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1 Introduction

Technological invention and information advancement have revolution-
ized scientific research and technological development. Many sophisti-
cated large-scale data sets have recently been collected, such as fMRI
brain images, microarrays, protemics, large-scale surveys, financial data,
and functional data. These new data sets and streams pose numerous
challenges to conventional statistical or data mining methods due to not
only the massive size, but also the large dimensionality.

Regularization or penalization is a technique aiming at obtaining well
behaved solutions to overparameterized estimation problems. Model se-
lection or variable selection, via penalization, is an appealing approach
for selecting significant variables and removing irrelevant ones, thus
achieving dimension reduction. Examples include the bridge regression
(Frank and Friedman, 1993), the nonnegative garrote (Breiman, 1995),
the least absolute shrinkage and selection operator (Lasso) (Tibshirani,
1996), SCAD (Fan, 1997; Fan and Li, 2001), and least angle regression
(LARS) (Efron, et al., 2004). The literature in this area is comprehen-
sive and there have been significant theoretical developments. A review
can be found in Bickel and Li (2001), Zhang, et al. (2010) and references
therein.

Computationally, the original LARS algorithm (Efron, et al., 2004)
for L1-penalization was developed for linear model estimation using the
quadratic loss. Rosset and Zhu (2007) further studied the piecewise lin-
ear regularized solution paths for differentiable and piecewise quadratic
loss functions with L1 penalty. Recently, the coordinate descent (CD) al-
gorithm was developed by Friedman, et al. (2007), Wu and Lange (2008),
and Friedman, et al. (2010) for penalized linear regression and penalized
logistic regression and was shown to gain computational superiority. It
is desirable to explore the extent to which penalization methods using
other types of loss functions can potentially benefit from the efficient
CD and LARS algorithms.

To broaden the scope of penalization methods, this paper investi-
gates the application of the CD algorithm to penalized Bregman diver-
gence (BD) estimation for a wider class of models, including not only
the generalized linear model, which has been well studied in the lit-
erature on penalized regression methods, but also the quasi-likelihood
model, which has been less developed. The development is expected to
be useful for other models. Furthermore, incorporating the weighted-L1

penalty into the CD algorithm allows extensions to certain nonconvex
penalties, such as the SCAD.
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The rest of the paper is organized as follows. Section 2 reviews
the CD algorithm for penalized linear regression with the L1 penalty.
Section 3 develops the CD algorithm for penalized BD estimation using
the weighted-L1 penalty. Section 4 evaluates the performances of the
CD and LARS algorithms in penalized quasi-likelihood estimation via
simulation study. Section 5 illustrates the penalized logistic regression
with real data applications.

2 Coordinate Descent for Penalized Linear

Regression

In this section, we will first briefly overview the CD algorithm for a
linear regression model,

Yi = β0 + XT
i β + εi, i = 1, . . . , n, (2.1)

where β0 and β = (β1, . . . , βp)T are unknown regression coefficients,
X i = (Xi1, . . . ,Xip)T is a p-variate predictor vector, Yi is a scalar re-
sponse variable, and the error εi satisfies E(εi | Xi) = 0. The penal-
ized weighted least-squares estimation of (β0,β), using the L1 penalty,
amounts to solving the optimization problem,

arg min
β0,β1,...,βp

{
1
2

n∑
i=1

wi(Yi − β0 − XT
i β)2 + λn

p∑
j=1

|βj |
}

, (2.2)

where {wi} are non-negative weights associated with the part of quadratic
loss functions, and λn is a positive tuning constant governing the amount
of penalization. The conventional Lasso penalized linear regression esti-
mation,

arg min
β0,β1,...,βp

{
1
n

n∑
i=1

(Yi − β0 − XT
i β)2 + λn

p∑
j=1

|βj |
}

,

corresponds to the use of wi ≡ 2/n or other non-negative constants.
Computationally, the CD algorithm solves (2.2) in an iterative way.

Suppose we are given some initial estimates {β̃k}p
k=0 of {βk}p

k=0. Denote
by Ỹi = β̃0 +

∑p
k=1 Xikβ̃k the fitted responses and by r̃i = Yi − Ỹi,

i = 1, . . . , n, the residuals. In the CD algorithm, for each coordinate
index j = 1, . . . , p, the CD solution of βj is

β̂j =
S(

∑n
i=1 wiXij{Yi − Ỹ

(−j)
i }, λn)∑n

i=1 wiX
2
ij

, (2.3)
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where Ỹ
(−j)
i = β̃0 +

∑
k:k �=j Xikβ̃k, and S(z, γ) = sign(z)(|z| − γ)+ is

called the soft thresholding operator (Donoho and Johnstone, 1994).
We can observe that

n∑
i=1

wiXij{Yi − Ỹ
(−j)
i } =

n∑
i=1

wiXij(r̃i + Xij β̃j)

=
n∑

i=1

wir̃iXij +
( n∑

i=1

wiX
2
ij

)
β̃j ,

thus (2.3) becomes

β̂j =
S(

∑n
i=1 wir̃iXij + (

∑n
i=1 wiX

2
ij)β̃j , λn)∑n

i=1 wiX2
ij

. (2.4)

Then the residual r̃i due to the update in the estimate of βj is updated
by

r̂i = r̃i + Xij(β̃j − β̂j), i = 1, . . . , n.

Note that for any given value β̂ of β, the optimal solution β̂0 for the
intercept β0 satisfies

β̂0 =
∑n

i=1 wi(Yi − XT
i β̂)∑n

i=1 wi
. (2.5)

The solution of (2.2) can be obtained via cycling through the parameters
in (2.4)–(2.5) and updating each in turn. As the algorithm completely
avoids the large-scale matrix operations, the algorithm enjoys the com-
putational simplicity, speed and stability. Moreover, the computational
cost increases only linearly with p, making the algorithm particularly
attractive for high-dimensional problems. Issues on the convergence of
the CD algorithm can be found in for example, Tseng (2001) and Wu
and Lange (2008).

2.1 Extension to Other Penalty Functions

The CD algorithm for the penalized least-squares estimation in (2.2)
can be extended in several other ways. One direction is to consider
penalty functions instead of the L1 penalty. For example, consider the
optimization problem,

arg min
β0,β1,...,βp

{
1
2

n∑
i=1

wi(Yi − β0 − XT
i β)2 + λn

p∑
j=1

tj|βj |
}

, (2.6)
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using the weighted-L1 penalty, λn
∑p

j=1 tj |βj |, where {tj} are non-negative
weights associated with the L1 penalty functions. The above CD proce-
dure continues to work for solving (2.6). The only change to be made is
to replace λn in (2.4) by λntj.

For non-convex penalties, such as the SCAD penalty, Pλ(|β|) =
λp

λ
(|β|), which was proposed by Fan (1997) and whose theoretical prop-

erties were demonstrated in Fan and Peng (2004), the first order deriva-
tive of p

λ
(β) is given as

p′
λ
(β) = I(β ≤ λ) +

(aλ − β)+
(a − 1)λ

I(β > λ), for some a > 2, and β > 0,

and the penalized estimation is formulated as

arg min
β0,β1,...,βp

{
1
2

n∑
i=1

wi(Yi − β0 − XT
i β)2 +

p∑
j=1

Pλn(|βj |)
}

. (2.7)

In this case, the non-convexity of the SCAD penalty complicates the op-
timization for (2.7) and the CD algorithm may not be applied similarly;
moreover, the convergence of the algorithm may not be guaranteed ei-
ther. In a special situation where wi = 2/n and

∑n
i=1 X2

ij = n/2, the
CD iterative solution for βj has an explicit expression,

β̂j = S∗
( n∑

i=1

wiXij{Yi − Ỹ
(−j)
i }, λn

)
,

where

S∗(x, λ) =

⎧⎪⎨
⎪⎩

sign(x)(|x| − λ)+, if |x| ≤ 2λ;
(a−1)x−sign(x)aλ

(a−2) , if 2λ < |x| ≤ aλ;

x, if |x| > aλ,

is the SCAD thresholding operator. In general, a local linear approx-
imation (using a Taylor series expansion) can be made to the SCAD
penalty. After that, the CD algorithm with the weighted-L1 penalty
can be applied to obtain the solution.

3 Coordinate Descent for Penalized BD
Estimation

In this section, we extend the CD algorithm for the penalized least-
squares estimation of the linear regression model (2.1) to the general
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regression model,

E(Yi | Xi) = F−1(β0 + XT
i β), i = 1, . . . , n, (3.8)

where F is a known link function. For instance, an identity link F (μ) = μ
corresponds to the linear regression model (2.1); a logit link F (μ) =
log( μ

1−μ) is utilized in the logistic regression for binary responses; a log
link F (μ) = log(μ) is used in Poisson regression of count responses.

For estimation purpose, the quadratic loss (y−μ)2, as an error mea-
sure used in (2.2), is not suitable for binary responses. Thus, we first
discuss a class of loss functions Q(y, μ) for estimating parameters in
model (3.8) with non-Gaussian response variables.

3.1 Bregman Divergence (BD) as the Loss Function

For a given concave function q, Bregman (1967) introduced a device for
constructing a bivariate function,

Q(ν, μ) = −q(ν) + q(μ) + (ν − μ)q′(μ). (3.9)

Conversely, for a given Q-loss, Zhang, et al. (2009) provided necessary
and sufficient conditions for Q being a BD, and in the BD case derived
an explicit formula for solving the generating q-function. Applying this
inverse approach from Q to q, they illustrated that the quadratic func-
tion, the (negative) quasi-likelihood function (Wedderburn, 1974; Mc-
Cullagh, 1983), the Kullback-Leibler divergence (or the deviance loss)
for the exponential family of probability functions, and many margin-
based loss functions, such as the misclassification loss, the hinge loss for
the support vector machine (Vapnik, 1996), the exponential loss used in
AdaBoost (Hastie, Tibshirani and Friedman, 2001) are BD.

As an illustration, for a binary response variable, the Bernoulli de-
viance loss

Q(Y, μ) = −2{Y log(μ) + (1 − Y ) log(1 − μ)} (3.10)

corresponds to q(μ) = −2{μ log(μ)+(1−μ) log(1−μ)}; the Exponential
loss

Q(Y, μ) = exp[−(Y − .5) log{μ/(1 − μ)}] (3.11)

corresponds to q(μ) = 2{μ(1 − μ)}1/2.
For another illustration, consider the quasi-likelihood function Q

which relaxes the distributional assumption on a random variable Y
via the specification, ∂Q(Y, μ)/∂μ = (Y − μ)/V (μ), where var(Y | X =
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x) = σ2V (m(x)) for a nuisance parameter σ2 > 0, a known continuous
function V (·) > 0 and m(x) = E(Y | X = x). Zhang, et al. (2009) veri-
fied that the (negative) quasi-likelihood function belongs to the Bregman
divergence and derived the generating q-function,

q(μ) =
∫ μ

μ0

s − μ

V (s)
ds, (3.12)

where μ0 is a finite constant such that the integral is well-defined.

3.2 Penalized BD Estimation via Coordinate Descent

For the general regression model (3.8), the penalized BD estimation of
(β0,β) can be phrased as

arg min
β0,β1,...,βp

{
1
n

n∑
i=1

Q(Yi, F
−1(β0 + XT

i β)) + λn

p∑
j=1

tj|βj |
}

. (3.13)

Penalized BD estimation raises two issues. First, whether the es-
timator in (3.13) is variable selection consistent and enjoys the oracle
property? Second, what is the effective method of solving (3.13)? The
first theoretical issue has been investigated in Zhang, et al. (2010) for
suitably chosen weights {tj}, when the dimension p diverges with n at a
lower rate. They proposed a penalized componentwise regression (PCR)
method for selecting weights,

t̂j = |β̂PCR
j |−1, j = 1, . . . , p,

where β̂PCR
j minimizes the criterion function,

	PCR
n,j (β) =

1
n

n∑
i=1

Q(Yi, F
−1(Xijβ)) + κn|β|,

with some sequence κn > 0. Jiang and Zhang (2010) extended the
results to high-dimensional cases where p grows nearly exponentially
with n, and demonstrated that the weight selection method via PCR
outperforms the componentwise regression (CR) method,

t̂j = |β̂CR
j |−1, j = 1, . . . , p,

where β̂CR
j minimizes the criterion function,

	CR
n,j (β) =

1
n

n∑
i=1

Q(Yi, F
−1(Xijβ)).
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For the second issue, Zhang, et al. (2010) and Jiang and Zhang (2010)
modified the LARS algorithm, but the LARS algorithm is computation-
ally intensive especially when p is large.

In this paper, we intend to explore the CD method for penalized
BD estimation. We now describe how to extend the CD algorithm from
solving (2.6) to solving (3.13). Note that the major difference between
the two criterions arises in the part of loss functions. This motivates us
to approximate the part of Q-loss by some weighted form of quadratic
loss. We first introduce some necessary notation. Define qj (y; θ) =
(∂j/∂θj)Q(y, F−1(θ)), j = 1, 2, where θ = F (μ). We use Ci or C to
denote some generic finite constant. Then by a Taylor series expansion of
Q(Yi, F

−1(β0 +XT
i β)) around some initial estimates {β̃k}p

k=0, it follows
that

Q(Yi, F
−1(β0 + XT

i β))
≈ Q(Yi, F

−1(β̃0 + XT
i β̃))

+q1i{(β0 + XT
i β) − (β̃0 + XT

i β̃)}
+2−1q2i{(β0 + XT

i β) − (β̃0 + XT
i β̃)}2

= 2−1q2i{(β̃0 + XT
i β̃) − (β0 + XT

i β)}2

−q1i{(β̃0 + XT
i β̃) − (β0 + XT

i β)} + Ci

= 2−1q2i

[
{(β̃0 + XT

i β̃) − (β0 + XT
i β)}2

−2q1i/q2i{(β̃0 + XT
i β̃) − (β0 + XT

i β)} + (q1i/q2i)
2
]

+ Ci

= 2−1q2i [{(β̃0 + XT
i β̃) − (β0 + XT

i β)} − q1i/q2i ]
2 + Ci,

where q1i = q1(Yi; β̃0 + XT
i β̃) and q2i = q2(Yi; β̃0 + XT

i β̃). Hence

1
n

n∑
i=1

Q(Yi, F
−1(β0 + XT

i β)) ≈ 1
2

n∑
i=1

( s̃i

n

)
(Z̃i − β0 − XT

i β)2 + C,

where

s̃i = q2(Yi; β̃0 + XT
i β̃), (3.14)

Z̃i = (β̃0 + XT
i β̃) − q1(Yi; β̃0 + XT

i β̃)

q2(Yi; β̃0 + XT
i β̃)

, (3.15)

and C is some constant not depending on the parameters (β0,β). Thus
the minimization problem (3.13) can be approximated by

arg min
β0,β1,...,βp

{
1
2

n∑
i=1

w̃i(Z̃i − β0 − XT
i β)2 + λn

p∑
j=1

tj|βj |
}

, (3.16)



Penalized Penalized BD via CD 133

with weights w̃i = s̃i/n and pseudo-responses Z̃i, both depending on the
parameter values {β̃k}.

The resemblance of (3.16) to (2.6) enables us to employ the CD al-
gorithm to solve (3.16). In practical implementation of (3.16), we need to
calculate q2(y; θ) associated with s̃i defined in (3.14) and q1(y; θ)/q2(y; θ)
associated with Z̃i defined in (3.15). Examples 3.1–3.3 below illustrate
some concrete derivations, where θ̃i = β̃0 + XT

i β̃.

Example 3.1. For Gaussian response variables, using the quadratic
loss Q(y, μ) = (y − μ)2 and identity link, we obtain

q1(y; θ) = −2(y − θ), q2(y; θ) = 2,
q1(y; θ)
q2(y; θ)

= −(y − θ).

Then
s̃i = 2, Z̃i = θ̃i + (Yi − θ̃i) = Yi.

Example 3.2. For Bernoulli response variables, using the logit link,
where μ = 1/{1 + exp(−θ)}, we obtain

• with the deviance loss (3.10),

q1(y; θ) = −2(y − μ), q2(y; θ) = 2μ(1 − μ),
q1(y; θ)
q2(y; θ)

= − (y − μ)
μ(1 − μ)

.

Then for μ̃i = 1/{1 + exp(−θ̃i)},

s̃i = 2μ̃i(1 − μ̃i), Z̃i = θ̃i +
Yi − μ̃i

μ̃i(1 − μ̃i)
.

• With the exponential loss (3.11),

q1(y; θ) = −e−(y−1/2)θ(y − 1/2), q2(y; θ) = e−(y−1/2)θ/4 > 0,
q1(y; θ)
q2(y; θ)

= −4(y − 1/2) = 2 − 4y.

Then
s̃i = q2(Yi; θ̃i), Z̃i = θ̃i − (2 − 4Yi).
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Example 3.3. For count response variables, using the quasi-likelihood
generated by the q-function in (3.12) with V (x) = x and log link, we
obtain

q1(y; θ) = −(y − μ), q2(y; θ) = μ,
q1(y; θ)
q2(y; θ)

= −(y − μ)
μ

= 1 − y/μ,

where μ = exp(θ). Then for μ̃i = exp(θ̃i),

s̃i = μ̃i, Z̃i = θ̃i + (1 − Yi/μ̃i).

Remark 3.1. Note that using the quadratic loss and identity link
in Example 3.1, the approximate criterion (3.16) agrees with the target
criterion (3.13). For other loss and link functions, (3.16) serves as an
approximation to (3.13).

4 Simulation Study

For comparing the speed and accuracy between the CD and LARS algo-
rithms, Wu and Lange (2008) have made the comparison for penalized
linear regression with continuous responses, using the convex L1 and L2

penalties. Thus for the simulation study in this paper, we will focus on
comparing the algorithms for the penalized quasi-likelihood estimation
with overdispersed Poisson responses, using both the convex L1 penalty,
weighted-L1 penalty, and a non-convex SCAD penalty. For each cycle of
the CD algorithm, the stopping criterion agrees with that of the LARS
algorithm: maxj=0,1,...,p |β̃old

j − β̃new
j | < 10−3, the maximum number of

iterations is 40, and maxj=0,1,...,p |β̃old
j | < 104. All computations are per-

formed using Matlab 7.8 on Windows Vista machine with Core 2 duo
3.0 GHz CPU and 4GB memory.

4.1 Overdispersed Poisson Responses

We generate overdispersed Poisson counts Yi satisfying var(Yi | X i =
xi) = 2m(xi), where m(x) = E(Y | X = x). In the predictor Xi =
(Xi1,Xi2, . . . ,Xip)T , we consider

low-dimensional case: n = 200, p = n/8, n/2, n − 10,
high-dimensional case: n = 50, p = 2n, 4n, 8n,
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respectively, and take Xi1 = i/n− 0.5. For j = 2, . . . , p, Xij = Φ(Zij)−
0.5, where Φ is the standard normal distribution function, and (Zi2, . . . ,
Zip)T ∼ N(0, ρ1p−11T

p−1 + (1 − ρ)Ip−1), with 1d a d × 1 vector of ones
and Id a d × d identity matrix. Thus (Xi2, . . . ,Xip) are marginally
Uniform(−0.5, 0.5) random variables and mutually correlated if ρ �= 0.
The link function is log{m(x)} = β0 + xT β, where β0 = 5 and β =
(2, 2, 0, 0, . . . , 0)T .

For illustrative purpose, 5 procedures for penalized estimators are
compared: (I) the SCAD penalty, with an accompanying parameter
a = 3.7; (II) the L1 penalty; (III) the weighted-L1 penalty with weights
selected by the CR method; (IV) the weighted-L1 penalty with weights
selected by the PCR method; (V) the oracle estimator using the set of
significant variables. For method (I), the SCAD penalty can be locally
approximated by a linear function, followed by applying the CD and
LARS algorithms. Tables 1-2 summarize the CD and LARS algorithms
for the penalized quasi-likelihood estimates of parameters by means of
Example 3.3.

Table 1: (CD algorithm for penalized quasi-likelihood estima-
tion) Simulation results, with dependent predictors. ρ = 0.2.

time Variable Selection

(n, p) TE(β) Method (sec) ‖β̂ − β‖1 TE(β̂) #CZ (std) #CNZ (std)
(200, 25) 0.9950 SCAD 2.34 0.1476 1.0391 18.23 (5.4) 3.00 (0.0)

L1 1.86 0.2152 1.0566 15.10 (5.2) 3.00 (0.0)
w. L1; CR 5.71 0.0908 1.0221 20.75 (3.5) 3.00 (0.0)
w. L1; PCR 40.22 0.0853 1.0199 20.91 (3.5) 3.00 (0.0)
Oracle 0.08 0.0522 1.0129 23.00 3.00

(200, 100) 1.0108 SCAD 12.76 0.1719 1.0586 93.45 (10.3) 3.00 (0.0)
L1 10.91 0.2962 1.1007 88.16 (14.4) 3.00 (0.0)
w. L1; CR 25.90 0.0968 1.0338 95.86 (3.5) 3.00 (0.0)
w. L1; PCR 168.56 0.0817 1.0306 96.07 (3.6) 3.00 (0.0)
Oracle 0.07 0.0503 1.0250 98.00 3.00

(200, 190) 1.0144 SCAD 65.58 0.1777 1.0705 183.08 (11.7) 3.00 (0.0)
L1 52.93 0.2842 1.1218 179.74 (15.3) 3.00 (0.0)
w. L1; CR 87.20 0.1029 1.0406 185.17 (3.6) 3.00 (0.0)
w. L1; PCR 524.69 0.0889 1.0345 185.52 (4.3) 3.00 (0.0)
Oracle 0.07 0.0482 1.0279 188.00 3.00

(50, 100) 1.0108 SCAD 17.70 0.3985 1.2182 89.18 (3.9) 3.00 (0.0)
L1 12.37 0.5285 1.3324 87.68 (5.0) 3.00 (0.0)
w. L1; CR 28.56 0.3445 1.2449 93.02 (6.0) 3.00 (0.0)
w. L1; PCR 225.55 0.2923 1.1943 93.70 (5.9) 3.00 (0.0)
Oracle 0.06 0.0951 1.0698 98.00 3.00

(50, 200) 0.9947 SCAD 21.89 0.5514 1.2737 185.17 (7.2) 3.00 (0.0)
L1 15.56 0.7525 1.4835 182.24 (12.1) 3.00 (0.0)
w. L1; CR 42.77 0.4502 1.5213 192.68 (8.9) 3.00 (0.0)
w. L1; PCR 325.25 0.3442 1.2159 193.06 (7.8) 3.00 (0.0)
Oracle 0.06 0.1044 1.0576 198.00 3.00

(50, 400) 1.013 SCAD 34.24 0.6773 1.3493 379.66 (9.9) 3.00 (0.0)
L1 24.83 0.8532 1.6077 378.21 (13.6) 3.00 (0.0)
w. L1; CR 73.35 0.5832 2.2824 390.39 (9.1) 2.98 (0.1)
w. L1; PCR 548.72 0.4918 2.1782 391.99 (7.0) 2.98 (0.1)
Oracle 0.06 0.1029 1.0789 398.00 3.00
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Table 2: (LARS algorithm for penalized quasi-likelihood esti-
mation) Simulation results, with dependent predictors. ρ = 0.2.

time Variable Selection

(n, p) TE(β) Method (sec) ‖β̂ − β‖1 TE(β̂) #CZ (std) #CNZ (std)
(200, 25) 0.9950 SCAD 18.20 0.1476 1.0390 17.86 (5.7) 3.00 (0.0)

L1 19.84 0.2147 1.0563 14.71 (5.4) 3.00 (0.0)
w. L1; CR 24.61 0.0908 1.0221 20.67 (3.6) 3.00 (0.0)
w. L1; PCR 173.05 0.0859 1.0200 20.74 (3.8) 3.00 (0.0)
Oracle 0.08 0.0522 1.0129 23.00 3.00

(200, 100) 1.0108 SCAD 118.72 0.1715 1.0584 93.15 (10.6) 3.00 (0.0)
L1 129.72 0.2963 1.1006 87.55 (15.2) 3.00 (0.0)
w. L1; CR 164.14 0.0968 1.0338 95.68 (3.8) 3.00 (0.0)
w. L1; PCR 1024.78 0.0804 1.0304 96.00 (3.8) 3.00 (0.0)
Oracle 0.08 0.0503 1.0250 98.00 3.00

(200, 190) 1.0144 SCAD 1281.72 0.1774 1.0703 182.68 (12.4) 3.00 (0.0)
L1 1170.75 0.2844 1.1217 179.15 (16.2) 3.00 (0.0)
w. L1; CR 1358.57 0.1052 1.0409 184.81 (4.2) 3.00 (0.0)
w. L1; PCR 6707.61 0.0901 1.0348 185.32 (4.5) 3.00 (0.0)
Oracle 0.07 0.0482 1.0279 188.00 3.00

(50, 100) 1.0108 SCAD 362.40 0.3980 1.2177 88.80 (3.9) 3.00 (0.0)
L1 216.17 0.5209 1.3299 87.39 (4.8) 3.00 (0.0)
w. L1; CR 282.21 0.3447 1.2452 92.87 (6.0) 3.00 (0.0)
w. L1; PCR 2227.88 0.2943 1.1950 93.44 (6.2) 3.00 (0.0)
Oracle 0.06 0.0951 1.0698 98.00 3.00

(50, 200) 0.9947 SCAD 481.37 0.5720 1.2868 183.97 (7.9) 3.00 (0.0)
L1 265.61 0.7284 1.4690 182.46 (7.8) 3.00 (0.0)
w. L1; CR 300.29 0.4372 1.5113 192.79 (6.8) 3.00 (0.0)
w. L1; PCR 2460.30 0.3463 1.2276 193.06 (6.4) 3.00 (0.0)
Oracle 0.06 0.1044 1.0576 198.00 3.00

(50, 400) 1.013 SCAD 602.67 0.6879 1.3522 378.71 (9.7) 3.00 (0.0)
L1 320.28 0.8240 1.6084 379.61 (8.6) 3.00 (0.0)
w. L1; CR 367.40 0.5844 2.2840 390.25 (8.9) 2.98 (0.1)
w. L1; PCR 3009.60 0.5196 1.9658 391.28 (8.3) 2.99 (0.1)
Oracle 0.06 0.1029 1.0789 398.00 3.00

First, to examine the effect of penalized regression estimates on pa-
rameter estimation, we generate 100 training sets of size n. The tun-
ing constants λn for the training set in each simulation for methods
(I)–(II) are selected via a grid search separately to minimize the (nega-
tive) quasi-likelihood on a test set of size equal to that of the training
set; λn and κn for methods (III) and (IV) are searched on a surface
of grid points. For each training set, the test error (TE) is calculated
by

∑L
�=1 Q(y

�
, m̂(x

�
))/L, at a sequence {(x

�
, y

�
)}L=5000

�=1 randomly gen-
erated. Columns titled TE(β) and TE(β̂) refer to the TE calculated
using the true and estimated parameters. To further assess the accu-
racy of the penalized estimates, the average of ‖β̂ − β‖1 across those
100 training sets is obtained in the 5th column. It is clearly seen that if
the true model coefficients are sparse, the penalized estimators preform
reasonably well.

Second, to study the utility of penalized estimators in revealing the
effects in variable selection under quasi-likelihood, Tables 1-2 list a col-
umn titled CZ on the average total number of coefficients which are
correctly estimated to be zero when the true coefficients are zero, and a
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column titled CNZ on the average total number of coefficients which are
correctly estimated to be nonzero when the true coefficients are nonzero.
The standard deviations of the corresponding estimations across train-
ing sets are given in brackets. Overall, the penalized estimators help
yield a sparse solution and build a parsimonious model.

In summary, the CD and LARS algorithms offer comparable perfor-
mance in sparsity recovery. But the former gains computational supe-
riority. See the column titled “time” (in seconds) which gives the total
time of each penalized method in each combination of (n, p). The SCAD
and weighted-L1 penalties outperform the L1 in terms of regression esti-
mation and variable selection. As expected, the oracle estimator, which
is practically infeasible optimal, performs better than the other four
penalized estimators.

5 Real Data Application

To further illustrate the usefulness of the CD and LARS algorithms in
penalization BD for regression and classification, we consider the Ar-
rhythmia Data Set, which is publicly available at the UCI Machine
Learning Repository; see
http://archive.ics.uci.edu/ml/datasets/Arrhythmia.

The Arrhythmia dataset (Güvenir, et al., 1997) consists of 452 pa-
tient records in the diagnosis of cardiac arrhythmia. Each record con-
tains 279 clinical measurements, from electrocardiography signals and
some other information such as sex, age, and weight, along with the
decision of an expert cardiologist. In the data, class 01 refers to normal
electrocardiography, class 02–class 15 each refer to a particular type of
arrhythmia, and class 16 refers to the unclassified rest.

We intend to predict whether a patient can be categorized as ei-
ther normal or abnormal electrocardiography. After deleting missing
values and class 16, the remaining 430 patients with 257 attributes are
used in the classification. To evaluate the performance of the penalized
estimates of model parameters in logit{P (Y = 1 | X1, . . . ,X257)} =
β0 +

∑257
j=1 βjXj , we randomly split the data into a training set and a

test set in the ratio 2 : 1. For each training set, the tuning constant is
selected by minimizing a 3-fold cross validated estimate of the misclassi-
fication rate; λn and κn for the penalized componentwise regression are
searched on a surface of grid points. We calculate MMR, the mean of the
misclassification rates and the average number of selected variables over
100 random splits. Results using the CD and LARS algorithms are given
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in Table 3 and Table 4 respectively. Again, both algorithms deliver com-
parable results, and the CD algorithm (about 1 hour) is faster than the
LARS algorithm (about 38 hours). It is seen that the penalized classifier
using the deviance loss and that using the exponential loss have similar
values of misclassification rates. In contrast, the non-penalized classifiers
select all attributes, yielding much higher misclassification rates.

Table 3: (CD algorithm) Arrhythmia data: Mean misclassification
rate and the average number of selected variables. MMR: mean of the
misclassification rates.

Loss Method MMR # Selected Variables
Deviance SCAD 0.2506 13.96

L1 0.2363 43.65
weighted L1; CR 0.2187 39.09
weighted L1; PCR 0.2243 25.05
non-penalized 0.4057 257.00

Exponential SCAD 0.2624 12.98
L1 0.2361 41.87
weighted L1; CR 0.2151 34.77
weighted L1; PCR 0.2274 17.33
non-penalized 0.4326 257.00

Table 4: (LARS algorithm) Arrhythmia data: Mean misclassification
rate and the average number of selected variables. MMR: mean of the
misclassification rates.

Loss Method MMR # Selected Variables
Deviance SCAD 0.2560 19.40

L1 0.2366 43.89
weighted L1; CR 0.2304 40.11
weighted L1; PCR 0.2299 27.53
non-penalized 0.4057 257.00

Exponential SCAD 0.2639 14.27
L1 0.2410 43.52
weighted L1; CR 0.2310 39.03
weighted L1; PCR 0.2330 20.43
non-penalized 0.4326 257.00
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