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Abstract. The use of mixture models for clustering and classification
has burgeoned into an important subfield of multivariate analysis. These
approaches have been around for a half-century or so, with significant
activity in the area over the past decade. The primary focus of this
paper is to review work in model-based clustering, classification, and
discriminant analysis, with particular attention being paid to two tech-
niques that can be implemented using respective R packages. Parameter
estimation and model selection are also discussed. The paper concludes
with a summary, discussion, and some thoughts on future work.

Keywords. Classification, clustering, discriminant analysis, mclust,
mixture models, model-based clustering, model selection, parameter es-
timation, pgmm.

MSC: 62H30, 62F99.

1 Introduction

Clustering is performed on data to partition observations into subsets
that are, in some respect, similar. When clustering data, we do not
know the true group membership for any of the observations. Some-
times the number of clusters sought is known a priori, but when this
is not the case we then have a selection problem with respect to the
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number of clusters. The most simple and perhaps intuitive clustering
approaches are hierarchical and, hierarchical clustering aside, the most
famous approaches are probably partitioning clustering techniques, such
as k-means clustering (cf. Hartigan and Wong, 1979) and k-medoids clus-
tering (cf. Kaufman and Rousseeuw, 1990, Chapter 2). When perform-
ing classification, we know the group memberships of some observations
and we try to use those to learn the memberships of the remaining or
new observations. We can think of discriminant analysis as a type of
classification, where some ‘rule’ is developed based on observations with
known group memberships and this rule is used to classify the remaining
or new observations. In machine learning parlance, one might consider
that classification is either semi-supervised or supervised whereas dis-
criminant analysis is supervised.

In this paper, selected clustering approaches that use finite mix-
ture models are outlined, along with related methods for classification
and discriminant analysis. Some focus is placed on two techniques that
use Gaussian mixture models but other approaches are also discussed.
Note that the use of mixture models for clustering and classification is
now well established within the literature and so the arguments in their
favour are not rehashed herein. The brief commentary by McLachlan
(2011) is a good starting point if one wishes to review these arguments.

2 Model-Based Approaches

2.1 Finite Mixture Models

We say that a random vector X arises from a parametric finite mixture
distribution if, for all x ⊂ X, we can write its density as

f(x | ϑ) =
G∑

g=1

πgfg(x | θg), (1)

where πg > 0, such that
∑G

g=1 πg = 1 are called mixing proportions, the
fg(x | θg) are called component densities, and ϑ = (π1, . . . , πG,θ1, . . . ,
θG) is the vector of parameters. Note that f(x | ϑ) in Equation 1
is called a G-component finite mixture density. The component densi-
ties f1(x | θ1), f2(x | θ2), . . . , fG(x | θG) are often taken to be of the
same type; the Gaussian distribution is popular due to its mathematical
tractability. When the component densities are multivariate Gaussian,
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the mixture model density is

f(x | ϑ) =
G∑

g=1

πgφ(xi | μg,Σg), (2)

where φ(xi | μg,Σg) is the density of a multivariate Gaussian random
variable with mean μg and covariance matrix Σg. Note that several
alternatives to the multivariate Gaussian distribution continue to be
explored (see Section 3.3 for examples).

A family of mixture models is said to arise when various constraints
are imposed upon the component densities, and most often upon the co-
variance structure; the result is a flexible modelling paradigm that incor-
porates more and less parsimonious models. Extensive details on finite
mixture models and their applications are given by Titterington et al.
(1985), McLachlan and Basford (1988), McLachlan and Peel (2000a),
and Frühwirth-Schnatter (2006).

2.2 Model-Based Approaches to Clustering, Classifica-
tion, and Discriminant Analysis

The idiom ‘model-based clustering’ has customarily been used when each
member of a family of mixture models is fitted to data for clustering and
the best model from amongst this family is selected by some criterion,
most often the Bayesian information criterion (BIC; Schwarz, 1978).
Herein, we shall use ‘model-based clustering’ in the customary fashion
but note that the term can also be used more generally for the ap-
plication of any model for clustering. ‘Model-based classification’ (e.g.
McNicholas, 2010), or ‘partial classification’ (cf. McLachlan, 1992, Sec-
tion 2.7), can be regarded as a semi-supervised version of model-based
clustering, while model-based discriminant analysis (Hastie and Tibshi-
rani, 1996) is a supervised version of model-based clustering. Model-
based clustering, classification, and discriminant analysis are perhaps
best explained through their respective likelihoods.

Let zi denote the component membership of observation i, so that zig
= 1 if observation i belongs to component g and zig = 0 otherwise.
For convenience, we will assume finite Gaussian mixture models (Equa-
tion 2). First, we focus on clustering and so suppose that we observe n
p-dimensional data vectors x1, . . . ,xn, all of which have unknown group
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memberships. The likelihood for the mixture model can be written

L(ϑ | x) =
n∏

i=1

G∑

g=1

πgφ(xi | μg,Σg).

Next, suppose that we are operating within the model-based classifica-
tion paradigm; we have n observations, of which k have known group
memberships. Suppose that we order these n observations so that the
first k have known group memberships; we can do this without loss of
generality. Then, the likelihood can be written

L(ϑ | x, z) =
k∏

i=1

G∏

g=1

[
πgφ(xi | μg,Σg)

]zig

n∏

j=k+1

H∑

h=1

πhφ(xj | μh,Σh), (3)

for H ≥ G. The fact that we can search for a number of groups (H)
greater than that already observed (G) gives model-based classification
a flexibility not always present in classification approaches. From this
likelihood (Equation 3), model-based clustering is clearly a special case
of model-based classification that arises upon setting k = 0 and H = G
within the latter paradigm.

Finally, let us consider model-based discriminant analysis. As be-
fore, order the n observations so that the first k have known group
memberships. Now, rather than using all n observations to estimate the
unknown component memberships, we use only k, as follows. Form the
likelihood

L(ϑ | x, z) =
k∏

i=1

G∏

g=1

[
πgφ(xi | μg,Σg)

]zig ,

from the k observations with known group memberships; using the max-
imum likelihood estimates arising from this likelihood, we then compute
the expected values

ẑjg :=
π̂gφ(xj | μ̂g, Σ̂g)∑G
h=1 π̂hφ(xj | μ̂h, Σ̂h)

,

for j = k+1, . . . , n. These expected values play the role of a discriminant
rule and the predicted group memberships are given by the maximum a
posteriori classifications MAP{ẑjg}, where MAP{ẑjg} = 1 if maxg{ẑjg}
occurs at component g, and MAP{ẑjg} = 0 otherwise, for j = k +
1, . . . , n.
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3 Two Families of Gaussian Mixture Models

3.1 The MCLUST Family

The best known family of mixture models is the MCLUST family (Ban-
field and Raftery, 1993; Celeux and Govaert, 1995; Fraley and Raftery,
2002), which is supported by the mclust package (Fraley and Raftery,
2006) for the R software (R Development Core Team, 2010). Members
of the MCLUST family exhibit eigen-decomposed component covariance
matrices, so that in the most general case (VVV; cf. Table 1) the compo-
nent covariance structure is Σg = λgDgAgD′

g, where Dg is the matrix
of eigenvectors, Ag is the diagonal matrix with entries proportional to
the eigenvalues, and λg is the relevant constant of proportionality. The
MCLUST family is a subset of the Gaussian parsimonious clustering
models (GPCM; Celeux and Govaert, 1995) wherein valid combinations
of the following constraints were used: λg = λ, Ag = A, Dg = D,
Dg = Ip, and Ag = Ip, where Ip is the identity matrix of appropriate
dimension (p). The MCLUST family (Table 1) comprises ten of the
GPCM models and the nomenclature of each model derives from the
cluster shapes.

Table 1: Nomenclature, covariance structure, and number of free covari-
ance parameters for each member of the MCLUST family.
Model Volume Shape Orientation Σg Free covariance parameters
EII Equal Spherical – λI 1
VII Variable Spherical – λgI G
EEI Equal Equal Axis-Aligned λA p
VEI Variable Equal Axis-Aligned λgA p + G − 1
EVI Equal Variable Axis-Aligned λAg pG − G + 1
VVI Variable Variable Axis-Aligned λgAg pG
EEE Equal Equal Equal λDAD′ p(p + 1)/2
EEV Equal Equal Variable λDgAD′

g Gp(p + 1)/2 − (G − 1)p

VEV Variable Equal Variable λgDgAD′
g Gp(p + 1)/2 − (G − 1)(p − 1)

VVV Variable Variable Variable λgDgAgD′
g Gp(p + 1)/2

Fraley and Raftery (2002) use MCLUST for discriminant analy-
sis (MCLUST DA); their approach facilitates multiple components per
known group by using the BIC to choose the number of components
as well as the best model for each group. The MCLUST family was
used by Dean et al. (2006) for both classification and discriminant anal-
ysis. Within mclust, parameter estimation is carried out within the
expectation-maximization (EM) algorithm framework (cf. Section 4.1)
and so starting values are very important; Fraley and Raftery (2002) uti-
lize a Gaussian model-based agglomerative hierarchical clustering pro-
cedure to give starting values for MCLUST (cf. Murtagh and Raftery,
1984; Banfield and Raftery, 1993). Members of the MCLUST family
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with non-diagonal covariance structures (EEE, EEV, VEV, and VVV)
have O(p2) covariance parameters; i.e., the number of covariance param-
eters is quadratic in the dimensionality of the data. These members are
therefore unsuited to the analysis of high-dimensional data.

3.2 Factor Analysis, Mixtures of Factor Analyzers, and
the PGMM Family

Factor analysis (Spearman, 1904; Bartlett, 1953) is a well established
multivariate statistical model wherein a p-dimensional random vector X
is modelled using a q-dimensional vector of latent factors U, where q �
p. The model can be written X = μ+ΛU+ε, where Λ is a p×q matrix
of factor loadings, the latent factors U ∼ N (0, Iq), and ε ∼ N (0,Ψ),
where Ψ is a p× p diagonal matrix. The marginal distribution of X for
this model is N (μ,ΛΛ′ + Ψ). Note that the matrix of factor loadings
Λ is not unique; if Λ is replaced by Λ∗ = ΛD where D is orthonormal,
then ΛΛ′ + Ψ = (Λ∗)(Λ∗)′ + Ψ. This is one of the reasons that factor
analysis has been, and perhaps still is, viewed with suspicion; Lawley
and Maxwell (1962) outline how factor analysis “became the black sheep
of statistical theory”.

Ghahramani and Hinton (1997) developed a mixture of factor analyz-
ers model; this model has the same density as a finite Gaussian mixture
model (Equation 2) but with Σg = ΛgΛ′

g + Ψ. Tipping and Bishop
(1997, 1999) proposed the mixture of probabilistic principal component
analyzers model, where the Ψg matrix in each component is isotropic so
that Σg = ΛgΛ′

g + ψgIp; McLachlan and Peel (2000b) proposed a more
general mixture of factor analyzers model with Σg = ΛgΛ′

g+Ψg. McNi-
cholas and Murphy (2005, 2008) later built upon these models to develop
a family of eight Gaussian mixture models for clustering by imposing,
or not, each of the constraints Λg = Λ, Ψg = Ψ, and Ψg = ψgIp upon
the component covariance structure Σg = ΛgΛ′

g + Ψg. This family of
models is known as the parsimonious Gaussian mixture model (PGMM)
family (cf. Table 2). McNicholas (2010) used the PGMM family for
model-based classification.

McNicholas and Murphy (2010b) further parameterized the factor
analysis covariance structure by writing Ψg = ωgΔg, where ωg ∈ R

+

and Δg is a diagonal matrix with |Δg| = 1. They call the resulting
covariance structure Σg = ΛgΛ′

g + ωgΔg the modified factor analysis
covariance structure. In addition to the constraint Λg = Λ, they impose
all legitimate combinations of the constraints ωg = ω, Δg = Δ, and
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Table 2: The nomenclature and covariance structure of each PGMM.
Λg = Λ Ψg = Ψ Ψg = ψgIp Covariance Structure
C C C Σg = ΛΛ′ + ψIp

C C U Σg = ΛΛ′ + Ψ
C U C Σg = ΛΛ′ + ψgIp

C U U Σg = ΛΛ′ + Ψg

U C C Σg = ΛgΛ′
g + ψIp

U C U Σg = ΛgΛ′
g + Ψ

U U C Σg = ΛgΛ′
g + ψgIp

U U U Σg = ΛgΛ′
g + Ψg

C = constrained, U = unconstrained.

Table 3: The covariance structure and nomenclature for each member
of the EPGMM family, along with the name of the equivalent member
of the PGMM family where applicable.

EPGMM Nomenclature
Λg = Λ Δg = Δ ωg = ω Δg = Ip PGMM Equivalent Covariance Structure
C C C C CCC Σg = ΛΛ′ + ωIp

C C U C CUC Σg = ΛΛ′ + ωgIp

U C C C UCC Σg = ΛgΛ′
g + ωIp

U C U C UUC Σg = ΛgΛ′
g + ωgIp

C C C U CCU Σg = ΛΛ′ + ωΔ
C C U U – Σg = ΛΛ′ + ωgΔ
U C C U UCU Σg = ΛgΛ′

g + ωΔ
U C U U – Σg = ΛgΛ′

g + ωΔg

C U C U – Σg = ΛΛ′ + ωΔg

C U U U CUU Σg = ΛΛ′ + ωgΔg

U U C U – Σg = ΛgΛ′
g + ωΔg

U U U U UUU Σg = ΛgΛ′
g + ωgΔg

C = constrained, U = unconstrained.

Δg = Ip, giving a family of twelve Gaussian mixture models (Table 3)
that they called the expanded PGMM (EPGMM) family. We shall use
the term ‘PGMM family’ hereafter to mean this family of twelve models.

The pgmm package (McNicholas et al., 2011) for R provides an imple-
mentation of all twelve PGMM models for model-based clustering and
classification; the classification is in the fashion described by McNicholas
(2010). A key feature of the PGMM family is that all members have
O(p) covariance parameters; i.e., the number of covariance parameters
is linear in the dimensionality of the data under consideration (Table 4).
This is one of the reasons that this family of models is well suited to the
analysis of high-dimensional data.

Parameter estimation for the members of the PGMM family is car-
ried out using alternating expectation-conditional maximization algo-
rithms (cf. Section 4.1). The Woodbury identity (Woodbury, 1950) can
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Table 4: The number of free covariance parameters for each member of
the PGMM family.
Model Number of Covariance Parameters
CCCC [pq − q(q − 1)/2] + 1
CCUC [pq − q(q − 1)/2] +G
UCCC G[pq − q(q − 1)/2] + 1
UCUC G[pq − q(q − 1)/2] +G
CCCU [pq − q(q − 1)/2] + p
CCUU [pq − q(q − 1)/2] + [G+ (p− 1)]
UCCU G[pq − q(q − 1)/2] + p
UCUU G[pq − q(q − 1)/2] + [G+ (p− 1)]
CUCU [pq − q(q − 1)/2] + [1 +G(p− 1)]
CUUU [pq − q(q − 1)/2] +Gp
UUCU G[pq − q(q − 1)/2] + [1 +G(p− 1)]
UUUU G[pq − q(q − 1)/2] +Gp

be used to avoid inversion of any non-diagonal p × p matrices on the
iterations of these AECM algorithms; this is another advantage of the
PGMM family for the analysis of high-dimensional data. For an m×m
matrix A, an m× k matrix U, a k × k matrix C, and a k ×m matrix
V, the Woodbury identity is

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1,

and setting U = Λg, V = Λ′
g, A = ωgΔg, and C = Iq gives

(ωgΔg + ΛgΛ′
g)

−1

= (ωgΔg)−1 − (ωgΔg)−1Λg(Iq + Λ′
g(ωgΔg)−1Λg)−1Λ′

g(ωgΔg)−1. (4)

The left-hand-side of Equation 4 involves inversion of a p × p matrix
but the right-hand-side has only diagonal and q × q matrices to be in-
verted. This gives an especially significant computational advantage
when p is large and q � p; this arises, for example, in bioinformat-
ics applications (e.g. McNicholas and Murphy, 2010b). A related iden-
tity for the determinant of the covariance matrix, |ΛgΛ′

g + ωgΔg| =
|ωgΔg|/|Iq−Λ′

g(ΛgΛ′
g+ωgΔg)−1Λg|, is also helpful. These formulae are

used by McLachlan and Peel (2000a) for the mixtures of factor analyzers
model and by McNicholas and Murphy (2008, 2010b) and McNicholas
(2010) for the PGMMs.

Another advantage of the PGMM family for the analysis of high-
dimensional data is one that is shared by MCLUST or any other family
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of mixture models; model-based approaches are ‘trivially parallelizable’
and so their implementation in parallel is relatively straightforward.
With the decreasing cost of high-performance computing equipment, this
advantage is becoming more and more real. McNicholas et al. (2010) de-
scribe how the PGMM family of models can be implemented in parallel;
they include an illustration of the speed-up that can be achieved.

Andrews and McNicholas (2011b) use the PGMM family for model-
based discriminant analysis while also introducing a t-analogue of the
PGMM family. This latter comment leads nicely into Section 3.3.

3.3 Other Families of Mixture Models

The two families of models described thus far in Section 3 by no means
form an exhaustive list of families of mixture models for clustering, clas-
sification, and discriminant analysis. These two families of models were
chosen for review because of the associated R packages that enable the
reader to use them. In the remainder of this section, some other families
of models and approaches are mentioned but anything beyond a cursory
nod is beyond the scope of this work.

Bouveyron et al. (2007) and McNicholas and Murphy (2010a) in-
troduce families of Gaussian mixture models; in the former case, the
family is designed for high-dimensional data and in the latter case, the
family is used for clustering longitudinal data. McLachlan et al. (2007),
building on work by McLachlan and Peel (1998) and Peel and McLach-
lan (2000), introduce a mixtures of t-factor analyzers model. Andrews
et al. (2011) use a four-member family of mixtures of multivariate t-
distributions for model-based classification. Andrews and McNicholas
(2011a,b) introduce t-analogues of the PGMM family for model-based
clustering, classification, and discriminant analysis. Baek et al. (2010)
develop a variant of the mixture of factor analyzers model.

Raftery and Dean (2006) and Maugis et al. (2009a,b) discuss variable
selection for clustering within the Gaussian mixture modelling frame-
work, while Scrucca (2010) considers dimension reduction. Gormley
and Murphy (2006) consider mixtures of Plackett-Luce models, Hand-
cock et al. (2007) apply model-based clustering to social networks, and
Karlis and Santourian (2009) discuss non-elliptically contoured distribu-
tions.
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4 Parameter Estimation and Model Selection

4.1 Parameter Estimation

The expectation-maximization (EM) algorithm is an iterative procedure
used to find maximum likelihood estimates when data are incomplete or
are treated as being incomplete. The consummate citation for the EM
algorithm is the famous paper by Dempster et al. (1977); however, Tit-
terington et al. (1985, Section 4.3.2) also cite similar approaches used
by Baum et al. (1970), Orchard and Woodbury (1972), and Sundberg
(1974). In an EM algorithm, E- and M-steps are iterated until conver-
gence is reached. The EM algorithm is based on the ‘complete-data’;
i.e., the observed data plus the missing data. In E-step, the expected
value of the complete-data log-likelihood, Q say, is computed; in the
M-step, Q is maximized with respect to the model parameters.

The EM algorithm and variants are commonly used for parameter
estimation in model-based clustering, classification, and discriminant
analysis. One such variant is the expectation-conditional maximization
(ECM) algorithm (Meng and Rubin, 1993), wherein the M-step is re-
placed by a few conditional maximization steps that are typically more
computationally efficient. When extra E-steps are added so that an
E-step occurs before each of the CM-steps, the resulting algorithm is
called a multicycle ECM algorithm (Meng and Rubin, 1993). The alter-
nating ECM (AECM) algorithm (Meng and van Dyk, 1997) extends the
ECM algorithm by allowing different specification of the complete-data
at each stage. The AECM algorithm is used for parameter estimation
for the members of the PGMM family because there are two sources of
missing data: the latent factors and the group memberships. Problems
with the EM algorithm include a sensitivity to starting values; the EM
algorithm and various shortcomings are discussed by Titterington et al.
(1985) and, along with several variations, by McLachlan and Krishnan
(2008).

There are other, albeit less popular, approaches to parameter estima-
tion in model-based clustering, classification, and discriminant analysis.
Hunter and Lange (2000) formally introduced ‘MM algorithms’ but they,
like the EM algorithm, had existed in various forms before they were sys-
tematically laid out. MM algorithms are a blueprint for a broad class of
algorithms that can be summarized as minorization followed by maxi-
mization or majorization followed by minimization. The EM algorithm
is an MM algorithm of the minorization-maximization variety. Draw-
ing on a result from Hunter (2004), Gormley and Murphy (2006) used
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an MM algorithm for parameter estimation in a model-based clustering
context that used mixtures of Plackett-Luce models. However, there
has been a general dearth of work on the use of non-EM MM algorithms
for parameter estimation in model-based clustering, classification, and
discriminant analysis.

Variational approximations, on the other hand, have been used for
mixture model parameter estimation for some time now (e.g. Corduneanu
and Bishop, 2001). Suppose we have observed data x, missing data z,
and parameters ϕ; the idea is to approximate the joint conditional distri-
bution of ϕ and z given the observed data. McGrory and Titterington
(2007) developed a variational Bayes algorithm for Gaussian mixture
model parameter estimation. In addition to parameter estimation, their
approach facilitates estimation of the number of mixture components G.
Other Bayesian approaches to finite mixture model parameter estima-
tion have also been utilized; e.g., Richardson and Green (1997), Zhang
et al. (2004), and Dellaportas and Papageorgiou (2006) use reversible
jump Markov chain Monte Carlo (MCMC) whereas Stephens (2000) de-
scribes an alternative MCMC approach.

4.2 Model Selection

When the term ‘model selection’ is used within the model-based clus-
tering, classification, and discriminant analysis contexts, the meaning is
usually two- or three-fold. First is the selection of the parametric struc-
ture, i.e., the selection of the best member of a family; second is the
selection of the number of mixture components, if necessary; and third
is the selection of the number of latent factors, if applicable. In certain
circumstances, one may also need to choose between families of mixture
models.

The Bayesian information criterion (BIC, Schwarz, 1978) remains the
most prevalent mixture model selection technique within the literature;
BIC = 2l(x, Φ̂)−m log n, where m is the number of free parameters, n is
the sample size, Φ̂ is the maximum likelihood estimate of Φ, and l(x, Φ̂)
is the maximized log-likelihood. The BIC is used to select the model
and number of components in both mclust and pgmm, and is also used to
select the number of factors in pgmm. Some theoretical and applied bases
are often cited as supporting the use of the BIC (Leroux, 1992; Kass
and Raftery, 1995; Kass and Wasserman, 1995; Keribin, 1998, 2000).
However, the assumptions upon which these theoretical results are based
may not hold, and the model selected by the BIC does not necessarily
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give the best predicted classifications (see Andrews and McNicholas,
2011a, Section 5.3, for an example).

Credible alternatives to the BIC have been proposed, perhaps most
notably the integrated completed likelihood (ICL; Biernacki et al., 2000),
which is approximated by penalizing the BIC using the estimated mean
entropy. However, like the BIC, the model selected by the ICL does
not necessarily give the best predicted classifications. Despite the fact
that the theoretical assumptions underpinning its use cannot necessarily
be assumed to hold, and the fact that the most accurate estimated
classifications do not necessarily emerge, the BIC remains the best of
the approaches that have been tried. However, alternative approaches
continue to be sought and some interesting work on information criteria
and model selection has been carried out by Meila (2007) and Vinh
et al. (2010), amongst others. Melnykov and Maitra (2010) give a nice
review of work in model selection, focusing on selection of the number
of mixture components.

5 Discussion

A review of work in model-based clustering, classification, and discrimi-
nant analysis has been presented, with a particular focus on two families
of Gaussian mixture models: the MCLUST and PGMM families. Some
space was also devoted to a brief discussion of other work, including
non-Gaussian approaches. Although the Gaussian mixture model has
historically been the most popular approach, a survey of the model-
based clustering, classification, and discriminant analysis literature over
the past few years demonstrates that much of the work has been non-
Gaussian; examples include the work of Karlis and Santourian (2009),
Lin (2010), and Andrews and McNicholas (2011b). Work has also been
carried out on mixtures of different types of distributions; e.g., Coretto
and Hennig (2011) consider mixtures of Gaussian and uniform distribu-
tions. Parameter estimation and model selection were also briefly dis-
cussed; a more in-depth discussion of model selection is given by Celeux
(2007, Section 3).

Future work in the area will include efforts towards improved pa-
rameter estimation and model selection techniques. The departure from
the Gaussian distribution is almost certain to become more pronounced,
with non-symmetric models likely to feature. Work on the efficient im-
plementation of model-based approaches in parallel is in its infancy and
more work is expected in that direction, especially with the dimension-



On Model-Based Clustering, Classification, and ... 193

ality of many modern data sets. A fully Bayesian approach to mixture
modelling might well gain popularity; see Medvedovic and Sivaganesan
(2002) and Dellaportas and Papageorgiou (2006) for examples. Finally,
work on merging mixture components (cf. Hennig, 2010; Baudry et al.,
2010) will surely continue in the coming years.
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