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Abstract. The ratio of independent random variables arises in many
applied problems. In this article, the distribution of the ratio X/Y
is studied, when X and Y are independent Rice random variables.
Ratios of such random variable have extensive applications in the
analysis of noises of communication systems. The exact forms of
probability density function (PDF), cumulative distribution function
(CDF) and the existing moments have been derived in terms of several
special functions. The delta method is used to approximate moments.
As a special case, we have obtained the PDF and CDF of the ratio
of independent Rayleigh random variables.

1 Introduction

For given random variables X and Y, the distribution of the ratio
X/Y arises in a wide range of natural phenomena of interest, such
as in engineering, hydrology, medicine, number theory, psychology,
etc. More specifically, Mendelian inheritance ratios in genetics, mass

Key words and phrases: Ratio random variable, Rayleigh distribution, Rice
distribution, special functions.
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to energy ratios in nuclear physics, target to control precipitation in
meteorology, inventory ratios in economics are exactly of this type.
The distribution of the ratio random variables (RRV), has been ex-
tensively investigated by many authors specially when X and Y are
independent and belong to the same family. Various methods have
been compared and reviewed by [4],[7],[8],[9],[10]. In this paper, we
will derive the exact distribution of X/Y when X and Y are inde-
pendent random variables (RVs) having the Rice distributions with
parameters (σ, ν) and (λ, u), respectively.

The Rice distribution is well known and of common use in en-
gineering, specially in signal processing and communication theory.
Some usual situations in which the Rice ratio random variable (RRRV)
appear are as follows. In the case that X and Y represent the random
noises of two signals, studying the distribution of the quotient |X/Y |
is always of interest. For example in communication theory it may
represent the relative strength of two different signals and in MRI, it
may represent the quality of images. Moreover, because of the impor-
tant concept of moments of RVs as magnitude of power and energy in
physical and engineering sciences, the possible moments of the RRRV
have been also obtained. Some applications of Rice distribution and
ratio RV may be found in [5],[6],[12],[13],[14], and references therein.

If X has a Rice distribution with parameters (s, r), then the PDF
of Xis as follows

fX(x) =
x

s2
exp

{
−(x2 + r2)

2s2

}
I0

(
xr

s2

)
, x > 0, s > 0, r ≥ 0,

where x is the signal amplitude, I0(.) is the modified Bessel function
of the first kind of order 0, 2s2 is the average fading-scatter compo-
nent and r2 is the line-of-sight (LOS) power component. The Local
Mean Power is defined as Ω = 2s2 + r2 which equals E[X2], and the
Rice factor K of the envelope is defined as the ratio of the signal
power to the scattered power, i.e., K = r2/2s2. When K goes to
zero, the channel statistic follows Rayleigh’s distribution [5], [6] and
[12], whereas if K goes to infinity, the channel becomes a non-fading
channel.

This paper is organized as follows. In Section 2, some notation,
preliminaries and special functions are mentioned. The exact expres-
sions for the PDF and CDF of the RRRV are derived in Section 3.
Section 4 deals with calculating the moments of the ratio random
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variables.

2 Notation and Preliminaries

In this section, we first recall some special mathematical functions,
which will be used repeatedly in the next sections. The modified
Bessel function of first kind of order ν, is

Iν(x) =
(

1
2
x

)ν ∞∑
k=0

(
1
4x2

)k

(k!)Γ(ν + k + 1)
.

The generalized hypergeometric function is denoted by

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq; z) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

the Gauss hypergeometric function is

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

and the Kummer confluent hypergeometric function is

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
,

where (a)k, (b)k represent Pochhammer’s symbol given by

(a)k = a(a + 1) · · · (a + k − 1).

The parabolic cylinder function is

Dν(z) = 2ν/2e−z2/4Ψ(−1
2
ν,

1
2
;
1
2
z2),

where Ψ(a, c; z) represents the confluent hypergeometric function given
by

Ψ(a, c; z) = Γ

[
1− c

1 + a− c

]
1F1(a; c; z)

+Γ

[
c− 1

a

]
21−c

1F1(1 + a− c; 2− c; z) ,
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in which

Γ

[
a1, . . . , am

b1, . . . , bn

]
=
∏m

i=1 Γ(ai)∏n
j=1 Γ(bj)

.

A well-known representation for the CDF of Rice random variable is
as

FX(x) = 1−Q1(r/s, x/s),

where QM (α, β) is defined by

QM (α, β) = e−(α2+β2)/2
∞∑

k=1−M

(
α

β

)k

Ik(αβ),

and Ik(.) denotes the modified Bessel function of first kind of order
k. Also we have

E(Xk) = (2s2)k/2e−
r2

2s2 Γ
(

1 +
k

2

)
1F1

(
1 +

k

2
; 1;

r2

2s2

)
. (1)

The following lemmas are of frequent use.

Lemma 2.1. (Equation(2.15.20.7), [11], vol. 2). For Re(p) > 0,
Re(α + µ + ν) > 0,∫ ∞

0
xα−1e−px2

Iµ(bx)Iν(cx)dx =

bµcνp−(α+µ+ν)/2

2µ+ν+1Γ(ν + 1)

∞∑
k=0

Γ

[
k + (α + µ + ν)/2

µ + k + 1

]
1
k!

×
(

b

2p

)2k

2F1(−k,−µ− k; ν + 1;
c2

b2
).

Lemma 2.2. (Equation(2.15.5.4), [11], vol. 2). For Re(p) > 0,
Re(α + ν) > 0; |argc| < π ,∫ ∞

0
xα−1e−px2

Iν(cx)dx =

2−ν−1cνp−
(α+ν)

2 Γ

[
(α+ν)

2
ν + 1

]
1F1

(
α + ν

2
; ν + 1;

c2

4p

)
.
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Lemma 2.3. (Equation(2.21.1.15), [11], vol. 3). For Re(α) > 0,
Re(a− α + ρ) > 0; Re(b− α + ρ) > 0, |arg ω| < π, |arg z| < π,∫ ∞

0

xα−1

(x + z)ρ 2F1(a, b, c;−ωx)dx =

zα−ρB(α, ρ− α)3F2(a, b, α; c, α− ρ + 1;ωz)

+ωρ−αΓ

[
c, a− α + ρ, b− α + ρ, α− ρ

a, b, c− α + ρ

]

3F2(a− α + ρ, b− α + ρ, ρ; c− α + ρ, ρ− α + 1;ωz).

See [3] and [11] for more properties and details.

3 The Ratio of Rice Random Variables

In this section, the explicit expressions for the CDF and PDF of X/Y
are derived in terms of the Gauss hypergeometric function. The ratio
of Rayleigh RVs is also considered as a special case.

Theorem 3.1. Suppose that X and Y are independent Rice random
variables with parameters (σ, ν) and (λ, u), respectively. The CDF of
the ratio random variable T = X/Y is

FT (t) = 1−


σ2e

−
(

λ2ν2+u2σ2

2σ2λ2

)
t2λ2 + σ2

∞∑
k=0

(
ν2

2σ2

)k

k!

×

 ∞∑
j=0

1
j!

(
uσ2

t2λ2 + σ2

)2j

2F1

(
−j,−j; k + 1;

ν2t2λ4

u2σ2

) . (2)

Proof. The CDF, FT (t) can be expressed as

FT (t) = Pr(X/Y ≤ t)

=
∫ ∞
0

FX(ty)fY (y)dy

=
∫ ∞
0

{1−Q1(ν/σ, ty/σ)} y

λ2
e−(y2+u2)/2λ2

I0

(
yu

λ2

)
dy. (3)
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Substituting Q1(ν/σ, ty/σ) in (3), gives

FT (t) = 1−
{

e
−
(

λ2ν2+u2σ2

2σ2λ2

)
λ2

∞∑
k=0

(
ν

t

)k

[∫ ∞
0

y−k+1e
−
(

λ2t2+σ2

2σ2λ2

)
y2

Io

(
u

λ2
y

)
Ik

(
νt

σ2
y

)
dy

]}
.(4)

Thus we get (2) by using Lemma 2.1 in (4). 2

Corollary 3.2. Suppose that X and Y are independent Rayleigh
random variables with parameters σ and λ, respectively. The CDF of
the ratio random variable T = X/Y can be expressed as

FT (t) = 1− σ2

t2λ2 + σ2
, t ≥ 0.

Proof. Take ν = u = 0 in (2). 2

Theorem 3.3. Suppose that X and Y are independent Rice random
variables with parameters (σ, ν) and (λ, u), respectively. The PDF of
the ratio random variable T = X/Y is

fT (t) =
2tσ2λ2e

−
(

ν2λ2+u2σ2

2σ2λ2

)
(t2λ2 + σ2)2

∞∑
k=0

k + 1
k!

(
uσ2

t2λ2 + σ2

)2k

2F1

(
−k,−k; 1;

ν2t2λ4

u2σ4

)
. (5)

Proof. The PDF fT (t) =
∫∞
0 yfX(ty)fY (y)dy can be written as

fT (t) =
∫ ∞
0

y
ty

σ2
e−

t2y2+ν2

2σ2 I0

(
tyν

σ2

)
y

λ2
e−

y2+u2

2λ2 I0

(
yu

λ2

)
dy.

The result now follows by using the Lemma 2.1. 2

Corollary 3.4. Suppose that X and Y are independent Rayleigh
random variables with parameters σ and λ, respectively. The PDF of
the ratio random variable T = X/Y can be expressed as

fT (t) =
2tσ2λ2

(t2λ2 + σ2)2
, t ≥ 0 .
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Proof. The result immediately follows by taking ν = u = 0 in (5).
2

Remark 3.5. One may suggest to use the theory of transformation
to obtain the distribution of T . But this approach leads to the same
results which are given in this article. For instance, if we define

T =
X

Y
, V = Y

and work through the jacobian, then the PDF of T will be obtained

from the integral fT (t) =
∞∫
0

vfX(tv)fY (v)dv. Solving this integral

also needs to use the special functions and gives (5). 2

4 Moments of the Ratio Random Variable

In the sequel, we shall use the independence of X and Y several
times for computing the moments of the ratio random variable. The
results obtained are expressed in terms of confluent hypergeometric
functions. The delta method has also been used for approximation
and simple representations of the moments.

Theorem 4.1. Suppose that X and Y are Rice random variables
with parameters (σ, ν) and (λ, u), respectively. A representation for
the k-th moment of the ratio random variable T = X/Y , for −2 <
k < 2, is as follows

E(T k) =
σ2

λ2
e−

ν2λ2+u2σ2

2σ2λ2

∞∑
j=0

j + 1
j!

(
uσ2

λ2

)2j

×
{(

σ2

λ2

)k/2−2j−1

B(1 +
k

2
, 2j − k

2
+ 1)

× 3F2

(
−j,−j; 1 +

k

2
; 1;

k

2
− 2j;−ν2λ2

u2σ2

)

+

(
−ν2λ4

u2σ4

)2j− k
2
+1

Γ

[
1, j − k

2 + 1, j − k
2 + 1, k

2 − 2j − 1
−j,−j, 2j − k

2 + 2

]
(6)

× 3F2

(
j − k

2
+ 1, j − k

2
+ 1, 2j + 2; 2j − k

2
+ 1, 2j − k

2
+ 2;−ν2λ2

u2σ2

)}
.
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Proof. By definition

E(T k) =
∫ ∞
0

tkfT (t)dt

= 2σ2λ2e−
ν2λ2+u2λ2

2σ2λ2

∞∑
j=0

j + 1
j!

(uσ2)2j

∫ ∞
0

tk+1

(t2λ2 + σ2)2j+2 2F1

(
−j,−j; 1;

ν2λ4

u2σ4
t2
)

dt.

Now, the desired result follows by using Lemma 2.3. 2

In the following theorem, we give an alternative representation for
E(T k), which is easier to handle than (6).

Theorem 4.2. Suppose that X and Y are independent Rice random
variables with parameters (σ, ν) and (λ, u), respectively. A represen-
tation for the k-th moment of the ratio random variable T = X/Y ,
−2 < k < 2, can be expressed by

E(T k) =

(
σ
λ

)k Γ
(

2+k
2

)
Γ
(

2−k
2

)
e

ν2λ2+u2σ2

2σ2λ2

1F1

(
2 + k

2
; 1;

ν2

2σ2

)
1F1

(
2− k

2
; 1;

u2

2λ2

)
. (7)

Proof. Using the independency of X and Y , the expected ratio can
be written as

E(T k) = E

(
Xk

Y k

)
= E

(
Xk
)

E

(
1

Y k

)
,

in which

E

(
1

Y k

)
=
∫ ∞
0

1
yk

y

λ2
exp

{
−(y2 + u2)

2λ2

}
I0

(
uy

λ2

)
dy. (8)

By using Lemma 2.2, the integral (8) reduces to

E

(
1

Y k

)
=

e−
u2

2λ2

(2λ2)k/2
Γ
(−k + 2

2

)
1F1

(
−k + 2

2
; 1;

u2

2λ2

)
. (9)

The desired result now follows by multiplying (1) and (9). 2
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Remark 4.3. Formulas (6) and (7), display the exact forms for
calculating E(T ), which have been expressed in terms of confluent
hypergeometric functions. Indeed, as suggested by the referee(s) we
can use the delta-method to approximate the first and second mo-
ments of the ratio T = X/Y. In details, by taking µX = E(X),
µY = E(Y ), and following example 5.5.27, pages 244-245 in [1],

E(T ) ≈ µX

µY
= 1F1(3

2 , 1; ν2

2σ2 )

1F1(3
2 , 1; u2

2λ2 )

(
σ

λ

)
e

u2

2λ2−
ν2

2σ2 .

For approximating V ar(T ), first we recall that E[X2] = 2σ2 +ν2 and
E[Y 2] = 2λ2 + u2. Now,

V ar

(
X

Y

)
≈
(

µ2
X

µ2
Y

)(
V ar(X)

µ2
X

+
V ar(y)

µ2
Y

)
,

which involves confluent hypergeometric functions, but in simpler
forms. 2

Remark 4.4. The numerical computation of the obtained re-
sults in this paper entails calculation of the special functions, their
sums and integrals, which have been tabulated and available in deter-
mined books and computer algebra packages, see [2],[3],[11] for more
details. 2
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