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Abstract. In this paper we consider estimation of the derivative of
a density based on wavelets methods using randomly right censored
data. We extend the results regarding the asymptotic convergence
rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under
random censorship model. Our treatment is facilitated by results of
Stute (1995) and Li (2003) that enable us in demonstrating that the
same convergence rates are achieved as in Prakasa Rao (1996) and
Chaubey et al. (2008).

Key words and phrases: Besove space, censored data, nonparametric estima-
tion of derivative of a density, wavelets.



42 Chaubey et al.

1 Introduction

Survival data appear in medical research, industrial life-testing, and
other studies, where the main focus is on the time to occurrence of
a particular event. Examples of such an event are the failure of an
electric equipment, the recurrence of a particular disease, etc. These
survival data are typically observed in an incomplete way, due to the
presence of a number of events which potentially censor the event of
interest. Withdrawals from a clinical trial, deaths unrelated to the
disease under study, individuals still alive at the end of a follow-up
period, and so on, are examples of censoring issues. In the right cen-
sored data, cases report incomplete observations of the survival time
in the sense that in such cases we only know that the time-to-event is
greater than an observed (censoring) time. In this paper, we consider
the random censorship model from the right, where two sequences of
random variables, X1, X2, ... and Y1, Y2, ... are considered. We regard
X1, X2, ... as survival times (or failure times), having a common un-
known distribution function F (.) and density function f(.) . Let the
survival times Xi be censored from the right by the censoring times
Yi, with a common distribution function G(.), then we observe

Zi = min(Yi, Xi) := Yi ∧Xi and δi = I(Xi ≤ Yi),

where I(.) denotes the indicator function. In this random censorship
model, we assume that the survival times {Xi} are independent of
the censoring times {Yi}. Following the convention in the survival
analysis literature, we assume that both Xi and Yi are nonnegative
random variables. In contrast to statistics for complete data where
the whole sample X1, X2, ... is available, the estimators of relevant
quantities for censored data are based on the pairs of observations
(Z1, δ1), (Z2, δ2), ..., (Zn, δn). For example, the distribution function
F may be estimated by using the Kaplan-Meier estimator

F̂n(x) = 1−
n∏

i=1

[
1−

δ(i)

n− i+ 1

]I(Z(i)≤x)

, (1.1)

where Z(1) ≤ Z(2) ≤ ... ≤ Z(n) denote the order statistics of Z1, Z2, ...,
Zn, and is the concomitant of Z(i), i.e., δ(m) = δk if Z(m) = Zk. The
Kaplan-Meier estimator of the censoring distribution may similarly
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be given by

Ĝn(x) = 1−
n∏

i=1

[
1−

1− δ(i)

n− i+ 1

]I(Z(i)≤x)

. (1.2)

Note that δk/n(1−Ĝ(Z−m)) is the jump of the Kaplan-Meier estimator
F̂n at Zm. Here our interest is in estimating f (d), the dth derivative
of f based on (Zi, δi), i = 1, 2, ..., n.

There is an extensive literature on the right censorship model
with independent failure and censoring times.density estimation was
studied by Hall et al. (1999), Antoniadis et al.(1999), Cai (1999)
and Li (2003). Nonparametric regression function estimation in this
context is discussed by Dabrowska (1995), Heuchenne et al.(2007)
and Lopez and Patilea (2009). The objective of this paper is to
propose wavelet based method for estimating dth, d ≥ 0 derivative of
a density that belongs to a Besov space using randomly right censored
data and investigate the asymptotic convergence rate of the resulting
estimator. We show that the proposed estimator attains the same
optimal rates of convergence as obtained in Prakasa Rao (1996) and
Chaubey et al. (2008).

The rest of the paper is organized as follows. In section 2 we de-
scribe preliminaries of Besov spaces and wavelet transform and pro-
vide the linear wavelet estimators. The main results are described in
Section 3 and Section 4 is devoted to the proofs.

2 Preliminaries

We recall that in the random censorship model we observe Zm =
min(Ym, Xm), and δm = I(Xm ≤ Ym),m = 1, 2, ..., n. Let T < τH
be a fixed constant, where τH = inf{x : H(x) = 1} ≤ ∞ is the
least upper bound for the support of H, the distribution function
of Z1 and f1(x) = f(x)I(x ≤ T ). Here we estimate f1(x), for x ∈
(−∞, T ), that in turn provides the estimate of f(x) over the interval
x ∈ (−∞, T ). To motivate the estimator, we write a formal expansion
for any function f1 ∈ L2(R) (see Daubechies (1992)):

f1 =
∑
k∈Z

αj0,kφj0,k +
∑
j≥j0

∑
k∈Z

δj,kψj,k = Pj0f1 +
∑
j≥j0

Djf1 (2.1)

where the functions

φj0,k(x) = 2j0/2φ(2j0x− k) (2.2)
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and
ψj,k(x) = 2j/2ψ(2jx− k) (2.3)

constitute an (inhomogeneous) orthonormal basis of L2(R). Here φ(x)
and ψ(x) are the scale function and the orthogonal wavelet, respec-
tively. Wavelet coefficients in (2.1) are given by the integrals

αj0,k =
∫
f(x)I(x ≤ T )φj0,k(x)dx, δj,k =

∫
f(x)I(x ≤ T )ψj,k(x)dx.

(2.4)
We suppose that both φ and ψ ∈ Cr, (space of functions with r
continuous derivatives), r being a positive integer, and have compact
supports included in [−β, β], for some β > 0. Note that, by Corollary
5.5.2 in Daubechies (1988), ψ is orthogonal to polynomials of degree
≤ r, i.e. ∫

ψ(x)xldx = 0,∀l = 0, 1, ..., r. (2.5)

We suppose that f belongs to the Besov class (see Meyer (1990),
§VI.10), Fs,p,q = {f ∈ Bs

p,q, ‖f‖Bs
p,q
≤M} for some 0 ≤ s ≤ r+1, p ≥

1 and q ≥ 1, where

‖f‖Bs
p,q

= ‖Pj0f‖p + (
∑
j≥j0

(‖Djf‖p2js)q)1/q

We may also say f ∈ Bs
p,q if and only if

‖αj0,.‖lp <∞, and (
∑
j≥j0

(‖δj,.‖lp2
j(s+1/2−1/p))q)1/q <∞

(2.6)
where‖γj,.‖lp = (

∑
k∈Z γ

p
j,k)

1/p. We consider Besov spaces essentially
because of their executional expressive power [see Triebel (1992) and
the discussion in Donoho et al. (1996)].
A wavelet based density estimator may be motivated from the ex-
pansion in Eq.(2.1) (see Li (2003)) as given by

f̂1 =
∑

k∈Kj0

α̂j0,kφj0,k, (2.7)

with

α̂j0,k =
∫
φj0,k(x)I(x ≤ T )dF̂nx =

1
n

n∑
i=1

δiI(Zi ≤ T )φj0,k(Zi)

1− Ĝ(Z−i )
,

(2.8)
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where Kj0 is the set of k such that supp(f) ∩ supp(φj0,k) 6= ∅. The
fact that φ has a compact support implies that Kj0 is finite and
card(Kj0) = O(2j0). Wavelet density estimators aroused much inter-
est in the recent literature, see Donoho et al. (1996. In the case
of independent samples, the properties of the linear estimator (2.11)
have been studied for a variety of error measures and density classes
[see Kerkyacharian and Picard (1992), Leblanc (1996) and Tribouley
(1995)]. In the setup considered by Prakasa Rao (1996), we assume
that φ is a scaling function generating an r−regular multiresolution
analysis and f (d) ∈ L2(R), for some r ≥ (d + 1). Furthermore, we
assume that there exists Cm ≥ 0 and βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ r. (2.9)

Prakasa Rao (1996) showed that the projection of f (d)
1 on Vj0 is

f
(d)
1j0

(x) =
∑

k∈Kj0

aj0,kφj0,k(x), (2.10)

where

aj0,k = (−1)d

∫
φ

(d)
j0,k(x)f1(x)dx,

hence, an estimator of f (d)
1 (x) may be proposed by replacing aj0,k in

(2.10) by its estimator, that is,

f̂
(d)
1 (x) =

∑
k∈Kj0

âj0,kφj0,k(x), (2.11)

where

âj0,k =
(−1)d

n

n∑
i=1

δiI(Zi ≤ T )φ(d)
j0,k(Zi)

1− Ĝ(Z−i )
. (2.12)

The estimator in Eq. (2.11) will be used as an estimator for f (d)
1 (x).

3 Main Results

In this section, we discuss asymptotic properties of our proposed es-
timator. Below, we extend the results of Prakasa Rao (1996) given
in the following theorems for the expected loss E‖f̂ (d)

1j0
− f

(d)
1 ‖2

2.
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Theorem 3.1. Assume that wavelet φ is (r + d)−regular and has
d bounded derivatives. Let f̂ (d)

1 ∈ F s
p,q be the wavelet based estimator

given in (2.11) with 1/p < s < r+ d, s > d and q ∈ [1,∞]. Then for
p ∈ [2,∞], there exists a constant C such that for all M,L ∈ (0,∞):

E‖f̂ (d)
1j0

− f
(d)
1 ‖2

2 ≤ Cn−2(s−d)/(1+2s), (3.1)

where 2j0 = n
1

1+2s .

Theorem 3.2. Assume that the wavelet φ is (r + d)−regular and
has d bounded derivatives, such that d > 1/p− 1/2. Let f̂ (d)

1 ∈ F s
p,q be

the wavelet based estimator (2.11) with 1/p < s < r + d, s > d and
q ∈ [1,∞]. Then for 1 < p ≤ 2, there exists a constant C such that
for all M,L ∈ (0,∞):

E‖f̂ (d)
1j0

− f
(d)
1 ‖2

2 ≤ Cn−2(s−d)/(1+2s)

where 2j0 = n
1

1+2s .

4 Proofs

The method of proof for the above theorems follows along the lines
of Li (2003). The key part in this proof is to approximate the empir-
ical coefficients âj0k with an average of i.i.d. random variables with
a sufficiently small rate similar to the construction in Stute (1995)
for approximating the Kaplan-Meier integrals. The following lemmas
are acquired from Li (2007) that are used in the proofs. Lemma 4.1
is the same as Lemma 4.1 of Li (2007), except for a small notational
change and Lemma 4.2 is exactly the same as Lemma 4.2 of Li (2007).

Lemma 4.1. Let âj0k be defined as in equations (2.12). Also, let

ϕ
(s)
j0k(x) = φ

(s)
j0k(x)I(x ≤ T ) j ∈ Kj0 , (4.1)

āj0k =
(−1)d

n

n∑
m=1

δmϕ
(d)
j0k(Zm)

1− Ĝ(Zm)
, j ∈ Kj0 , (4.2)

Then the following equations hold:

âj0k = āj0k + W̄j0k +Rn,j0k, E(R2
n,j0k) = O(

1
n2

)
∫
ϕ

2(d)
j0k dF. (4.3)
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where

Wj0k(Zm) = Uj0k(Zm)− Vj0k(Zm), W̄j0k = n−1
n∑

m=1

Wj0k(Zm) (4.4)

Uj0k(Zm) =
(−1)d(1− δ(m))

1−H(Zm)

∫ τH

Zm

ϕ
(d)
j0k(ω)F (dω), (4.5)

Vj0k(Zm) = (−1)d

∫ τH

−L

∫ τH

−L

ϕ
(d)
j0k(ω)I(ν < Zm

∧
ω)

(1−H(ν))(1−G(ν))
G(dν)F (dω). (4.6)

Lemma 4.2. Let u ∈ Rn, ‖u‖lp = (
∑

i |ui|p)1/p and 0 < p1 ≤ p2 ≤
∞. Then the following inequalities hold:

‖u‖lp2
≤ ‖u‖lp1

≤ n
1

p1
− 1

p2 ‖u‖lp2
.

Proof of Theorem 3.1. First, we decompose E‖f̂ (d)
1j0

(x)−f (d)
1 (x)‖2

2

into a bias term and stochastic term:

E‖f̂ (d)
1j0

(x)−f (d)
1 (x)‖2

2 ≤ 2(‖f (d)
1 −f (d)

1j0
‖2
2+E‖f̂ (d)

1j0
−f (d)

1j0
‖2
2) = 2(T1+T2)

(4.7)
where

T1 = ‖f (d)
1 − f

(d)
1j0
‖2
2 and T2 = E‖f̂ (d)

1j0
− f

(d)
1j0
‖2
2.

Next, we obtain upper bounds for T1 and T2. Note that

T1 = ‖
∑
j≥j0

Djf
(d)
1 ‖2

2 =
∑
j≥j0

∑
k

δ2jk,

hence, by using Lemma 4.2 and (2.6) for p ≥ 2, we have ‖δj.‖2 ≤
(C2j)

1
2
− 1

p ‖δj.‖p ≤ C2−js. Thus, we get∑
k

δ2jk ≤ C2−2js.

Hence we have

T1 ≤ C
∑
j≥j0

2−2js = C2−2j0s2−2s(1− 2−2s)−1 ≤ C2−2j0s,



48 Chaubey et al.

On the basis of orthogonality of wavelets φ, we have

T2 =
∑

k∈Kj0

E(âj0k − aj0k)2.

Now, from Lemma 4.1 and (4.3) we have

T2 ≤ 3{
∑

k∈Kj0

E(āj0k − aj0k)2 +
∑

k∈Kj0

EW̄ 2
j0k +

∑
k∈Kj0

ER2
n,j0k}

= 3(T21 + T22 + T23).

Noting that

E(āj0k − aj0k)2 = E{(−1)d2j0(d+1/2)n−1

n∑
m=1

δmϕ
(d)(2j0Zm − k)
1−G(Zm)

}2 − n−1a2
j0k

= (−1)2d2j0(2d+1)n−1∫
ϕ2(d)(y)

f1((y + k)/2j0)
1−G((y + k)/2j0)

dy − n−1a2
j0k,

Then for k ∈ Kj0 we obtain

∑
k

E(āj0k − aj0k)2 = 2j0(2d+1)n−1

×
∫
ϕ2(d)(y)

∑
k

2−j0 f1((y + k)/2j0)
1−G((y + k)/2j0)

dy

−n−1
∑

k

a2
j0k

since
∑

k 2−j0f1((y+k)/2j0)/(1−G((y+k)/2j0)) →
∫
f1/(1−G) and∑

k a
2
j0k = O(

∫
f2
1 )

∫
ϕ

2(d)
j0k , then E

∑
k(āj0k − aj0k)2 = 2j0(2d+1)n−1∫

f1/(1−G)
∫
ϕ2(d) + o(2j0(2d+1)n−1). Now, using the relation 2j0 =

n1/(1+2s) we obtain T21 = O(2j0(2d+1)n−1) = O(n−2(s−d)/(1+2s)).
By (4.4),

T22 ≤ n−1
∑

k

EW 2
j0k(Z1) ≤ 2n−1

∑
k

(EU2
j0k(Z1) + EV 2

j0k(Z1)).
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in view of (4.5) and (4.6), applying Cauchy-Schwarz inequality and
using the compact support of φ, we finally can obtain

EU2
j0k(Z1) ≤ 1

[(1−H(T ))][(1−G(T ))]
2j0(2d+1)

×
∫
ϕ2(d)(y)f2

1 ((y + k)/2j0)dy.

Hence,

n−1
∑

k

EU2
j0k(Z1) = O(2j0(2d+1)n−1

×
∫
ϕ2(d)(y)

∑
k

2−j0f2
1 ((y + k)/2j0)dy)

= O(2j0(2d+1)n−1)
= O(n−2(s−d)/(1+2s)).

Similarly, we obtain

EV 2
j0k(Z1) ≤ 1

[(1−H(T ))]2[(1−G(T ))]2
2j0(2d+1)

×
∫
ϕ2(d)(y)f2

1 ((y + k)/2j0)dy.

Thus, n−1
∑

k EV
2
j0k(Z1) = O(2j0(2d+1)n−1). Hence

T22 = o(2j0(2d+1)n−1) = O(n−2(s−d)/(1+2s)).

By (4.3),

T23 = O(n−2)
∑

k

∫
ϕ

2(d)
j0k dF = O(2j0(2d+1)n−2).

Hence T2 = O(2j0(2d+1)n−1)
Now, using the bounds obtained for T1 and T2 and, choosing j0 such
that 2j0 = n

1
1+2s in Eq.(4.7) the proof is completed .

Proof of Theorem 3.2. Observing that

E‖f̂ (d)
1j0

(x)−f (d)
1 (x)‖2

2 ≤ 2(‖f (d)
1 −f (d)

1j0
‖2
2+E‖f̂ (d)

1j0
−f (d)

1j0
‖2
2) = 2(T1+T2)

(4.8)
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By using Lemma 4.2 and (2.6) for 1 < p ≤ 2, we have

‖δj.‖2 ≤ ‖δj.‖p ≤M2−j(s−1/p+1/2).

Thus, we have
∑

k δ
2
jk ≤M22−2j(s−1/p+1/2). Since sp > 1, we have

T1 ≤
∑
j≥j0

M22−2j(s−1/p+1/2) = M22−2j0(s−1/p+1/2)2−2(s−1/p+1/2)

×(1− 2−2(s−1/p+1/2))−1

≤ M22−2j0(s−1/p+1/2),

Thus, with nothing to (d > 1/p−1/2), We have T1 = O(n−2(s−d)/(1+2s)),
And by use the same argument as in Theorem 3.1, we have T2 =
O(2j0(2d+1)n−1).
Now, using the bounds obtained for T1 and T2 and, choosing j0 such
that 2j0 = n

1
1+2s in Eq.(4.8) the proof is completed .
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