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Abstract. The paper addresses a problem of tracking multiple number
of frequencies using Regularized Autoregressive (RAR) approximation.
The RAR procedure allows to decrease approximation bias, comparing
to other AR-based frequency detection methods, while still providing
competitive variance of sample estimates. We show that the RAR esti-
mates of multiple periodicities are consistent in probability and illustrate
dynamics of RAR in respect to sample size and signal-to-noise ration by
simulations.
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1 Introduction

The problem of tracking unknown frequencies is widely encountered in
a variety of applications, ranging from speech recognition in electrical
engineering to search for pulsars in astronomy. Although the topic has
been explored for many years (see, for example, Prony, 1795; Pisarenko,
1973; Hannan and Huang, 1993), it continues to attract considerable
attention in statistical and engineering literature (Chen et al., 2000;
Song and Li, 2006; Duan et al., 2010; Elasmi-Ksibi et al., 2010; Liu et
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al., 2011). (For detailed review and historical perspective see Brillinger,
1987, Quinn and Hannan, 2001). Among various methods in the existing
literature, the autoregressive (AR) frequency estimation is one of the
most popular approaches due to its computational ease and theoretical
convenience (Truft and Kumaresan, 1982; Mackisack and Poskitt, 1989,
1990; Hannan and Quinn, 2001). However, it is well known that the
AR-based frequency estimates are asymptotically biased when the order
k of an approximating AR model is fixed (Stoica et al., 1987). A simple
remedy is to allow the AR order k → ∞ as sample size n → ∞. This,
however, may lead to deficiency in estimating a covariance matrix and
also implies that a new model order needs to be re-selected upon the
arrival of new observations and all the earlier estimated AR parameters
need to be re-calculated.

In order to avoid such shortcomings, Chen and Gel (2010) introduce
an alternative approach, so-called regularized AR (RAR) approxima-
tion, to detect hidden frequencies. The idea of RAR is to regularize
a sample autocovariance matrix by a ridge operator of a nuclear type,
which allows to fit a “longer” AR model than the one suggested by
Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC), hence, reducing approximation bias, and then to recursively esti-
mate AR parameters using the Regularized Least Square (RLS) method
(Gel and Fomin, 2001, and Gel and Barabanov, 2007). Note that the
proposed RAR procedure falls under the “large k – small n” framework
but in a time series context. Indeed, the order of the RAR approxima-
tion can be potentially very close to n, so the regularization technique
is particularly crucial to avoid deficiency in model identification. With
the help of the nuclear ridge regularizer, RAR allows to estimate AR pa-
rameters with different level of accuracy, while the number of estimated
parameters grows with the sample size. Therefore, the repeated model
selection and parameter estimation are avoided as the sample size in-
creases, which makes the RAR procedure especially attractive for online
modeling when the observed sample size is unknown a-priori.

In this paper we generalize the results of Mackisack and Poskitt
(1989, 1990) and Chen and Gel (2010) to a case of tracking multiple
frequencies. In particular, we show that the RAR estimates of mul-
tiple frequencies are strongly consistent and asymptotically normally
distributed. We also illustrate performance of RAR by numerical exper-
iments and a case study on the sunspot data. The paper is organized as
follows. In the next section, we review the RAR frequency estimation
procedure. In section 3, asymptotic properties of the RAR estimates
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are derived. In section 4, we present an extensive simulation studies
on estimation of fixed multiple frequencies. The paper is concluded by
discussion in section 5.

2 Regularized AR frequency estimation

Consider a mixed-spectrum process {Yt, t ∈ Z}

Yt = Xt + εt and Xt =
q∑

j=1

ρj cos(ωjt+ φj), (1)

where ρj and ωj are constants with ρj > 0 and 0 < ω1 < . . . < ωq < π;
φj are independently identically distributed (i.i.d.) random variables
uniformly distributed on [0, 2π); {εt} are i.i.d. random variables with
E(εt) = 0 and E(ε2t ) = σ2 < ∞. Assume that q ≥ 1 is known, and
{εt} is independent of {φj} and hence of {Xt}. Given observations
{Y1, . . . , Yn}, our goal is to estimate the frequencies

ω = (ω1, . . . , ωq)′. (2)

First, let us review the RAR approach for estimating ω. Consider
an AR(k) model

a(B)Yt = νk,t (3)

where B is a backward shift operator (BYt = Yt−1) and a(z) = 1+a1z+
. . .+akz

k is a polynomial of degree k. The AR model (3) can be written
in a state-space form:

Yt = Φ′
k,t−1τ k + νk,t, (4)

where Φk,t−1 = (Yt−1, Yt−2, . . . , Yt−k)′ and τ k = −(a1, a2, . . . , ak)′. The
RAR frequency estimation procedure consists of the following three
steps:

• Step 1: Approximate {Y1, . . . , Yn} by a “long” AR(k) process
whose order k → ∞ when n→ ∞ and k may substantially exceed
the model order suggested by AIC and BIC, i.e. k � log n.

• Step 2: Estimate the vector of unknown AR parameters τ k by
the iterative RLS method

τ̂ k,n+1 = τ̂ k,n + γε
k,nΦk,n(1 + Φ′

k,n+1γ
ε
k,nΦk,n+1)−1(Yn+1 − Φ′

k,nτ̂ k,n)

γε
k,n+1 = γε

k,n − γε
k,nΦk,n+1(1 + Φ′

k,n+1γ
ε
k,nΦk,n+1)−1Φ′

k,n+1γ
ε
k,n

(5)
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with initial conditions τ̂ k,0 = 0 and γε
k,0 = (εΛk)−1. The matrix

γε
k,n is inverse to the sample information matrix R̂

ε
k,n, i.e. γε

k,n =

(R̂
ε
k,n)

−1
, where

R̂
ε
k,n = R̂k,n + εΛk with R̂k,n =

n∑
t=1

Φk,tΦ′
k,t (6)

and Λk = diag{eμj}k
j=1, μj > 0, is a ridge regularizer of a nuclear

form. Note that n−1R̂
ε
k,n is a sample estimate of the covariance

matrix Rk = {ri−j}k−1
i,j=0, where rh = E(YtYt+h) is defined as the

theoretical autocovariance function (ACVF).

• Step 3: Let {β̂je
±iω̂k,j}q

j=1 denote the 2q roots of â(z) which are
closest to the unit circle, then the angular positions of these roots

ω̂k = (ω̂k,1, . . . , ω̂k,q)′ (7)

are the estimates of hidden frequencies. Equivalently, ω can be
estimated by locating the minimum of the transfer function

f̂k(θ) =
∣∣â(eiθ)∣∣2 =

∣∣∣∣
k∑

j=0

âj(eijθ)
∣∣∣∣
2

. (8)

Note that the model order k can be a priori selected to be equal to
(or even to exceed) a potential upper bound of all practically fittable
AR models, given the current sample size n. Since we employ a nuclear
form of ridge regularization Λk, the AR parameters are obtained with
different precision, while the number of accurately identified parameters
smoothly grows with the sample size. Hence, RAR can be viewed as a
smoothed version of model selection.

3 Asymptotic properties of RAR estimates

In this section, we extend the results of Mackisack and Poskitt (1989 and
1990) and prove the strong consistency and the asymptotic normality
of the RAR frequency estimates ω̂k. First, our goal is to show that the
RAR frequency estimates ω̂k converge almost surely (a.s.) to the vector
of unknown frequencies ω. The proof of this result is based on strict
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consistency of the RLS estimates of autoregressive parameters. Note
that by Theorem 1 of Stoica et al. (1987), we have

τ k = −2
k

( q∑
j=1

cos(ωj),
q∑

j=1

cos(2ωj), . . . ,
q∑

j=1

cos(kωj)
)′

+O

(
1
k2

)
. (9)

Theorem 3.1. Let Yt be generated by (1). Let qk = (q1, . . . , qk)′ ∈ R
k

denote a k × 1 vector satisfying ‖qk‖ ≤ O(k1/2). Assume that μ(n) =
o(log n). If n→ ∞ and k → ∞ such that k2/n→ 0, then

(1)
∣∣q′

k(τ̂ k − τ k)
∣∣ → 0 a.s.

(2) supθ∈(0,π)

∣∣|â(eiθ)|2 − |a(eiθ)|2∣∣ = o(1) a.s.

(The proof of Theorem 3.1 is given in the Appendix.)
Based on the consistency of the RAR parameter estimates τ̂ k in

Theorem 3.1, we derive the following almost sure convergence result of
ω̂k.

Theorem 3.2. Under the assumptions of Theorem 3.1, ω̂k → ω
almost surely as n→ ∞, k → ∞ such that k2/n→ 0.

(The proof of Theorem 3.2 is given in the Appendix.)
Second, we verify the asymptotic normality of the RAR frequency

estimates ω̂k and start from deriving the asymptotic distribution of τ̂ k.

Theorem 3.3. Under the conditions of Theorem 3.1 and E(ε4t ) =
κσ4 <∞, if k, n → ∞ and k2/n → 0,

√
T (τ̂ k − τ k) → N(0,R−1

k MkΣkM
′
kR

−1
k ),

where

Mk =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 . . . ak 0
a2 a3 . . . 0 0
...

... . . .
...

...
ak−1 ak . . . 0 0
ak 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝

0 a0 . . . 0 0
0 a1 . . . 0 0
...

... . . .
...

...
0 ak−2 . . . a0 0
0 ak−1 . . . a1 a0

⎞
⎟⎟⎟⎟⎟⎠ . (10)

Here Σk = {σε
ij}k

i,j=0, where

σε
ij =

{
δi,jσ

4 + σ2
∑q

s=1 2ρ2
s cos (ωsi) cos (ωsj), i, j 
= 0,

(κ− 1)σ4 + σ2
∑q

s=1 2ρ2
s, i, j = 0.

(11)
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(See the Appendix for the proof of Theorem 3.3.)

Using the result of Theorem 3.3, we derive the asymptotic normality
of ω̂k. Let a∗(z) be a polynomial of degree k, i.e. a∗(z) = 1 + a∗1z +
. . . + a∗kz

k, and τ ∗
k = −(a∗1, . . . , a

∗
k), such that

τ ∗
k = R+

k rk, (12)

where R+
k denotes the Moore-Penrose pseudoinverse of Rk. The results

of Stoica et al.(1989) imply that

a∗(z) = B∗(z)A(z), (13)

where A(z) =
∏q

s=1(1− 2 cosωsz+ z2) and B∗(z) is a monic polynomial
of degree (k − 2q) uniquely defined by

1
2π

∫ π

−π

∣∣B∗(eiω)
∣∣2∣∣A(eiω)

∣∣2dω = min
{B}

1
2π

∫ π

−π

∣∣B(eiω)
∣∣2∣∣A(eiω)

∣∣2dω. (14)

Note that A(z) has a pair of roots located on the unit circle at e±iωs ,
s = 1, . . . , q. The remaining roots of a∗(z), which are the roots of B∗(z),
are located outside the unit circle. For the large value of k, the roots
of B∗(z) may be located very close to the unit circle, which eventually
causes spurious frequency estimates. (We discuss trimming algorithm of
such spurious roots in the next section.) The following theorem states
the result on asymptotic normality of ω̂k.

Theorem 3.4. Under the conditions of Theorem 3.1 and if k2 �
cn1−δ, for 0 < δ < 2/3, such that k2/n→ 0, then

√
n(ω̂k − ω) → N(0,F GR−1

k MkΣkM
′
kR

−1
k G′F ′)

in distribution, where

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1
(θ21+ψ2

1)
0 . . . 0 − θ1

(θ21+ψ2
1)

0 . . . 0

0 ψ2
(θ22+ψ2

2)
. . . 0 0 − θ2

(θ22+ψ2
2)

. . . 0

...
...

. . . 0
...

...
. . . 0

0 0 . . .
ψq

(θ2q+ψ2
q)

0 0 . . . − θq

(θ2q+ψ2
q)

⎞
⎟⎟⎟⎟⎟⎟⎠
,(15)

G = (h′
1, . . . ,h

′
q,g

′
1, . . . ,g

′
q)

′, for s = 1, . . . , q,

θs = (cosωs, 2 cos 2ωs, . . . , k cos kωs)τ ∗
k,

ψs = (sinωs, 2 sin 2ωs, . . . , k sin kωs)τ ∗
k,

hs = (cosωs, cos 2ωs, . . . , cos kωs)′,
gs = (sinωs, sin 2ωs, . . . , sin kωs)′.

(16)
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(The proof of Theorem 3.4 is given in the Appendix.)

Hence, we conclude that the RAR estimates ω̂k of multiple frequen-
cies converge almost surely and are asymptotically normally distributed.
However, in practice, RLS allows to avoid the model order selection step,
and to fit a much longer AR model compared to the one chosen by AIC.

Remark 3.1. Note that any asymptotic variance of the frequency esti-
mate based on autoregressive approximation of order k, with or without
regularization, does depend on k. See the asymptotic variance in the
regularized case (RAR) stated in Theorem 3.3 and its unregularized
analogue (MP) shown in Theorem 2 and 2’ of Mackisack and Poskitt
(1990) (in a single frequency case).

Remark 3.2. In view of the results of Li et al. (1994), Lau et al. (2002)
and the classical results of Bartlett (see Bartlett, 1955; Brockwell and
Davis, 2006, Theorem 7.2.1 and Proposition 7.3.1), the asymptotic re-
sults of Theorems 3.1–3.4 can be extended under a more general condi-
tion when {εt} is a linear process of the form

εt =
∞∑

j=0

ψjξt−j, (17)

where {ξt} are i.i.d random variables with E(ξt) = 0, E(ξ2t ) = σ2
ξ and

{ψt} is an absolutely summable deterministic sequence with
∑ |ψj | <∞.

In this case {yt} is referred to as mixed-spectrum process.

Remark 3.3. Note that here we consider the case of a “soft” reg-
ularized estimation of multiple frequencies, i.e. μ(n) = o(log n), which
in asymptotics leads to the same restriction on the AR approximation
order k as in the unregularized case of a singular frequency, derived by
Mackisack and Poskitt (1989 and 1990). Echoing the discussion of Lau
et al. (2002) on behavior of an AR(k) spectral estimator when both k
and n→ ∞, an interesting question is: Can we increase the rate of AR
approximation k and adequately balance the bias-variance issue with the
help of a “stronger” regularizer? I.e., can Regularized AR(k) estimator
go beyond k2/n → ∞? For example, the potential regularizer candi-
dates are nuclear exponential or polynomial operators with increasing
diagonal values, i.e. Λk = diag{eμj}k

j=1 (Gel and Barabanov, 2007) or
Λk = diag{jp}k

j=1 (Barabanov and Gel, 2005). After numerous unsuc-
cessful attempts to derive asymptotic properties of RAR approximant
of a higher order order, we have decided to leave it as a conjecture:
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Conjecture 3.1. Let Yt be generated by (1) and let Λk = diag{eμj}k
j=1.

As k → ∞, n→ ∞ such that k/n→ ∞, then for any δ ∈ (0, 1), it holds
in probability:

(1) Vt = n−δ(τ̂ k − τ k)′R̂
ε
k,n(τ̂ k − τ k) → 0,

(2) R̂
ε
k,n ≥ C > 0,

which implies that n(1−δ)/2
∣∣(τ̂ k − τ k)

∣∣ → 0 in probability.

While we were able to derive condition (2), we could not show condition
(1) and, hence, leave it as an open problem (see the Appendix for proof
of condition (2)). This conjecture is empirically supported by a number
of simulations discussed in the Section 4.

4 Numerical examples

In this section, we demonstrate the performance of the RAR frequency
estimation by simulation studies, using a “stronger” regularizer Λk =
diag{eμj}k

j=1 and μ selected by a cross-validation procedure. As discussed
in Chen and Gel (2010), spurious roots typically occur when the AR
approximation order k is high, which results in false frequency estimates.
In order to reduce this effect and increase the accuracy of the frequency
estimates, we apply the robust trimming algorithm (RTA) (Chen and
Gel, 2010) in our simulation studies. Here we consider two-sinusoid
processes with different combinations of amplitudes and frequencies are
considered, as shown in Table 1 (Stoica et al., 1989a) and {εt} are i.i.d
N(0,1).

Case ρ1 ρ2 ω1 ω2

1 10
√

2 10
√

2 0.53π 0.23π
2 10

√
2 10

√
2 0.33π 0.23π

3 10
√

2 10
√

2 0.26π 0.23π
4

√
2

√
2 0.53π 0.23π

5
√

2
√

2 0.33π 0.23π
6

√
2

√
2 0.26π 0.23π

7
√

20
√

2 0.53π 0.23π
8

√
20

√
2 0.33π 0.23π

9
√

20
√

2 0.26π 0.23π

Table 1: Amplitudes and frequencies of simulation studies.
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First, we investigate the variances of ω̂k,1 and ω̂k,2, denoted as V ar(ω̂k,1)
and V ar(ω̂k,2), under different signal-to-noise ratio (SNR) in Cases 1-3.
Note that SNR compares the level of a desired signal to the level of a
background noise, which is defined as

SNR(j) = 10 log10
0.5ρ2

jσ2
dB. (18)

Here, we take ρ = 10
√

2 and j = 9.5, 9, 8.5, 8, . . . , 1, 0.5. In all considered
cases, V ar(ω̂k,1) and V ar(ω̂k,2) are compared to the Cramer-Rao Lower
Bound (CRLB) (Stoica et al., 1989b) where

CRBL1 = 24σ2/(ρ2
1T

3) and CRBL2 = 24σ2/(ρ2
2T

3). (19)

Since {εt} are assumed to be i.i.d N(0,1) in the simulated samples, σ2 is
1.

Suppose that our sample size n is 2000 measurements. Based on the
first 700 observations, the cross-validation procedure (Chen and Gel,
2010; Bickel and Gel, 2011) selects an “optimal” regularizing parame-
ter μ = 0.11 and AR order k = 80. Figure 4 shows V ar(ω̂80,1) and
V ar(ω̂80,2) respectively compared to CRLB while SNR increases from
0.45 to 26.02. Both V ar(ω̂80,1) and V ar(ω̂80,2) monotonically decrease
as SNR increases and approach CRLB. Also, notice that the differences
between the frequencies ω1 and ω2 in Case 1, 2 and 3 are correspond-
ingly 0.2π, 0.1π and 0.03π. As the distance between frequencies de-
creases, the rate of convergence of V ar(ω̂80,1) and V ar(ω̂80,2) to CRLB
also decreases.

Second, we study dynamics of V ar(ω̂k,1) and V ar(ω̂k,2) in respect to
an increasing sample size, given SNR of 20dB. Due to the RAR proper-
ties, the model order k and regularizing parameter μ remain the same
whenever sample size changes, i.e. the previously chosen AR(80) with μ
of 0.11 are employed in all cases while T increases from 1000 to 5000. As
shown in Figure 2-4, both V ar(ω̂80,1) and V ar(ω̂80,2) strictly decrease
as sample size increases. Similar to Figure 4, the variances are close to
CRLB when the frequencies are well-separated (Case 1, 4 and 7), while
the difference becomes larger as the frequencies are closer. Note that the
magnitude of variance negatively relates to the amplitude of the sinu-
soid and hence V ar(ω̂80,1) and V ar(ω̂80,2) in Figure 2 are considerably
smaller than those in Figure 3 and 4.

Since RAR can be viewed as an extension of the results of Mackisack
and Poskitt (1989) (from here on referred to as MP), we compare the
mean square error (MSE) of RAR to that of MP under varying SNR.
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Figure 1: The variances of the frequency estimates ω̂80,1 and ω̂80,2 for
varying SNR.
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Suppose that an observed sample consists of 2000 data points. MP
approximates the underlying process by an AR(40) model selected by
AIC. Denote a mean squared error (MSE) of the RTA and MP frequency
estimates by MSERTA and MSEMP respectively. Figure 6 illustrates the
comparison of MSERTA and MSEMP while SNR increases from 0.45 dB
to 26.02 dB. From Figure 6, we find that MSERTA is noticeably smaller
than MSEMP when ω1 and ω2 are well-separated (Case 1) regardless of
SNR; as well as when ω1 and ω2 are very close (Case 2) but SNR is low
(SNR < 8.43dB). As SNR increases, both MSERTA and MSEMP decay
exponentially and tend to converge after a certain threshold. Hence,
fitting a longer AR model with robust trimming can effectively reduce
MSE, especially in noisy conditions which is frequently the case for many
applications.

5 Case Study

One of the classical examples of a periodic process is the sunspot ob-
servations. The earliest surviving record of sunspot dates from the 364
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B.C., according a star catalogue by Chinese astronomer Gan De (Hockey,
1999). In order to demonstrate the proposed RAR method, we take a
sample of annual sunspot observations from 1700 to 1988 (see Figure 6)
and then apply the RAR procedure to estimate the hidden frequency.
Using cross-validation, we select an AR(25) model with regularizing pa-
rameter μ = 0.1. As a result, the RAR frequency estimate is 0.5721.

Yearly Sunspot Data, 1700−1988
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Figure 6: Yearly Sunspot data from 1700 to 1988.

Since RAR can be viewed as an extension of the results of MacKisack
and Poskitt (1989) (from here on referred to as MP), we also apply
the MP procedure to the sunspot observations for comparison purpose.
The AIC selects an AR(9) model and consequently, the MP frequency
estimate is 0.3634. In fact, it is well-known that the sunspot populations
rise and fall on an irregular cycle of 11 years, i.e., the hidden frequency
is equal to 0.5712. Clearly, the estimation error by RAR is about 0.43%
of that by MP.

6 Discussion

This paper generalizes the result of Chen and Gel (2010) on regular-
ized autoregressive (RAR) frequency estimation to a case of multiple
unknown periodicities. We show that the RAR estimates of multiple fre-
quencies are strongly consistent and asymptotically distributed. Since
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the idea of RAR is to approximate generalized spectral density of an ob-
served periodic time series by a spectral density of a “long” autoregres-
sive model whose order is substantially higher than suggested by AIC or
BIC, we encounter a “large k-small n” problem but in a time series con-
text. We approach this problem by a nuclear-type ridge regularization
of a sample autocovariance matrix and choose an “optimal” regularizer
with cross-validation (Chen and Gel, 2010; Bickel and Gel, 2011). Our
simulation results indicate that as sample size and/or signal-to-noise ra-
tio increases, the RAR frequency estimates approach the Cramer-Rao
Lower Bound, and convergence rate is faster if frequencies are father
apart. Since RAR enables us to avoid frequent re-estimation of approx-
imating model order and parameters, the new procedure is relatively
computationally inexpensive and, hence, feasible for online tracking of
unknown multiple frequencies.

The proposed method can be extended for a case of colored generat-
ing noise as it is a more realistic assumption for a number of applications,
e.g. astronomy and speech recognition. Another interesting future ex-
tension consists of employing banding and thresholding as regularization
techniques as well as exploring bootstrap-based selection of an an “op-
timal” regularizer.
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températures. Journal de L’École Polytechnique Floréal et Plairial,
an III, 1(22), 24-76.

Quinn, B. G. and Hannan, E. J. (2001), The Estimation and Tracking
of Frequency. UK: Cambridge University Press.

Song, K. S and Li, T. H., On convergence and bias correction of a joint
estimation algorithm for multiple sinusoidal frequencies. Journal
of the American Statistical Association, 101(474), 830-842.
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Appendix

Let us denote covariance vectors by rk = (r1, . . . , rk)′, rk,0 = (r0, r1, . . . ,
rk)′. Also, denote sample ACVF by r̂j = 1

n

∑n−j
t=1 YtYt+j, j = 0, 1, . . . , k,

for k = 0, 1, ..., n − 1, which forms sample covariance vectors r̂k =
(r̂1, . . . , r̂k)′ and r̂k,0 = (r̂0, r̂1, . . . , r̂k)′.

Proof of Theorem 3.1. Let Γk, Γ̂k,n, Γ̂
ε
k,n and Λ(1)

k denote the k ×
(k+ 1) matrices formed respectively from the (k+ 1)× (k+ 1) matrices
Rk, R̂k,n, R̂

ε
k,n and Λk by deleting their first rows. Following the proof

of Theorem 3 in Mackisack and Poskitt (1990), we express (τ̂ k − τ k) as

(τ̂ k − τ k,n) = γε
k,n

(
Γ̂

ε
k − Γk

)
(1 : τ ′

k)
′

= γε
k,n

(
Γ̂k,n +

εΛ(1)
k

n
− Γk

)
(1 : τ ′

k)
′

= γε
k,n

(
Γ̂k,n − Γk

)
(1 : τ ′

k)
′ + γε

k,n

εΛ(1)
k

n
(1 : τ ′

k)
′. (20)

Since as n→ ∞, n−1εeμ(n) → 0 and R̂k,n → Rk a.s., by Theorem 4.1 of
Houdré and Kedem (1995), we obtain

R̂
ε
k,n = Rk +

(
R̂k,n − Rk

)
+
εΛ(1)

k

n
> 0, (21)

and hence ‖γε
k,n‖ ≤ C1, C1 ∈ R

+. Also, by equation (9), ‖(1 : τ ′
k)

′‖ ≤
C2, C2 ∈ R

+, thus γε
k,nn

−1εΛ(1)
k (1 : τ ′

k)
′ → 0 and consequently,

(τ̂ k − τ k,n) ∼ γε
k,n

(
Γ̂k,n − Γk

)
(1 : τ ′

k)
′, (22)

which can be re-written as

(τ̂ k − τ k,n) ∼
(
γε

k,n

(
R̂

ε
k,n − Rk

)
+ Ik

)
R−1

k

(
Γ̂k,n − Γk

)
(1 : τ ′

k). (23)

Equation 21 implies that R̂
ε
k,n → Rk a.s. again by Theorem 4.1 of

Houdré and Kedem (1995). Following An el al.’s approach (1982, pp.929-
930), we can show that(

γε
k,n

(
R̂

ε
k,n − Rk

)
+ Ik

)
→ Ik, a.s. (24)
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and hence our problem is reduced to verify

q′
kR

−1
k

(
Γ̂k,n − Γk

)
(1 : τ ′

k) → 0, a.s. (25)

Since ‖R−1
k ‖ ≤ C3, C3 ∈ R

+, we obtain

‖q′
kR

−1
k ‖ = O(‖qk‖) = O(k1/2). (26)

Thus, in the rest of the proof we investigate the asymptotic behavior of

Mk,n = Q′
k

(
Γ̂k,n − Γk

)
(1 : τ ′

k), (27)

where Q′
k = q′

kR
−1
k = (Q1, . . . , Qk).

First, let us consider an element of (Γ̂k,n − Γk

)
, i.e, r̂j − rj , j =

0, . . . , k. Denote rx
j = E(XtXt+j) and r̂x

j = 1
n

∑n−j
t=1 XtXt+j , we have

rx
j = E

{ q∑
n=1

ρn cos(ωnt+ φn)
q∑

n=1

ρn cos(ωn(t+ j) + φn)
}

=
q∑

n=1

ρ2
n

2
cos(ωnj). (28)

and thus

r̂x
j − rx

j =
1
n

n−j∑
t=1

q∑
s=1

q∑
m=1

ρsρm cos(ωst+ φs) cos
(
ωm(t+ j) + φm

)

−
q∑

s=1

ρ2
s

2
cos(ωsj)

=
1
2n

q∑
s=1

ρ2
s

n−j∑
t=1

cos
(
ωs(2t+ j) + 2φs

)

+
1
n

q∑
s,m=1
s�=m

ρsρm

n−j∑
t=1

cos(ωst+ φs) cos
(
ωm(t+ j) + φm

)
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=
1
2n

q∑
s=1

ρ2
s

n∑
t=1

cos
(
ωs(2t+ j) + 2φs

)

− 1
2n

q∑
s=1

ρ2
s

n∑
t=n−j+1

cos
(
ωs(2t+ j) + 2φs

)

+
1
n

q∑
s,m=1
s�=m

ρsρm

n∑
t=1

cos(ωst+ φs) cos
(
ωm(t+ j) + φm

)

− 1
n

q∑
s,m=1
s�=m

ρsρm

n∑
t=n−j+1

cos(ωst+ φs) cos
(
ωm(t+ j) + φm

)
(29)

Using the complex exponential representation of cosine function, it can
be shown that ∣∣∣∣

n∑
t=1

cos
(
ωs(2t+ j) + 2φs

)∣∣∣∣ ≤ 1
| sinωs| , (30)

and ∣∣∣∣
n∑

t=1

cos(ωst+ φs) cos
(
ωm(t+ j) + φm

)∣∣∣∣
≤ 1/2∣∣ sin

(
(ωs + ωm)/2

)∣∣ +
1/2∣∣ sin (

(ωs − ωm)/2
)∣∣ (31)

for any φs, φm, j and s 
= m. Since ωs ∈ (0, π) for all s and ωs 
= ωm for
all s 
= m, both 1/| sinωs| and 1/

∣∣ sin
(
(ωs ± ωm)/2

)∣∣ can be bounded
above by a constant. Therefore, equation (29) becomes

r̂x
j − rx

j = O(1/n) +O(j/n) +O(1/n) +O(j/t) = O(j/n), (32)

and hence, we obtain for j = 0, . . . , k:

r̂j − rj = r̂x
j − rx

j +
1
n

n−j∑
t=1

(xt+jεt + xtεt+j + εtεt+j) − E(εtεt+j)

= O(j/n) +
1
n

n−j∑
t=1

q∑
s=1

ρs cos
(
ωs(t+ j) + φs

)
εt

+
1
n

n−j∑
t=1

q∑
s=1

ρs cos(ωst+ φs)εt+j +
1
n

n−j∑
t=1

εtεt+j − δj,0σ
2



160 Bei and Yulia

=
1
n

n∑
t=1

q∑
s=1

2ρs cos(ωst+ φs) cos(ωsj)εt

+
1
n

n∑
t=1

(εtεt−j − δj,0σ
2)

− 1
n

j∑
t=1

q∑
s=1

ρs cos
(
ωs(t− j) + φs

)
εt

− 1
n

n∑
t=n−j+1

q∑
s=1

ρs cos
(
ωs(t+ j) + φs

)
εt

− 1
n

0∑
t=−j+1

εtεt+j +O
( j
N

)
, (33)

which implies

∣∣(r̂j − rj) − Sj,n

∣∣ � 1
n

j∑
t=1

q∑
s=1

ρs

∣∣εt∣∣ +
1
n

n∑
t=n−j+1

q∑
s=1

ρs

∣∣εt∣∣

+
1
n

0∑
t=−j+1

q∑
s=1

ρs

∣∣εtεt+j

∣∣ +O

(
j

n

)
, (34)

where

Sj,n =
1
n

n∑
t=1

( q∑
s=1

2ρs cos(ωst+ φs) cos(ωsj) + εt−j

)
εt − δj,0σ

2. (35)

Since ρs, s = 1, . . . , q, are constants and {εt} is assumed to be white
noise with finite fourth moment, the four terms on the right-hand side
of (34) are all O(j/n) a.s. Therefore, for j = 0, . . . , k,

r̂j − rj = Sj,n +O(j/n). (36)

Replacing r̂j − rj by Sj,n +O(j/n) in equation (27), we obtain

Mk,n = Q′
k

(
Sn + En

)
(1 : τ ′

k)
′, (37)

where the matrices Sn and En respectively have elements Sj−l,n and
O

(
(j − l)/n

)
, j = 1, . . . , k and l = 1, . . . , k + 1, and∣∣Mk,n

∣∣ ≤ ∣∣Q′
kSn(1 : τ ′

k)
′∣∣ +

∣∣Q′
kEn(1 : τ ′

k)
′∣∣. (38)
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As n → ∞ and k → ∞ such that k2/n → 0, by the Cauchy-Schwartz
inequality, we have

∣∣Q′
kEn(1 : τ ′

k)
′∣∣ ≤ (

O(k)O(k3/n2)
)1/2 = O(k2/n) = o(1). (39)

Also, note that

∣∣Q′
kSn(1 : τ ′

k)
′∣∣ ≤

∣∣∣∣
k∑

j=1

QjSj,n

∣∣∣∣ +
∣∣Q′

kSn(0 : τ ′
k)

′∣∣

=
∣∣∣∣

k∑
j=1

QjSj,n

∣∣∣∣ +O(‖Sn‖), (40)

thus it is sufficient to show that O(‖Sn‖) = o(1). By definition,

TSj,n =
b∑

m=1

Xj,m, (41)

where

Xj,m = εm

q∑
s=1

2ρs cos(ωsm+ φs) cos(ωsj) + εmεm−j − δj,0σ
2. (42)

The rest of the proof is same as that of Theorem 3 of Mackisack and
Poskitt (1990) and hence omit here. �

Proof of Theorem 3.2. Let ωk = (ωk,1, . . . , ωk,q)′ be the unknown
frequencies based on the k-th order RAR approximation. Note that

ω̂k,j − ωj = (ω̂k,j − ωk,j) + (ωk,j − ωj), (43)

for j = 1, . . . , q. Using the result of Theorem 3.1 and applying similar
arguments as the proofs of Theorem 1 in MacKisack and Poskitt (1989)
to a multi-frequency case, we can show that when n → ∞ and k → ∞
such that k2/n→ 0, for any ε > 0,

lim
n→∞P

(∣∣ω̂k,j − ωk,j

∣∣ ≥ ε
)

= 0. (44)

As shown by Stoica et al. (1987), (ωk,j − ωj) = O(1/k3) and the result
follows. �
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Denote the regularized sample ACVF by r̂ε
j = 1

n

{∑n−j
t=1 YtYt+j + δj,0ε

eμ(n)
}
, j = 0, 1, . . . , k, for k = 0, 1, ..., n− 1, which forms the regularized

sample covariance vector r̂ε
k,0 = (r̂ε

0, r̂
ε
1, . . . , r̂

ε
k)

′. In fact, the utilization
of regularizer only changes the diagonal entries of R̂k,n, which is r̂0.
Asymptotically, R̂

ε
k,n is equivalent to R̂k,n and r̂ε

k,0 is equivalent to r̂k,0

by the following argument: the regularizer vanishes as n→ ∞, i.e.,

r̂ε
0 =

1
n

n∑
t=1

Y 2
t +

εeμ(n)

n
→ 1

n

n∑
t=1

Y 2
t = r̂0 (45)

and therefore,
r̂ε

k,0 → r̂k,0, as n→ ∞. (46)

Lemma A.1. Suppose that E(εt) = κσ4 <∞. If n→ ∞ and k → ∞
such that k2/n→ 0, then

√
n(r̂ε

k,0 − rk,0) → N(0,Σk) in distribution.

Proof of Lemma A.1. By (45) and (46), r̂ε
k,0 is equivalent to r̂k,0 as

n→ ∞. Note that the assumption applied here on {εt}, which assumes
{εt} ∼ i.i.d (0, σ2) and E(ε4t ) = κσ4 < ∞, is a special case of the
assumption applied in Lau et al. (2002). Hence, by Theorem 1 of Lau et
al. (2002),

√
n(r̂ε

k,0 − rk,0) is asymptotically normally distributed with
mean zero and covariance matrix Σk, where Σk = {σε

ij}k
i,j=0 and

σε
ij = lim

n→∞E{n(r̂ε
i − ri)(r̂ε

j − rj)}. (47)

For any j = 0, . . . , k, the estimation error of regularized sample ACVF
estimate is given by

r̂ε
j − rj =

j

n

q∑
s=1

ρ2
s

2
cos(jωs)

+
1
n

q∑
s=1

ρ2
s cos

(
(n− 1)ωs + 2φs

)sin
(
(n− j)ωs

)
2 sinωs

+
1
n

n−j∑
t=1

Xt+jεt +
1
n

n−j∑
t=1

Xtεt+j

+
1
n

n−j∑
t=1

εtεt+j +
δj,0εe

μ(n)

n
− δj,0σ

2

= A1j +A2j +A3j +A4j +A5j +
δj,0εe

μ(n)

n
− δj,0σ

2.(48)
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Notice that as n → ∞, k → ∞ such that k2/n → 0, nA1iA1j → 0 for
i, j = 0, . . . , k, Therefore, when i, j 
= 0, if k2/n→ 0, we obtain

σε
ij = lim

n→∞

{
E

(
nA3iA3j

)
+E

(
nA4iA4j

)
+ E

(
nA3iA4j

)
+ E

(
nA4iA3j

)
+ E

(
nA5iA5j

)}

= δi,jσ
4 + σ2

q∑
s=1

2ρ2
s cos (ωsi) cos (ωsj).

When i = j = 0,

σε
00 = (κ− 1)σ4 + σ2

q∑
s=1

2ρ2
s, (49)

and the result follows.

Proof of Theorem 3.3. Since
√
T (r̂ε

k,0 − rk,0) converges in distribu-
tion as stated by Lemma A.1, it follows the result of Serfling (1980) that
r̂ε

k,0 = rk,0 +O(1/
√
n). Define the following quantities:

• g(r̂ε
k,0) = (R̂

ε
k,n)−1r̂k = τ̂ k and g(rk,0) = (Rk)−1rk = τ k,

• Δk,i= (k × k)-matrix with ±ith off-diagonal elements equal to 1,
and 0 otherwise,

• ϑk,i= (k×1)-vector with ±ith element equal to 1, and 0 otherwise.

Note in particular that Δk,0 is the identity matrix and Δk,k is a zero
matrix. In the view of matrix derivative (see, e.g., Grandshteyn and
Ryzhik, 2000; Lau et al., 2002),

∂(R̂
ε
k,n)−1

∂r̂ε
i

= −(R̂
ε
k,n)−1Δk,i(R̂

ε
k,n)−1 and

∂r̂k

∂r̂ε
i

= ϑk,i, i = 0, 1, . . . , k. (50)

Thus, by the chain rule,

∂g(r̂ε
k,0)

∂r̂ε
i

∣∣∣∣
r̂εk,0=rk,0

=
{(

∂(R̂
ε
k,n)−1

∂r̂ε
i

)
r̂k + (R̂

ε
k,n)−1

(
∂r̂k

∂r̂ε
i

)}∣∣∣∣
r̂εk,0=rk,0

= −(Rk)−1Δk,i(Rk)−1rk + (Rk)−1ϑk,i

= −(Rk)−1(Δk,iτ k − ϑk,i).

(51)
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Applying the Taylor expansion,

√
n(τ̂ k − τ k) =

√
n
{
g(r̂ε

k,0) − g(rk,0)
}

=
√
n

k∑
i=0

∂g(r̂ε
k,0)

∂r̂ε
i

∣∣∣∣
r̂εk,0=rk,0

(r̂ε
i − ri) + o(1)

= −
k∑

i=0

(Rk)−1(Δk,iτ k − ϑk,i)
√
n(r̂ε

i − ri) + o(1)

= −(Rk)−1[τ k, (Δk,1τ k − ϑk,1), . . . , (Δk,kτ k − ϑk,k)]

×√
n(r̂ε

i − ri) + o(1).

(52)

Let ai = 0 for i < 0 and i > k. Note that

Δk,iτ k − ϑk,i = (a1+i, a2+i, . . . , ak+i)′ − (a1−i, a2−i, . . . , ak−i)′. (53)

Therefore, [τ k, (Δk,1τ k − ϑk,1), . . . , (Δk,kτ k − ϑk,k)] = Mk and the
result follows by Lemma A.1. �

Proof of Theorem 3.4. Let {β̂se
±iω̂k,s}q

s=1 denote the 2q roots of
â(z) which are closet to the unit circle. Applying the same arguments as
in Stoica et al. (1989) and taking into account the results on asymptotic
consistency and normality of τ̂ k and Theorem 2, we obtain that ω̂k,s is
close to ωs, s = 1, . . . , q, and β̂s is close to βs = 1 for sufficiently large n.
Hence, the following Taylor expansion holds under regularity conditions:

0 = Re{â(β̂se
iω̂k,s)} = Re{â(eiωs)} +

∂Re{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ωs

(β̂s − βs)

+
∂Re{â(βeiω)}

∂ω

∣∣∣∣
β=1,ω=ωs

(ω̂k,s − ωs) +O(1/n),

(54)

0 = Im{â(β̂se
iω̂k,s)} = Im{â(eiωs)} +

∂Im{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ωs

(β̂s − βs)

+
∂Im{â(βeiω)}

∂ω

∣∣∣∣
β=1,ω=ωs

(ω̂k,s − ωs) +O(1/n),

(55)



Regularized Autoregressive Multiple Frequency Estimation 165

where

∂Re{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ωs

= (cosωs, 2 cos 2ωs, . . . , k cos kωs)τ̂ k,

∂Re{â(βeiω)}
∂ω

∣∣∣∣
β=1,ω=ωs

= −(sinωs, 2 sin 2ωs, . . . , k sin kωs)τ̂ k,

∂Im{â(βeiω)}
∂β

∣∣∣∣
β=1,ω=ωs

= (sinωs, 2 sin 2ωs, . . . , k sin kωs)τ̂ k,

∂Im{â(βeiω)}
∂ω

∣∣∣∣
β=1,ω=ωs

= (cosωs, 2 cos 2ωs, . . . , k cos kωs)τ̂ k.

(56)

By Theorem 3.3, as k → ∞ and T → ∞ such that k2/n → 0,
√
n(τ̂ k −

τ k) converges in distribution and thus it follows the result of Serfling
(1980) that (τ̂ k − τ k) = O(1/

√
n). Also, by Theorem 1 of Stoica et

al. (1987), (τ k − τ ∗
k) = O(1/k2). Hence, we obtain

τ̂ k − τ ∗
k = (τ̂ k − τ k) + (τ k − τ ∗

k) = O(1/k2) +O(1/
√
n). (57)

Since k2/n→ 0, the dominant term in (54) is not affected if we replace
τ̂ k by τ ∗

k, which is

0 = Re{â(eiωs)} + θs(β̂s − βs) − ψs(ω̂k,s − ωs) +O(1/n),

0 = Im{â(eiωs)} + ψs(β̂s − βs) + θs(ω̂k,s − ωs) +O(1/n).
(58)

Since a∗(eiωs) = 0,

Re{â(eiωs)} = Re{â(eiωs) − a∗(eiωs)} = h′
s(τ̂ k − τ ∗

k),

Im{â(eiωs)} = Im{â(eiωs) − a∗(eiωs)} = g′
s(τ̂ k − τ ∗

k).
(59)

Substituting (59) into (58), we obtain

(ω̂k,s − ωs) =
ψsh

′
s − θsg

′
s

θ2
s + ψ2

s

(τ̂ k − τ ∗
k) +O(1/n). (60)

Equivalently,

(ω̂k,s − ωs) =
ψsh

′
s − θsg

′
s

θ2
s + ψ2

s

(τ̂ k − τ k) +
ψsh

′
s − θsg

′
s

θ2
s + ψ2

s

(τ k − τ ∗
k) +O(1/n).

(61)
By the result of Stoica et al. (1987) Theorem 1,

(τ k − τ ∗
k) = O(1/k2), θs/k = −1/2 +O(1/k), and ψs/k = O(1/k).

(62)
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Substituting (62) into (ψsh
′
s − θsg

′
s)(θ

2
s + ψ2

s)
−1(τ k − τ ∗

k), we obtain

ψsh
′
s − θsg

′
s

θ2
s + ψ2

s

(τ k − τ ∗
k) = O(1/k3). (63)

Therefore,

(ω̂k,s − ωs) =
ψsh

′
s − θsg

′
s

θ2
s + ψ2

s

(τ̂ k − τ k) +O(1/k3) +O(1/n), (64)

or equivalently,
√
n(ω̂k − ω) =

√
nFG(τ̂ k − τ k) +O(

√
n/k3) +O(1/

√
n). (65)

If k2 � cn1−δ, for 0 < δ < 2/3, then
√
n/k3 → 0, and O(

√
n/k3) → 0.

Also, as n→ ∞, O(1/
√
n) → 0, so we have

√
n(ω̂k − ω) =

√
nFG(τ̂ k − τ k). (66)

By Theorem 3.3,
√
n(τ̂ k − τ k) → N(0,R−1

k MkΣkM
′
kR

−1
k ), and thus,

if k3/2 � cn1−δ, for 0 < δ < 2/3 such that k2/n→ 0,
√
n(ω̂k − ω) → N(0,F GR−1

k M kΣkM
′
kR

−1
k G′F ′). � (67)


