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Abstract. In some long term studies, a series of dependent and possi-
bly truncated lifetime data may be observed. Suppose that the lifetimes
have a common continuous distribution function F . A popular stochastic
measure of the distance between the density function f of the lifetimes
and its kernel estimate fn is the integrated square error (ISE). In this
paper, we derive a central limit theorem for the integrated square er-
ror of the kernel density estimators in the left-truncation model. It is
assumed that the lifetime observations form a stationary strong mixing
sequence. A central limit theorem (CLT) for the ISE of the kernel haz-
ard rate estimators is also presented.
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1 Introduction

In medical follow-up or in engineering life testing studies, one may not
be able to observe the variable of interest, referred to hereafter as the
lifetime. Among the different forms in which incomplete data appear,
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right censoring and left-truncation are two common ones. Left trunca-
tion may occur if the time origin of the lifetime precedes the time origin
of the study. Only subjects that fail after the start of the study are being
followed, otherwise they are left truncated. Woodroofe (1985) reviews
examples from astronomy and economy where such data may occur.
In the left-truncation model, if the lifetime observations in the sample
are assumed to be mutually independent, the nonparametric product-
limit (PL) estimator of survival function has been studied extensively
by many authors during recent years, such as Woodroofe (1985), Chao
and Lo (1988), Keiding and Gill (1990), Stute (1993) and others. Let
X1,X2, . . . ,XN be a sequence of the lifetime variables which may not
be mutually independent, but have a common unknown distribution
function (d.f.) F with a density function f = F ′. Let T1,T2, . . . ,TN

be a sequence of independent and identically distributed (i.i.d) random
variables (rv’s) with continuous d.f. G; they are also assumed to be
independent of Xi’s. In the left-truncation model, (Xi,Ti) is observed
only when Xi ≥ Ti. Let (X1, T1), . . . , (Xn, Tn) be the actually observed
sample (i.e., Xi ≥ Ti), and put γ := P(T1 ≤ X1) > 0, where P is the
absolute probability (related to the N-sample). Note that n itself is
a r.v. and that γ can be estimated by n/N (although this estimator
cannot be calculated since N is unknown). Assume, without loss of gen-
erality, that Xi and Ti are nonnegative random variables, i = 1, . . . ,N.
For any d.f. L denote the left and right endpoints of its support by
aL = inf{x : L(x) > 0} and bL = sup{x : L(x) < 1}, respectively. Then
under the current model, as discussed by Woodroofe (1985), we assume
that aG ≤ aF and bG ≤ bF . Define

C(x) = P(T1 ≤ x ≤ X1|T1 ≤ X1)
= P(T1 ≤ x ≤ X1) = γ−1G(x)(1 − F (x)), (1)

where P(.) = P(.|n) is the conditional probability (related to the n-
sample) and consider its empirical estimate

Cn(x) = n−1
n∑

i=1

I(Ti ≤ x ≤ Xi), (2)

where I(.) is the indicator function. Then the PL estimator F̂n of F is
given by

F̂n(x) = 1 −
∏

Xi≤x

(
1 − 1

nCn(Xi)

)
. (3)
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The cumulative hazard function Λ(x) is defined by

Λ(x) =
∫ x

0

f(u)
1 − F (u)

du. (4)

Let

F ∗(x) = P(X1 ≤ x|T1 ≤ X1) = P(X1 ≤ x) = γ−1

∫ x

0
G(u)dF (u), (5)

be the d.f. of the observed lifetimes. Its empirical estimator is given by

F ∗
n(x) = n−1

n∑
i=1

I(Xi ≤ x).

On the other hand, the d.f. of the observed Ti’s is given by

G∗(x) = P(T1 ≤ x|T1 ≤ X1) = P(T1 ≤ x) = γ−1

∫ ∞

0
G(x ∧ u)dF (u),

and is estimated by

G∗
n(x) = n−1

n∑
i=1

I(Ti ≤ x).

It then follows from (1) and (2) that

C(x) = G∗(x) − F ∗(x), Cn(x) = G∗
n(x) − F ∗

n(x−). (6)

Finally (1), (4) and (5) give

Λ(x) =
∫ x

0

dF ∗(u)
C(u)

.

Hence, a natural estimator of Λ is given by

Λ̂n(x) =
∫ x

0

dF ∗
n(u)

Cn(u)
=

n∑
i=1

I(Xi ≤ x)
nCn(Xi)

,

which is the usual so-called Nelson-Aalen estimator of Λ. Moreover, Λ̂n

is the cumulative hazard function of the PL-estimator F̂n defined in (3).
We consider the well-known kernel estimator for f as

fn(t) =
1
hn

∫ ∞

0
K

(
t − x

hn

)
dF̂n(x),
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where K is a smooth kernel function and hn is a sequence of positive
bandwidths tending to zero. As an estimator for λ, the hazard rate
function of the lifetimes, we shall consider

λn(t) =
1
hn

∫ ∞

0
K

(
t − x

hn

)
dΛ̂n(x).

For the case in which the lifetime observations are mutually indepen-
dent, the estimation for density and hazard rate has been studied exten-
sively by many authors during recent years, for example, Uzunoḡullari
and Wang (1992), Gijbels and Wang (1993), Sun (1997), Sun and Zhou
(1998), and Arcones and Giné (1995). However, for the case that trun-
cated observations are dependent, there are preciously few results avail-
able. Under strong mixing condition, Sun and Zhou (2001), established
the uniform consistency and asymptotic normality of the fn and λn.
Fakoor and Jomhoori (2011) applied the strong Gaussian approximation
technique to prove the uniform consistency of kernel density estimators
with truncated strong mixing data.

It is well known that the most widely accepted stochastic measure
of the global performance of a kernel estimator is its integrated square
error, defined by,

ISE(fn) =
∫

(fn(t) − f(t))2w(t)dt,

where w is a nonnegative weighted function. The corresponding deter-
ministic measure of the accuracy of fn is the mean integrated square
error given by

MISE(fn) =
∫

E (fn(t) − f(t))2 w(t)dt.

Integrated square error is often used in simulation studies to mea-
sure the performance of density estimators. It is also used implicitly in
adaptive constructions of estimators, when the aim is to minimize mean
integrated square error in some sense. Both these applications involve
the assumption that integrated square error is somehow close to mean
integrated square error. The central limit theorem for ISE provides an
explicit description of the order of this closeness, by showing that

c(n){ISE(fn) − MISE(fn)} → N(0, 1),

in distribution as n → ∞, where c(n), n ≥ 1 is a sequence of positive con-
stants diverging to infinity. The asymptotic behavior of ISE has been
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studied extensively by many authors. Bickel and Rosenblatt (1973) em-
ployed the uniform strong approximation of the empirical process by the
Brownian bridge to obtain a central limit theorem for the ISE of the
Rosenblat-Parzen kernel estimators of a density function. Hall (1984)
derived central limit theorem for the ISE of density estimator using
martingale theory and U-statistics approach. In the right censored case,
Yang (1993) employed the martingale techniques by Gill (1983) to get
a central limit theorem for the ISE of the product-limit kernel density
estimators. Zhang (1996) obtained a simple asymptotic expression for
the mean integrated square error of the kernel estimator fn, and then
derived an asymptotically optimal bandwidth for fn. Zhang (1998) ap-
plied the technique of strong approximation to establish an asymptotic
expansion for ISE of the kernel density estimate fn. Sun and Zheng
(1999) proved a central limit theorem for the ISE of the kernel haz-
ard rate estimators and also presented an asymptotic representation of
the MISE for kernel hazard rate estimators in left truncated and right
censored data. For the case that censored observations are dependent,
Jomhoori et al. (2007), (2011) studied the central limit theorem for ISE
of kernel hazard rate and kernel density estimators.

However, for the case that truncated observations are dependent,
there are no results available. The main aim of this paper is to derive a
central limit theorem for ISE of kernel density and kernel hazard rate
estimators when the truncated data exhibit some kind of dependence.
As a corollory we obtain CLT for Hellinger distance.

Among various mixing conditions used in the literature, strong mix-
ing, whose definition is given below is reasonably weak and has many
practical applications. Many stochastic processes and time series are
known to be strong mixing. In particular, the stationary autoregressive-
moving average (ARMA) processes, which are widely applied in time
series analysis, are strong mixing with exponential mixing coefficient,
i.e., α(n) = e−νn for some ν > 0.

Definition 1.1. Let {Xi, i ≥ 1} denote a sequence of random variables.
Given a positive integer m, set

α(m) = sup
k≥1

{|P (A ∩ B) − P (A)P (B)| ; A ∈ Fk
1 , B ∈ F∞

k+m}, (7)

where Fk
i denote the σ-field of events generated by {Xj ; i ≤ j ≤ k}.

The sequence is said to be strongly mixing (α-mixing) if the mixing
coefficient α(m) → 0 as m → ∞.



50 Fakoor et al.

For such mixing condition, the following basic inequality (see, Kim,
1994) is well known. Let ξ and η be measurable with respect to Fk

1 and
F∞

k+n, respectively. Then, under α-mixing condition,

|E(ξη) − E(ξ)E(η)| ≤ 2π[α(n)]1−(1/p+1/q)E1/p|ξ|pE1/q|η|q, (8)

where E|ξ|p, E|η|q < ∞ for 1 ≤ p, q ≤ ∞ with 1/p + 1/q < 1.

For the sake of simplicity, the assumptions used in this paper are as
follows.

Assumptions.

1. Suppose that {Xi, i ≥ 1} is a sequence of stationary strongly mix-
ing random variables with continuous d.f. F and mixing coefficient
α as defined on (1.7).

2. Suppose that {Ti, i ≥ 1} is a sequence of i.i.d. random variables
with continuous d.f. G which are independent of {Xi, i ≥ 1} and
aG < aF .

3. α(n) = O(n−ν) for some ν > 3 and bn = n−1/2(log n)−δ, for some
δ > 0 depending on ν.

4. K is a symmetric, bounded, nonnegative and continuously differ-
entiable function on [−1, 1] and satisfies the following conditions:∫ 1

−1
K(t)dt = 1,

∫ 1

−1
tK(t)dt = 0,

∫ 1

−1
t2K(t)dt 	= 0,

5. The weight function w is continuously differentiable which is sup-
ported on [0, τ ], where τ < bF .

2 Main Results

The main results of this paper are the following theorems, which present
a central limit theorem for ISE(fn) and ISE(λn). The proof is deferred
to Section 3.

The integrated square error of fn on the interval [0, τ ], τ < bF , is
defined by

ISE(fn) =
∫ τ

0
(fn(t) − f(t))2w(t)dt. (9)



Density estimators for truncated dependent data 51

Let

dn1 =
∫ τ

0
(f̄n(t) − f(t))2w(t)dt,

where

f̄n(t) = h−1
n

∫ ∞

0
K

(
t − u

hn

)
f(u)du,

and

σ2
01 =

(∫ 1

−1
u2K(u)du

)2 ∫
(f ′′(t)w(t))2

f(t)
Ḡ(t)

dt

+ 16π
∞∑
i=1

α1/2(i)
(∫ 1

−1
u2K(u)du

)2 (∫
(
f ′′(t)w(t)

Ḡ(t)
)4f(t)dt

)1/2

(10)

Theorem 2.1. Let hn be a sequence of positive bandwidths which sat-
isfies hn(log n)δ → ∞ as n → ∞ for some δ > 0. Under stated assump-
tions, we have

h−2
n

√
n(ISE(fn) − dn1)

L−→N(0, σ2
1),

where σ2
1 ∈ (0, σ2

01).

The integrated square error of λn on the interval [0, τ ] is defined by

ISE(λn) =
∫ τ

0
(λn(t) − λ(t))2w(t)dt. (11)

Let

dn3 =
∫ τ

0
(λn(t) − λ(t))2w(t)dt,

where

λn(t) = h−1
n

∫ ∞

0
K

(
t − u

hn

)
dΛ(x),

and

σ2
03 =

(∫ 1

−1
u2K(u)du

)2 ∫
(λ′′(t)w(t))2

λ(t)
c(t)

dt

+ 16π
∞∑
i=1

α1/2(i)
(∫ 1

−1
u2K(u)du

)2 (∫
(
λ′′(t)w(t)

C(t)
)4λ(t)dt

)1/2

(12)
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Theorem 2.2. Let hn be a sequence of positive bandwidths which
satisfies hn(log n)δ → ∞ as n → ∞ for some δ > 0. Under stated
assumptions, we have

h−2
n

√
n(ISE(λn) − dn3)

L−→N(0, σ2
3),

where σ2
3 ∈ (0, σ2

03).

Another stochastic measure of accuracy is Hellinger distance. The
Hellinger distances between fn, f also λn, λ are defined respectively by

HD(fn) =
∫ τ

0

(√
fn(t) −

√
f(t)

)2
dt, (13)

HD(λn) =
∫ τ

0

(√
λn(t) −

√
λ(t)

)2
dt. (14)

Let

dn2 =
∫ τ

0

(f̄n(t) − f(t))2

4f(t)
dt,

σ2
02 =

1
16

(∫ 1

−1
u2K(u)du

)2 ∫
(f ′′(t))2

f(t)Ḡ(t)
dt

+
π

4

∞∑
i=1

α1/2(i)
(∫ 1

−1
u2K(u)du

)2 (∫
(f ′′(t))4

f3(t)Ḡ4(t)
dt

)1/2

.

Corollary 2.1. Under the stipulated assumptions on the Theorem 2.1

h−2
n

√
n(HD(fn) − dn2)

L−→N(0, σ2
2),

where σ2
2 ∈ (0, σ2

02).

Let

dn4 =
∫ τ

0

(λn(t) − λ(t))2

4λ(t)
dt,

σ2
04 =

1
16

(∫ 1

−1
u2K(u)du

)2 ∫
(λ′′(t))2

λ(t)C(t)
dt

+
π

4

∞∑
i=1

α1/2(i)
(∫ 1

−1
u2K(u)du

)2 (∫
(λ′′(t))4

λ3(t)(C)4(t)
dt

)1/2

.
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Corollary 2.2. Under the stipulated assumptions on the Theorem 2.2

h−2
n

√
n(HD(λn) − dn4)

L−→N(0, σ2
4),

where σ2
4 ∈ (0, σ2

04).

3 Proofs

The proof of Theorem 2.1 and 2.2 is based on the following lemmas. We
begin with introducing some further notations. We define

Qn1 = 2
∫ τ

0
(fn(t) − f̄n(t))(f̄n(t) − f(t))w(t)dt, (15)

Qn2 =
∫ τ

0
(fn(t) − f̄n(t))2w(t)dt. (16)

λn(t) = h−1
n

∫ ∞

0
K

(
t − u

hn

)
dΛ(u),

Qn3 = 2
∫ τ

0
(λn(t) − λn(t))(λn(t) − λ(t))w(t)dt, (17)

Qn4 =
∫ τ

0
(λn(t) − λn(t))2w(t)dt. (18)

Let
ξ(x, t, y) =

I(x ≤ y)
C(x)

−
∫ y

0

I(t ≤ u ≤ x)
C2(u)

dF ∗(u).

It is easy to see that,

E(ξ(Xi, Ti, y)) = 0 , Cov(ξ(Xi, Ti, y1), ξ(Xi, Ti, y2)) =
∫ y1∧y2

0

dF ∗(u)
C2(u)

.

Lemma 3.1. Under the assumptions of Theorem 2.1, we have

h−2
n

√
nQn1

L−→N(0, σ2
1), (19)

where σ2
1 ∈ (0, σ2

01), and σ2
01 is defined in (10).
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Proof. Integrating by parts and Theorem (2.1) of Sun and Zhou (2001)
imply

fn(t) − f̄n(t) = −h−1
n

∫
(F̂n(x) − F (x))dK

(
t − x

hn

)

= (nhn)−1
n∑

i=1

∫
(1 − F (x))ξ(Xi, Ti, x)dK

(
t − x

hn

)

+ O(h−1
n bn), a.s.

By using Taylor expansion

f̄n(t) − f(t) =
h2

n

2
f ′′(t)

∫ 1

−1
u2K(u)du + o(h2

n).

Therefore

Qn1 =
1

nhn

n∑
i=1

Vni + O(hnbn), a.s.,

where

Vni = 2
∫ τ

0
(f̄n(t) − f(t))

∫
(1 − F (x))ξ(Xi, Ti, x)dK

(
t − x

hn

)
w(t)dt.

It is clear to see that {Vni} is a sequence of stationary α-mixing bounded
random variables. It can be easily checked that

E(Vni) = 0,

E(V 2
ni) ≤ h6

nγ

(∫ 1

−1
u2K(u)du

)2 ∫
(f ′′(x)w(x))2

f(x)
G(x)

dx + o(h6
n).

We may write, Vni = Vni1 − Vni2, where

Vni1 = 2
∫ τ

0
(f̄n(t) − f(t))

∫
(1 − F (x))

I(Xi ≤ x)
C(Xi)

dK

(
t − x

hn

)
w(t)dt,

and

Vni2 = 2
∫ τ

0
(f̄n(t) − f(t))

∫
(1 − F (x))

×
∫ x

0

I(Ti ≤ u ≤ Xi)
C2(u)

dF ∗(u)dK

(
t − x

hn

)
w(t)dt.

It can be shown that

E|Vni1|m ≤ h3m
n |

∫ 1

−1
u2K(u)du|m

∫
|f ′′(x)w(x)|m f(x)

Gm(x)
dx + o(h3m

n ),
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E|Vni2|m ≤ h3m
n |

∫ 1

−1
u2K(u)du|m

∫
|f ′′(x)w(x)|m f(x)

Cm(x)
dx + o(h3m

n ).

Therefore

E1/m|Vni|m ≤ 2h3
n|

∫ 1

−1
u2K(u)du|

(∫
|f

′′(x)w(x)
C(x)

|mf(x)dx

)1/m

+o(h3
n).

Applying Lemma 2.4 in Kim (1994), with r = 2 and p = q = 4 we get

|E(Vn1Vnj)| ≤ 8πh6
nα1/2(j − 1)

(∫ 1

−1
u2K(u)du

)2

×
(∫

(
f ′′(x)w(x)

C(x)
)4f(x)dx

)1/2

+ o(h6
n).

So, we have

V ar(
n∑

i=1

Vi) = nσ2
1(1 + o(1)),

where

σ2
1 = E(V 2

ni) + 2
∞∑
i=1

E(Vn1Vni)

≤ h6
n

(∫ 1

−1
u2K(u)du

)2 ∫
(f ′′(x)w(x))2

γf(x)
G(x)

dx

+ 16πh6
nα1/2(j − 1)

(∫ 1

−1
u2K(u)du

)2 (∫
(
f ′′(x)w(x)

C(x)
)4f(x)dx

)1/2

+ o(h6
n).

Applying Theorem 18.5.4 in Ibragimov and Linnik (1971) we obtain the
result.�

Lemma 3.2. Under the assumptions of Theorem 2.2, we have

h−2
n

√
nQn3

L−→N(0, σ2
3), (20)

where σ2
3 ∈ (0, σ2

03), and σ2
03 is defined in (12).

Proof. Applying Theorem (2.1) of Sun and Zhou (2001),we have

λn(t) − λn(t) = −h−1
n

∫
(Λ̂n(x) − Λ(x))dK

(
t − x

hn

)

= (nhn)−1
n∑

i=1

∫ ∞

0
ξ(Xi, Ti, x)dK

(
t − x

hn

)
+ O(h−1

n bn).
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By using Taylor expansion

λn(t) − λ(t) =
h2

n

2
λ′′(t)

∫ 1

−1
u2K(u)du + o(h2

n).

Therefore

Qn3 =
1

nhn

n∑
i=1

Uni + O(h−1
n bn) a.s.,

where

Uni = 2
∫ τ

0
(λn(t) − λ(t))

∫ ∞

0
ξ(Xi, Ti, x)dK

(
t − x

hn

)
w(t)dt.

It is clear to see that {Uni} is a sequence of stationary α-mixing bounded
random variables. It can be easily checked that

E(Uni) = 0,

E(U2
ni) ≤ h6

n

(∫ 1

−1
u2K(u)du

)2 ∫
(λ′′(x)w(x))2

λ(x)
C(x)

dx + o(h6
n).

We may write, Uni = Uni1 − Uni2, where

Uni1 = 2
∫ τ

0
(λn(t) − λ(t))

∫ ∞

0

I(Xi ≤ x)
C(Xi)

dK

(
t − x

hn

)
w(t)dt,

and

Uni2 = 2
∫ τ

0
(λn(t)−λ(t))

∫ ∞

0

∫ x

0

I(Ti ≤ u ≤ Xi)
C2(u)

dF ∗(u)dK

(
t − x

hn

)
w(t)dt.

E|Uni1|m ≤ h3m
n |

∫ 1

−1
u2K(u)du|m

∫
|λ′′(x)w(x)|m λ(x)

Cm(x)
dx + o(h3m

n ),

E|Uni2|m ≤ h3m
n |

∫ 1

−1
u2K(u)du|m

∫
|λ′′(x)w(x)|m λ(x)

Cm(x)
dx + o(h3m

n ).

Therefore

E1/m|Uni|m ≤ 2h3
n|

∫ 1

−1
u2K(u)du|

(∫
|λ

′′(x)w(x)
C(x)

|mλ(x)dx

)1/m

+o(h3
n).

Applying Lemma 2.4 in Kim (1994), with r = 2 and p = q = 4 we get

|E(Un1Unj)| ≤ 8πh6
nα1/2(j − 1)

(∫ 1

−1
u2K(u)du

)2

×
(∫

(
λ′′(x)w(x)

C(x)
)4λ(x)dx

)1/2

+ o(h6
n).
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So, we have

V ar(
n∑

i=1

Ui) = nσ2
3(1 + o(1)),

where

σ2
3 = E(U2

ni) + 2
∞∑
i=2

E(Un1Uni)

≤ h6
n

(∫ 1

−1
u2K(u)du

)2 ∫
(λ′′(x)w(x))2

λ(x)
C(x)

dx

+ 16πh6
nα1/2(j − 1)

(∫ 1

−1
u2K(u)du

)2 (∫
(
λ′′(x)w(x)

C(x)
)4λ(x)dx

)1/2

+ o(h6
n).

Applying Theorem 18.5.4 in Ibragimov and Linnik (1971), we obtain the
result.�

Lemma 3.3. Under the assumptions of Theorem 2.1, we have

h−2
n

√
nQn2 = op(1) (21)

and
h−2

n

√
nQn4 = op(1). (22)

Proof. By applying Corollary (3.3) of Sun and Zhou (2001) , we ob-
tain the results.�

Proof of Theorem 1. By expanding the square in (9), we have

ISE(fn(t)) = Qn1 + Qn2 +
∫ τ

0
(f̄n(t) − f(t))2dt,

where Qn1 and Qn2 are defined in (15), (16). Applying Lemma 3.1
and Corollary (3.3) of Sun and Zhou (2001) , we obtain the result.
�

Proof of Theorem 2. By expanding the square in (11), we have

ISE(λn(t)) = Qn3 + Qn4 +
∫ τ

0
(λn(t) − λ(t))2dt,

where Qn3 and Qn4 are defined in (17), (18). Applying Lemma 3.2
and Corollary (3.3) of Sun and Zhou (2001), we obtain the result.
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�

Proof of Corollary 1. Let

εn(t) =

√
fn(t) − √

f(t)√
fn(t) +

√
f(t)

.

It can be written

sup
0≤t≤τ

|εn(t)| = sup
0≤t≤τ

|fn(t) − f(t)|
(
√

fn(t) +
√

f(t))2

≤ sup
0≤t≤τ

|fn(t) − f̄n(t)|
(
√

fn(t) +
√

f(t))2
+ sup

0≤t≤τ

|f̄n(t) − f(t)|
(
√

fn(t) +
√

f(t))2

≤ sup
0≤t≤τ

h−1
n | ∫ ∞

0 (F̂n(x) − F (x))dK
(

t−x
hn

)
f(t)

+ sup
0≤t≤τ

|f̄n(t) − f(t)|
f(t)

≤ (sup
x≥0

|Λ̂n(x) − Λ(x)|) sup
0≤t≤τ

h−1
n | ∫ ∞

0 (1 − F (x))dK
(

t−x
hn

)
f(t)

+O(
γ2

n

hn
) + O(h2

n)

≤ O(
γn

hn
) + O(

γ2
n

hn
) + O(h2

n) = o(1) a.s.,

where γn = n−1/2(log log n)1/2). Therefore

HD(fn) =
∫ τ

0

(fn(t) − f(t))2

4f(t)
dt +

∫ τ

0

ε2
n(t) − 2εn(t)

4f(t)
(fn(t) − f(t))2dt

=
∫ τ

0

(fn(t) − f(t))2

4f(t)
dt + o(1)

∫ τ

0

(fn(t) − f(t))2

4f(t)
dt.

By applying Theorem 2.1 for ω(t) = 1
4f(t) we obtain the result.�

Proof of Corollary 2. Let

εn(t) =

√
λn(t) − √

λ(t)√
λn(t) +

√
λ(t)

.

It can be written

sup
0≤t≤τ

|εn(t)| = sup
0≤t≤τ

|λn(t) − λ(t)|
(
√

λn(t) +
√

λ(t))2
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≤ sup
0≤t≤τ

h−1
n | ∫ ∞

0 (Λ̂n(x) − Λ(x))dK
(

t−x
hn

)
λ(t)

+ sup
0≤t≤τ

|λn(t) − λ(t)|
λ(t)

≤ (sup
x≥0

|Λ̂n(x) − Λ(x)|) sup
0≤t≤τ

h−1
n | ∫ ∞

0 dK
(

t−x
hn

)
λ(t)

+ O(h2
n)

≤ O(
γn

hn
) + O(h2

n) = o(1) a.s.,

Therefore

HD(λn) =
∫ τ

0

(λn(t) − λ(t))2

4λ(t)
dt +

∫ τ

0

ε2
n(t) − 2εn(t)

4λ(t)
(λn(t) − λ(t))2dt

=
∫ τ

0

(λn(t) − λ(t))2

4λ(t)
dt + o(1)

∫ τ

0

(λn(t) − λ(t))2

4λ(t)
dt.

By applying Theorem 2.2 for ω(t) = 1
4λ(t) , we obtain the result.�
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