(�α;Δ2

t ) + Δ2
tG5,m(�α;Δ2)

}]
= σ2

εG
(1)
3,m(�α;Δ2) + σ2

εΔ
2G

(0)
5,m(�α;Δ2).

and

E
[
K2

1 (θ̃n − θ0)2I(Ln < cα)
]

= Et

{
σ4t−2EN

[[
χ2

1(Δ
2
t )

]2
I

(
χ2

1(Δ
2
t )

χ2
m

<
1
m
cα

)]}
= Et

{
σ4t−2

[
3G5,m(�α;Δ2

t ) + 6Δ2
tG7,m(�α;Δ2

t ) + Δ4
tG9,m(�α;Δ2

t )
]}

= 3σ4
εG

(2)
5,m(�α;Δ2) + 6σ4

εΔ
2G

(1)
7,m(�α;Δ2) + σ4

εΔ
4G

(0)
9,m(�α;Δ2).
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Further,

E
[
S2

UK
2
1 (θ̃n − θ0)2I(Ln < cα)

]
= Et

{
σ4t−2

m
E

[
χ2

mχ
2
1(Δ

2
t )I

(
χ2

1(Δ
2
t )

χ2
m

<
1
m
dα

)]}
= Et

[
σ4t−2

{
G3,m+2(�α;Δ2

t ) + Δ2
tG5,m+2(�α;Δ2

t )
}]

= σ2
εG

(2)
3,m+2(�α;Δ2) + σ4

εΔ
2G

(1)
5,m+2(�α;Δ2)

M7(S∗
PT [2]) = E

[
(S2

PT [2])
2
]
− 2σ2

εE[S2
PT [2]] + σ4

ε

= Et

{
t−2

(m+ 2)2
EN

(mS2
U

t−1

)2∣∣t}
+

1
m2(m+ 3)2

Et

{
t−2EN

[( m

m+ 2
− Ln

)2(mS2
U

t−1

)2
I(Ln < cα)|t

]}
− 2
m(m+ 2)(m+ 3)

Et

{
t−2EN

[(mS2
U

t−1

)2( m

m+ 2
− Ln

)
I(Ln < cα)|t

]}
+

2
m(m+ 3)2

Et

{
t−2EN

[(mS2
U

t−1

)( m

m+ 2
− Ln)I(Ln < cα)|t

]}
− σ4

ε

=
mσ4

(m+ 2)
Et

(
t−2

)
+

1
m2(m+ 3)2

Et

{
t−2EN

[( m

m+ 2

)2
− 2m
m+ 2

Ln

+ L2
n

] (mS2
U

t−1

)2
I(Ln < cα)|t

}
− 2
m(m+ 2)(m+ 3)

Et

{
t−2EN

×
[( m

m+ 2

)(mS2
U

t−1

)2
I(Ln < cα) −

(mS2
U

t−1

)2LnI(Ln < cα)|t
}

+
2

m(m+ 3)2
Et

{
t−2EN

[(
m

m+ 2

)(
mS2

U

t−1

)
I(Ln < cα)

−
(mS2

U

t−1

)
LnI(Ln < cα)

]}
− σ4

ε

=
mσ4

m+ 2
Et

(
t−2

)
+

σ4

m2(m+ 3)2

× Et

[
t−2EN

{( m

m+ 2

)2
χ4

mI(F1,m(Δ2
t ) < cα)

}]
− 2σ4

(m+ 2)2(m+ 3)2
Et

[
t−2EN

{
χ4

mF1,m(Δ2
t )I(F1,m(Δ2

t ) < cα)
}]

+
σ4

m2(m+ 3)2
Et

[
t−2EN

{
χ4

m(F1,m(Δ2
t )

2I(F1,m(Δ2
t ) < cα)

}]
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− 2σ4

(m+ 2)2(m+ 3)
Et

[
t−2EN

{
χ4

mI(F1,m(Δ2
t ) < cα)

}]
− 2σ4

(m+ 2)(m+ 3)
Et

[
t−2EN

{
χ4

m(F1,m(Δ2
t )I(F1,m(Δ2

t < cα)
}]

+
2σ4

(m+ 2)(m+ 3)2
Et

[
t−2EN

{
χ4

mI(F1,m < cα)
}]

− 2σ4

(m+ 2)(m+ 3)2
Et

[
t−2EN

{
χ2

mF1,m(Δ2
t )I(F1,m(Δ2

t ) < cα)
}] − σ4

ε.

Simplification leads to M7(S2
PT [2]). Similarly, M8(S2

[s]) may be obtained
by replacing cα by m

m+2 . �

4 Analysis of the Estimators

In this section, we provide the analysis of the various estimators. In
section 4.1 we consider the estimators of the location parameter, θ, and
section 4.2 contains the analysis of MSE expressions for the estimators
of the variance, σ2

ε.

4.1 Location Parameter

We considered four estimators of θ, namely,

(a) unrestricted estimator, θ̃n

(b) restricted estimator, θ̂RE
n

(c) Preliminary Test estimator, θ̂PT
n

(d) Shrinkage type estimator, θ̂SE
n .

The bias and MSE expressions are given by Theorems 5.1 and 5.2 re-
spectively.

Comparison of θ̂RE
n and θ̃n. The bias of θ̃n is zero and the bias of θ̂RE

n

is −k0σε. At Δ = 0, both are unbiased but as Δ moves away from the
origin, bias θ̂RE

n is unbounded. As regards the MSE of the estimators,
we have the MSE-difference given by

M1(θ̃n) −M2(θ̂RE
n ) =

σ2
ε

K1

{
1 − (1 − k0)2 − k2

0Δ
2
}

� 0 (4.1)
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whenever
Δ2 � (2k−1

0 − 1), 0 < k0 ≤ 1.

Thus, if Δ2 ≤ (2k−1
0 − 1), then θ̂RE

n is better than θ̃n and if Δ2 >

(2k−1
0 −1), then θ̃n dominates θ̂n. The relative efficiency of the estimator

θ̂n is

RE(θ̂n : θ̃n) = [(1 − k0)2 + k2
0Δ

2]−1. (4.2)

Comparison of θ̂PT
n and θ̃n. Here the bias of θ̂PT

n is −k0σεΔG3,m(�α;

Δ2). If Δ2 = 0, then both θ̃n and θ̂PT
n are unbiased. Otherwise

|b3(θ̂PT
n )| > 0 ∀ Δ2 > 0. As regards MSE for the estimators, we have

M1(θ̃n) −M3(θ̂PT
n ) =

σ2
ε

K1

{
k0(2 − k0)G

(1)
3,m(�α;Δ2)

− k0Δ2
[
2G(0)

3,m(�α;Δ2) − (2 − k0)G
(0)
5,m(�α;Δ2)

]}
.

Thus, MSE-difference is � 0 whenever

Δ2 �
(2k−1

0 − 1)G(1)
3,m(�α;Δ2)

[2G(0)
3,m(�α;Δ2) − (2 − k0)G

(0)
5,m(�α;Δ2)]

(4.3)

The relative efficiency of θ̂PT
n w.r.t. θ̃n is given by

E(α,Δ2) = RE(θ̂PT
n ; θ̃n) =

[
1 − k0(2 − k0)G

(1)
3,m(�α;Δ2)

+ k0Δ2{2G(0)(�α;Δ2)

−(2 − k0)G
(0)
5,m(�α;Δ2)}

]−1
. (4.4)

Note that

(i) If Δ2 = 0, then it reduces to [1 − k0(2 − k0)G
(1)
3,m(�α; 0)]−1 ≥ 1.

(ii) If Δ2 → ∞, then, RE(θ̂PT
n ; θ̃n) → 1.

(iii) The RE(θ̂PT
n ; θ̃n) crosses the 1-line in the interval

(
1 − 1

2k0,
1
k0

− 1
2

)
.

(iv) Re(θ̂PT
n ; θ̃n) equals [1 − k0(2 − k0)G

(1)
3,m(�α; 0)]−1 at Δ2 = 0, then

drops monotonically crossing the 1-line in the interval (1−1
2k0,

1
k0
−

1
2) keeping to a minimum, then increases towards the 1-line. Thus,
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an optimum α-level MSE is obtained by solving the equation for
α ∈ A = {α|RE(α,Δ2) ≥ E0}

min
Δ2

RE(α,Δ2) = E(α,Δ2
0(α)) = E0 (4.5)

where E0 is a prefixed or guaranteed relative efficiency.

Comparison of θ̃n and θ̂S
n . The bias expression is given by

b4(θ̂S
n ) =

{
−c0k0cnσε√

K1

}
Et[2Φ(Δt) − 1].

As Δt → 0, |b4(θ̂S
n )| → 0 and as Δt → ∞, |b4(θ̂S

n)| = c0k0cnσε√
K1

. The
absolute bias is a non-decreasing function of Δt. Thus, near the origin
the bias is smallest and becomes largest when Δt → ∞.

As regards MSE comparison, the relative efficiency RE(θ̂S
n ; θ̃n) is

given by {
1 − 2

π
c2n

[
2�

(
1

κ(1)Δ2

)
− 1

]}−1

. (4.6)

Under Δ2 = 0,

RE(θ̂S
n ; θ̃n) =

(
1 − 2

π
c2n

)−1
≥ 1

and (6.6) decreases to (1 + 2
π c

2
n)−1(≤ 1) as Δ2 → ∞. The relative loss

of efficiency of θ̂S
n relative to θ̃n is 1 − (1 + 2

π c
2
n)−1, while the gain in

efficiency is (1 − 2
π c

2
n)−1. The efficiency is 1 when Δ2 = 2κ(1)�. If

Δ2 < 2κ(1)�, θ̂S
n performs better than θ̃n, otherwise θ̃n is better. Note

that θ̂S
n does not depend on the level of significance while θ̂PT

n does. As
Δ2 the efficiency of PTE w.r.t. θ̃n tends to 1 while that of θ̂S

n w.r.t. θ̃n

tends to (1 + 2
π c

2
n)−1 < 1. Thus, θ̂S

n is better near the null hypothesis
than that of θ̂PT

n .

4.2 Analysis of the Estimators of Scale Parameter

In sections 2 and 3, we have defined seven estimators of σ2
ε. The bias

and MSE expressions of these estimators are given in section 5. In this
section, we present the analysis of the MSE expressions.

First we note that the MSE expression for S2
U is constant while the

restricted estimate, S2
R depends on the departure parameter, Δ2. Under
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H0, i.e. for Δ2 = 0,

M2(S2
R) =

{(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
− 1

}
σ4

ε

so that M2(S2
R) < M1(S2

U ) provided

κ(2)(
κ(1)

)2 <
(m+ 1)(2m + 1)

m+ 3
. (4.7)

The MSE’s are equal when Δ2 equals

Δ2
∗ = −2 + 2

√
1 +

(m+ 1)κ(2)

2m
(
κ(1)

) . (4.8)

Hence, the range of Δ2 for which S2
R dominates S2

U is given by [0,Δ2∗]
otherwise S2

U dominate S2
R. Note that the MSE of S2

R is unbounded as
Δ2 → ∞.

Similarly, under H0,

M4(σ̂2
ε) =

{(
m+ 3
m+ 1

)[
κ(2)(
κ(1)

)2

]
− 1 +

(
2

m+ 3

)2
}
σ4

ε

so that M4(σ̂2
ε) < M3(σ̃2

ε), provided

κ(2)(
κ(1)

)2 <

[
(m+ 2)(m + 3)2 + 4m+ 8 − (m− 2)(m+ 3)2

]
(m+ 1)

(m+ 3)2 [(m+ 3)(m+ 2) −m(m+ 1)]
.(4.9)

Hence, the range of Δ2 for which σ̂2
ε dominate σ̃2

ε is given by [0,Δ2∗∗]
where Δ2∗∗ is defined by the solution of the equation

Δ2(Δ2 + 4) =
2(2m+ κ(2))(m+ 3)

(m+ 2)
(
κ(1)

) (4.10)

i.e.

Δ2
∗∗ = −2 + 2

√
1 +

(m+ 3)(2m+ κ(2))

2(m+ 2)
(
κ(1)

)2 (4.11)

otherwise, σ̃2
ε dominates σ̂2

ε.
Now, we show the uniform dominance of S2

[s] over σ̃2
ε under the

quadratic loss function 1
σ4

ε
(σ2

x − σ2
ε)

2. For this, we consider the risk
of S2

[s] with respect to the quadratic loss-function.
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Then, we have

1
σ4

ε

E[mS2
Uψs(Ln) − σ2

ε]
2

= ELn

{
ψ2

s(Ln)E
[(

t−1

σ2
ε

)2(mS2
U

t−1

)2∣∣∣∣Ln

]
−2ψs(Ln)E

[(
t−1

σ2
ε

)(
mS2

U

t−1

)∣∣∣∣Ln

]
+ 2

}
. (4.12)

Now, consider the term inside the curly bracket of (4.12). For fixed
Δ2 and for each Ln, this is a quadratic form in ψS(Ln) with the minimum
at

ψ∗
S(Ln) =

E
[(

t−1

σ2
ε

)(
mS2

U
t−1

)∣∣∣Ln

]
E

[(
t−1

σ2
ε

)2(mS2
U

t−1

)2∣∣∣Ln

] (4.13)

which is a function of Ln and Δ2.
The optimum ψ0(Ln) is given by

ψ0(Ln) = max
Δ2

ψ∗
S(Ln) =

(1 + 1
mLn)

(
κ(1)

)2

(m+ 3)κ(2)
. (4.14)

If Ln <
m

m+2 , then 1+ 1
m
Ln

m+3 < 1
m+2 which implies also that

ψ∗
S(Ln) < ψ0(Ln) ≤ 1

m+ 2

for all Δ2, that is ψ0(Ln) is closer to the minimizing value than 1
m+2 .

So it is obvious that for each Δ2 and Ln

1
σ4

ε

E
{

[ψS(Ln)mS2
U − σ2

ε]
2
∣∣∣Ln

}
≤ 1
σ4

ε

E

{[
mS2

U

m+ 2
− σ2

ε

]2∣∣∣∣Ln

}
(4.15)

so that mψS(Ln)S2
U dominates mS2

U
m+2 = σ̃2

ε uniformly in Δ2 ∈ (0,∞).
Similarly, we consider the S2

PT [1] with the mean square errorM5(S2
PT [1])

which is optimum at the critical value 1 for all (1,m) under H0. Then,

S2
PT [1] = S2

UI (Ln ≥ 1) + S2
RI (Ln < 1).

Using Stein’s method, we have optimum ψ-function as

ψ10(Ln) =
1 + 1

mLn

m+ 1
<

1
m

for Ln ≤ 1
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for all Δ2. This means that ψ10(Ln) is closer to the minimum value than
1/m. Hence,

E
[
{ψ1(Ln)χ2

m − 1}2
∣∣∣Ln

]
≤ E

[( χ2
m

m+ 2
− 1

)2∣∣∣Ln

]
≤ 1

(m+ 2)2
E[{ψ1(Ln)χ2

m − (m+ 2)}2
∣∣∣Ln]

≤ 1
m2

E[{ψ1(Ln)χ2
m −m}2

∣∣∣Ln]. (4.16)

Thus the estimator mψS(Ln)S2
U dominates the PTE(1) of σ2

ε with crit-
ical value 1.

Further, mψS(Ln)S2
U ≤ mψ2(Ln)S2

U and equality holds when the
critical value is (m/m+ 2). Thus, Stein type estimator, mψS(Ln)S2

U is
superior to S2

U as well as PTE(1) and PTE(2) uniformly in all Δ2.

5 Conclusion

We have studied the properties of four estimators of location and seven
estimators of the scale-parameter of the ECD. In the case of location
parameter estimators, the biased estimators do better than the unbi-
ased estimators. Also, the shrinkage estimators do better than the PTE
under H0 or near it. In the case of variance estimation, the Stein-type
estimator which is a PT-type estimator with given critical value, does
better than any other though the improvement may not be significant.
This work in addition to the given theorems can be used as a leading
reference in future theoretical and practical studies concerning location
and scale estimators. Whereof it can be realized some relations between
the model under study and the other models, the result of this paper
can be applied to multiple regression, ridge regression, seemingly unre-
lated regression model and etc. with no essential differences. Lastly,
interested readers may refer to recently published works of Arashi and
Tabatabaey (2008, 2009) for some numerical and graphical displays of
some of these estimators under multivariate Student’s t model to rely
on the claims of this paper.
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