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Abstract. In this paper, the well-known proportional hazards model
which includes several well-known lifetime distributions such as ex-
ponential, Pareto, Lomax, Burr type XII, and so on is considered.
With both Bayesian and non-Bayesian approaches , we consider the
estimation of parameters of interest based on progressively Type-II
right censored samples. The Bayes estimates are obtained based on
symmetric and asymmetric loss functions. We also provide Bayes
and empirical Bayes prediction intervals for the times to failure of
units censored in multiple stages in a progressively censored sample.
Finally, two numerical examples are given to illustrate the results.
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1 Introduction

Censoring occurs when exact survival times are known only for a por-
tion of the individuals or items under study. The complete survival
times may not have been observed by the experimenter either inten-
tionally or unintentionally. For example, individuals in a clinical trial
may drop out of the study, or the study may have to be terminated
early for lack of funds. In an industrial experiment, units may break
accidently. Data obtained from such experiments are called censored
data.

In this paper, we consider a general scheme of progressively Type-
II right censoring. The progressive Type-II right censoring, after
starting the life-testing experiment with n units, arises as follows.
n units are placed on a life-testing experiment and only m(< n)
units are completely observed until failure. The censoring occurs
progressively in m stages. These m stages offer failure times of the
m completely observed units. At the time of the first failure (the
first stage), R1 of the n− 1 surviving units are randomly withdrawn
(censored intentionally) from the experiment, R2 of the n − 2 − R1

surviving units are withdrawn at the time of the second failure (the
second stage), and so on. Finally, at the time of the mth failure
(the mth stage), all the remaining Rm = n − m − R1 − ... − Rm−1

surviving units are withdrawn. We will refer to this as progres-
sive Type-II right censoring scheme (R1, R2, ..., Rm). It is clear that
this scheme includes the conventional Type-II right censoring scheme
(when R1 = R2 = ... = Rm−1 = 0 and Rm = n − m) and complete
sampling scheme (when n = m and R1 = R2 = ... = Rm = 0). For
further details on progressively censoring, inferences and their appli-
cations, one may refer to Balakrishnan and Aggarwala (2000) and
Balakrishnan (2007).

Let us consider the continuous random variable X with the cumu-
lative distribution function (cdf) F (x; θ). In many situations F (x; θ)
can be written as

F (x; θ) = 1− [F̄0(x)]θ, −∞ ≤ c < x < d ≤ ∞, θ > 0 (1.1)

where F̄0(.) = 1 − F0(.), and F0(.) is an arbitrary continuous cdf
with F0(c) = 0 and F0(d) = 1. Here, {F (x; θ), θ > 0} is called
a proportional hazards family with underlying distribution F0 (see
Marshal and Olkin, 2007).

For the proportional hazards family (1.1), the two hazard rates
corresponding to the distribution functions F and F0 are propor-
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tional. The proportional hazards family has been extensively used in
the literature to model failure time data. It is useful in estimating
the survival function for right censored data. This family includes
several well-known lifetime distributions such as exponential, Pareto,
Lomax, Burr type XII, and so on. For more information on propor-
tional hazards family see Marshal and Olkin (2007). See also Ahmadi
et al. (2008, 2009) who have studied the problems of estimation and
prediction for the proportional hazards family based k-record data.

From the model (1.1), the probability density function (pdf), the
reliability function and hazard rate function (at some t) are given,
respectively, by

f(x; θ) = θf0(x)[F̄0(x)]θ−1, −∞ ≤ c < x < d ≤ ∞, (1.2)

R(t) = [F̄0(t)]θ, (1.3)

and

H(t) = θ
f0(t)
F̄0(t)

, (1.4)

where f0(.) = F ′
0(.) is the corresponding pdf.

In this paper, we consider the estimation problem with both
Bayesian and non-Bayesian approaches for the proportional hazards
family (1.1) based on progressively Type-II censored samples. In
Section 2, the MLEs, the uniformly minimum variance unbiased esti-
mates (UMVUEs) and Bayes estimates are derived for the unknown
parameter, reliability function and hazard rate function based on
progressively Type-II censored samples. The Bayes estimates are ob-
tained based on square error, LINEX and general entropy loss func-
tions. In Section 3, we provide Bayes and empirical Bayes prediction
intervals for the times to failure of units censored in multiple stages in
a progressively censored sample from the proportional hazards family.
Finally, in Section 4, two numerical examples are given to illustrate
the results .

2 Estimation

Let X1:m:n, · · · , Xm:m:n denote a progressively Type-II censored sam-
ple from the proportional hazards family (1.1) obtained from a sample
of size n with the censoring scheme (R1, · · · , Rm). To simplify the no-
tation, we will use xi in place of xi:m:n. In this section, we consider
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the problem of estimation with both Bayesian and non-Bayesian ap-
proaches for the unknown parameter θ, the reliability function R(t),
and the hazard rate function H(t).

2.1 Maximum Likelihood Estimation

Based on the progressively Type-II censored sample X = (X1, ..., Xm),
the likelihood function is given (see Balakrishnan and Aggarwala,
2000) by

L(θ|x) = A
m∏

i=1

[
f(xi; θ)[1− F (xi; θ)]Ri

]
, (2.1)

where A = n(n−1−R1)(n−2−R1−R2) · · · (n−m+1−R1 · · ·−Rm−1).
It follows from (1.1), (1.2) and (2.1), that

L(θ|x) = A

[
m∏

i=1

f0(xi)
F0(xi)

]
θme−θS(x) (2.2)

where S(x) = −
∑m

i=1(Ri+1) ln F̄0(xi). Note that S(x) can be written
as

S(x) =
m∑

i=1

(Ri + 1)T0(xi),

where T0(.) = − ln F̄0(.) is the baseline cumulative hazard function.
The log-likelihood function can be written as

lnL(θ|x) = lnA +
m∑

i=1

ln
[

f0(xi)
F0(xi)

]
+ m ln(θ)− θS(x). (2.3)

By using (2.3), the MLE of θ is

θ̂ML =
m

S(X)
.

Example 2.1.1. (i) (Exponential distribution): Taking F̄0(x) =
e−x, x > 0, in (1.1), X has exponential distribution, and we obtain
the MLE of θ as

θ̂ML =
m∑m

i=1(Ri + 1)xi
.

(ii) (Burr type XII distribution): Taking F̄0(x) = (1 + xc)−1, x >
0, c > 0, with known c, in (1.1), X has Burr type XII distribution,
and we obtain the MLE of θ as

θ̂ML =
m∑m

i=1(Ri + 1) ln(1 + xc
i ).

.
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The corresponding MLE of the reliability function R(t), and haz-
ard rate function H(t), after replacing θ by its MLE θ̂ML, are given
by

R̂ML(t) = [F̄0(t)]θ̂ML , ĤML(t) =
f0(t)
F̄0(t)

θ̂ML. (2.4)

2.2 UMVUEs

To obtain the UMVUEs of θ, R(t) and H(t), we first consider the
distribution of S(X) = −

∑m
i=1(Ri + 1) ln F̄0(Xi) . We know that if

X ∼ F (x; θ) in (1.2), then

U = F (X; θ) = 1− [F̄0(X)]θ,

is distributed as the Uniform(0,1) distribution. Suppose that U1, U2,
· · · , Um be a progressively Type-II censored sample from the U(0, 1)
distribution. Then, from a known result about the progressively
Type-II censored sample from the Uniform(0,1) distribution (see Bal-
akrishnan and Aggarwala, 2000, P. 20), the random variables

V1 =
1− Um

1− Um−1
,

V2 =
1− Um−1

1− Um−2
,

...

Vm−1 =
1− U2

1− U1
,

Vm = 1− U1

are all mutually independent random variables with

Vi
d= Beta

i +
m∑

j=m−i+1

Rj , 1

 , i = 1, 2, · · · ,m.

Now, since

−2

i +
m∑

j=m−i+1

Rj

 lnVi
d= χ2

2 , i = 1, 2, · · · ,m,
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we conclude that

−2
m∑

i=1

i +
m∑

j=m−i+1

Rj

 lnVi = −2
m∑

i=1

(Ri + 1) ln[1− Ui]

= −2θ
m∑

i=1

(Ri + 1) ln[F̄0(Xi)]

= 2θS(X) d= χ2
2m , (2.5)

where χ2
q denotes the χ2-distribution with q degrees of freedom. From

(2.5), we find that S(X) ∼ Γ(m, θ), i.e., S(X) is a gamma distributed
random variable with parameters m and θ. Now, it is easy to see that
θ̂ML = m/S(X) is a biased estimator of θ and the unbiased estimator
is (m − 1)/S(X). Furthermore, from (2.2) it is clear that S(X) is
a complete sufficient statistics and hence (m − 1)/S(X) is also the
UMVUE of θ.

In order to derive the UMVUE of R(t), define

gt(u) =


(
1 + ln F̄0(t)

u

)m−1
if u ≥ − ln F̄0(t)

0 otherwise.

Then, it is easy to verify that E[gt(S)] = R(t). Hence, the UMVUE
of R(t) is

R̂UMV U (t) =


(
1 + ln F̄0(t)

S(X)

)m−1
if S(X) ≥ − ln F̄0(t)

0 otherwise.
(2.6)

Also the UMVUE of H(t) is obtained as

ĤUMV U (t) =
f0(t)
F̄0(t)

m− 1
S(X)

. (2.7)

It should be mentioned here that since 2θS(X) has chi square
distribution with 2m degrees of freedom, therefore it can be used to
construct confidence intervals or to conduct tests of hypotheses for
the parameter θ. For example, a two sided 100(1 − γ)% confidence
interval for θ is given by[

χ2
2m(1− γ/2)

2S(X)
,
χ2

2m(γ/2)
2S(X)

]
,

where χ2
2m(γ/2) is the right-tailed γ/2 percentile for chi-squared dis-

tribution with 2m degrees of freedom.
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2.3 Bayes Estimation

In the literature, most of the Bayesian inference procedures have been
developed under the usual squared error loss (SEL) function. The
symmetric nature of this function gives equal weight to overestima-
tion as well as underestimation, while in the estimation of parameters
of life time model, overestimation may by more serious than under-
estimation or vice-versa. For example, in the estimation of reliability
and hazard rate functions, an overestimation is usually much more
serious than an underestimation. In this case, the use of symmetri-
cal loss function might be inappropriate as also emphasized by Basu
and Ebrahimi (1991). In recent years, many authors have consid-
ered asymmetric loss functions in the Bayesian inference procedures,
such as Basu and Ebrahimi (1991), Parsian and Nematollahi (1996),
Moore and Papadopoulos (2000), Soliman (2005) and Ahmadi et al.
(2005).

One of the most popular asymmetric loss function is the linear-
exponential loss function (LINEX). This loss function was introduced
by Varian (1975) and was extensively discussed by Zellner (1986).
Under the assumption that the minimal loss occurs at φ∗ = φ, the
LINEX loss function for φ = φ(θ) can be expressed as

L(∆) ∝ exp(a∆)− a∆− 1, a 6= 0. (2.8)

where ∆ = (φ∗ − φ), φ∗ is an estimate of φ. The sign and magnitude
of the shape parameter a represents the direction and degree of sym-
metry, respectively. (If a > 0, the overestimation is more serious than
underestimation, and vice-versa.) For a close to zero, the LINEX loss
is approximately SEL and therefore almost symmetric.

The posterior expectation of the LINEX loss function (2.8) is

Eφ[L(φ∗ − φ)] ∝ exp(aφ∗)Eφ[exp(−aφ)]− a(φ∗ − Eφ(φ))− 1, (2.9)

where Eφ(·) denotes the posterior expectation with respect to the
posterior density of φ. The Bayes estimator of φ, denote by φ∗BL

under the LINEX loss function is the value φ∗ which minimizes (2.9).
It is

φ∗BL = −1
a

ln{Eφ[exp (−aφ)]}, (2.10)

provided that the expectation Eφ[exp (−aφ)] exists and is finite.
Another useful asymmetric loss function is the general entropy

loss (GEL) function

L(φ∗, φ) ∝
(

φ∗

φ

)q

− q ln
(

φ∗

φ

)
− 1, q 6= 0, (2.11)
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whose minimum occurs at φ∗ = φ. This loss function is a generaliza-
tion of the entropy loss function used by Dey et al. (1987).

The Bayes estimator φ∗BG of φ under the general entropy loss
(2.11) is (see for example Soliman, 2005)

φ∗BG =
(
Eφ(φ−q)

)− 1
q . (2.12)

Under the assumption that the parameter θ is unknown, we can
use the conjugate gamma prior Γ(α, β), with pdf

π(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0, (β > 0, δ > 0). (2.13)

The posterior density function of θ given the data, denoted by π(θ |
x), can be obtained using (2.2) and (2.13) as

π(θ | x) =
[β + S(x)]m+α

Γ(m + α)
θm+α−1e−θ[β+S(x)]. (2.14)

Under a squared error loss function, the usual estimate of a pa-
rameter is the posterior mean. Thus, Bayes estimators of the pa-
rameter, reliability function and failure rate function are obtained
by using the posterior density (2.14). The Bayes estimator θ̂BS of
parameter θ is

θ̂BS =
m + α

β + S(X)
. (2.15)

The Bayes estimator, R̂BS , of the reliability function R(t) is

R̂BS(t) = E[R(t)|X]

= E
[
(F̄0(t))θ|X

]
=

[
1− ln F̄0(t)

β + S(X)

]−(m+α)

. (2.16)

The Bayes estimator, ĤBS , of the failure rate function H(t) is

ĤBS(t) = E[H(t)|X]

=
f0(t)
F̄0(t)

θ̂BS . (2.17)

Under the LINEX loss function, the Bayes estimator θ̂BL of θ is
obtained by using (2.10) and (2.14), and is given by

θ̂BL =
m + α

a
ln
[
1 +

a

β + S(X)

]
, a 6= 0. (2.18)
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Similarly, the Bayes estimator for the reliability function R(t) is given
by

R̂BL(t) = −1
a

ln
[∫ ∞

0
e−aR(t)π(θ | x)dθ

]
= −1

a
ln

[∫ ∞

0
e−a[(F̄0(t))θ] [β + S(x)]m+α

Γ(m + α)
θm+α−1e−θ[β+S(x)]dθ

]
.

By using the exponential series

e−a[(F̄0(t))θ] =
∞∑

k=0

(−a)k

k!
[
F̄0(t)

]kθ

=
∞∑

k=0

(−a)k

k!
eθk ln[F̄0(t)]

and after some simplification, we obtain

R̂BL(t) = −1
a

ln

[ ∞∑
k=0

(−a)k

k!
[1− k ln F̄0(t)

β + S(X)
]−(m+α)

]
. (2.19)

Also, we obtain the Bayes estimator for the hazard rate function H(t)
as

ĤBL(t) = −1
a

ln
[∫ ∞

0
e−aH(t)π(θ | x)dθ

]
= −1

a
ln

[∫ ∞

0
e
−aθ

f0(t)

F̄0(t)
[β + S(x)]m+α

Γ(m + α)
θm+α−1e−θ[β+S(x)]dθ

]

=
m + α

a
ln
[
1 +

a

β + S(X)
f0(t)
F̄0(t)

]
. (2.20)

Under the general entropy loss function, the Bayes estimator θ̂BG

of θ is obtained by using (2.12) and (2.14), and is given by

θ̂BG =
[
E(θ−q|X)

]− 1
q =

(
Γ(m + α)

Γ(m + α− q)

) 1
q

[β + S(X)]−1 . (2.21)

Similarly, the Bayes estimator for the reliability function R(t) is given
by

R̂BG(t) =
[∫ ∞

0
(R(t))−qπ(θ|x)dθ

]− 1
q

=

[∫ ∞

0
[(F̄0(t))θ]−q [β + S(x)]m+α

Γ(m + α)
θm+α−1e−θ[β+S(x)]

]− 1
q

,
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and after some simplification, we obtain

R̂BG(t) =

[
1 +

q ln F̄0(t)
β + S(x)

]m+α
q

. (2.22)

For H(t), we obtain

ĤBG(t) =
[
E
(
[H(t)]−q) |X]− 1

q

=
f0(t)
F̄0(t)

θ̂BG (2.23)

2.4 Empirical Bayes Estimation

Assume that the conjugate family of prior distribution for θ is the
family of gamma distributions, Γ(α, β), with known α and unknown
β. The Bayes estimators obtained in the previous subsection are
seen to depend on the parameter β. When the prior parameter β
is unknown, we may use the empirical Bayes approach to get its
estimate. From (2.2) and (2.13), we calculate the marginal pdf of x,
with density

m(x|β) =
∫ ∞

0
f(x | θ)π(θ | β)dθ

=
∫ ∞

0
A[

m∏
i=1

f0(xi)
F̄0(xi)

]θme−θS(x) βα

Γ(α)
θα−1e−βθdθ

= A[
m∏

i=1

f0(xi)
F̄0(xi)

]
Γ(m + α)

Γ(α)
βα

[β + S(x)]m+α
.

Based on m(x | β), we obtain an estimate, β̂, of β. The MLE of β is

β̂ =
α

m
S(X). (2.24)

Now, by substituting β̂ for β in the different Bayes estimators, we
obtain the empirical Bayes estimators of θ, R(t) and H(t) as follows:

θ̂EBS =
m

S(X)
, (2.25)

R̂EBS(t) = [1− m ln F̄0(t)
(m + α)S(X)

]−(m+α), (2.26)
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ĤEBS(t) =
f0(t)
F̄0(t)

m

S(X)
, (2.27)

θ̂EBL =
m + α

a
ln[1 +

ma

(m + α)S(X)
], a 6= 0, (2.28)

R̂EBL(t) = −1
a

ln

 ∞∑
k=0

(−a)k

k!

[
1− mk ln F̄0(t)

(m + α)S(X)

]−(m+α)
 , (2.29)

ĤEBL(t) =
m + α

a
ln
[
1 +

ma

(m + α)S(X)

]
f0(t)
F̄0(t)

, (2.30)

θ̂EBG =
(

Γ(m + α)
Γ(m + α− q)

) 1
q m

(α + m)S(x)
, (2.31)

R̂EBG(t) =

[
1 +

mq ln F̄0(t)
(α + m)S(x)

]m+α
q

, (2.32)

ĤEBG(t) =
f0(t)
F̄0(t)

θ̂EBG. (2.33)

3 Prediction

Based on the progressively Type-II right censored sample X = (X1, ...,
Xm) from the proportional hazards family (1.1), our interest is to
find prediction interval for the life-lengths Xs:Ri (s = 1, 2, ..., Ri; i =
1, 2, ...,m) of all censored units in all m stages of censoring. Here
Y = Xs:Ri denotes the s-th order statistic out of Ri removed units at
stage i (i = 1, 2, · · · ,m). Let x = (x1, ..., xm) and Y = y denote the
observed value of X and the unobserved value of Y , respectively. The
conditional distribution of Y = Xs:Ri given X is just the distribution
of Y given Xi = xi due to the well-known Markovian property of
progressively Type-II censored ordered statistics. It follows (see Bal-
akrishnan and Aggarwala, 2000), that

f(y|xi; θ) = s

(
Ri

s

)
f(y; θ) [F (y; θ)− F (xi; θ)]

s−1 [1− F (y; θ)]Ri−s

× [1− F (xi; θ)]
−Ri , y ≥ xi.
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For the proportional hazards family, with cdf and pdf given by (1.1)
and (1.2), the function f(y|xi; θ) is given by

f(y|xi; θ) = s

(
Ri

s

)
θ

f0(y)
F̄0(y)

[
(F̄0(y))θ

]Ri−s+1 [
(F̄0(xi))θ − (F̄0(y))θ

]s−1

×
[
(F̄0(xi))θ

]−Ri
, y ≥ xi. (3.1)

The Bayes predictive density function of Y = Xs:Ri given Xi = xi is
given by

f∗(y|xi) =
∫
Θ

f(y|xi, θ)π(θ|x)dθ. (3.2)

By substituting (2.14) and (3.1) into (3.2), we get

f∗(y|xi) =∫ ∞

0
s

(
Ri

s

)
θ

f0(y)
F̄0(y)

[
(F̄0(y))θ

]Ri−s+1 [
(F̄0(xi))θ − (F̄0(y))θ

]s−1
×

[
(F̄0(xi))θ

]−Ri [β + S(x)]m+α

Γ(m + α)
θm+α−1e−θ[S(x)+β] dθ, y ≥ xi, (3.3)

By using bivariate expansion, we have

[
(F̄0(xi))θ − (F̄0(y))θ

]s−1
=

s−1∑
j=0

(
s− 1

j

)
(−1)j [F̄0(y)]θj [F̄0(xi)]θ(s−j−1).

(3.4)
From (3.4),the equation (3.3) can be rewritten as

f∗(y|xi) =

s

(
Ri

s

)
f0(y)
F̄0(y)

m + α

β + S(x)
×

s−1∑
j=0

(
s− 1

j

)
(−1)j

1−
(Ri − s + j + 1) ln( F̄0(y)

F̄0(xi)
)

β + S(x)

−(m+α+1)

.(3.5)

Now, for constructing a Bayesian prediction interval for Y = Xs:Ri ,
we consider the predictive function P (Y ≤ λ|xi), for some positive
λ. It follows from (3.5), that

P (Y ≤ λ|xi)

=
∫ λ

xi

f∗(y|xi)dy
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= s

(
Ri

s

)
s−1∑
j=0

(
s− 1

j

)
(−1)j 1

Ri − s + j + 1

×

1−

1−
(Ri − s + j + 1) ln( F̄0(λ)

F̄0(xi)
)

β + S(x)

−(m+α) . (3.6)

Hence, the 100(1 − γ)% prediction interval for Y = Xs:Ri is given
by (L(xi), U(xi)), where L(xi) and U(xi) are the lower and upper
prediction bounds, respectively, satisfying

Pr[Y ≤ L(xi)|xi] =
γ

2
, and P [Y ≤ U(xi)|xi] = 1− γ

2
. (3.7)

Iterative numerical methods are required to obtain the lower and
upper 100(1− γ)% prediction bounds for Y by finding λ from (3.6),
using (3.7).

For the special case, when s = 1, the Eqs. (3.5) and (3.6) reduce
to:

f∗(y|xi) = Ri
f0(y)
F̄0(y)

m + α

β + S(x)

1−Ri

ln( F̄0(y)
F̄0(xi)

)

β + S(x

−(m+α+1)

y ≥ xi,

and

P (Y ≤ λ|xi) = 1−
[
1− Ri

β + S(x)
ln(

F̄0(λ)
F̄0(xi)

)

]−(m+α)

.

In this case, we can obtain the Bayes prediction bounds for Y = Xs:Ri

as

L(xi) = F−1
0

[
1− F̄0(xi) exp

{
β + S(x)

Ri

(
1− (1− γ

2
)−

1
m+α

)}]
,

and

U(xi) = F−1
0

[
1− F̄0(xi) exp

{
β + S(x)

Ri

(
1− (

γ

2
)−

1
m+α

)}]
. (3.8)

Example 3.1. For the case of exponential distribution, the equa-
tion (3.8) reduces to:

L(xi) = − ln
[
1− exp

{
−xi +

β +
∑m

i=1(Ri + 1) lnxi

Ri

(
1− (1− γ

2
)−

1
m+α

)}]
,
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and

U(xi) = − ln
[
1− exp

{
−xi +

β +
∑m

i=1(Ri + 1) lnxi

Ri

(
1− (

γ

2
)−

1
m+α

)}]
.

If the conjugate family of prior distribution for θ is the family of
Gamma distributions, Γ(α, β) with known α and unknown β. Then
the parameter β in the Bayes prediction bounds has to be estimated.
We may use the empirical Bayes approach to estimate β. By sub-
stituting β̂ for β in the Bayes prediction bounds, we can obtain the
empirical Bayes prediction bounds for Y = Xs:Ri .

4 Numerical Examples

In this section, two numerical examples are presented to illustrate
all the estimation and prediction methods described in the preceding
sections. We consider the exponential distribution E(1/θ) with cdf

F (x, θ) = 1− e−θx, x > 0, θ > 0,

as a special case from the model (1.1). Here, we have

F̄0(x) = e−x and S(x) =
m∑

i=1

(Ri + 1) ln xi.

Example 4.1. (Simulated Data): The MLEs, the UMVUEs and
Bayes estimates for θ, R(t) and H(t) (at t = 3), and Bayes and
empirical Bayes prediction intervals are computed as described in
Sections 2 and 3 according to the following steps:

(i) For given values of α = 1.5 and β = 2, we generate θ = 0.744
from the prior pdf (2.13).

(ii) Using the value θ = 0.744 from step (i), we generate a pro-
gressively Type-II censored sample of size m = 10 with the
censoring scheme

R = (1, 0, 1, 2, 0, 0, 3, 0, 1, 2)

from the exponential distribution according to the algorithm
presented in Balakrishnan and Sandhu (1995). The sample gen-
erated is
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0.0089 0.0199 0.0768 0.2186 0.2693
0.3253 0.7980 0.9508 1.0819 2.3185

(iii) Using this sample, we obtain the MLEs, the UMVUEs and
Bayes estimates of θ, R(t) and H(t) (at t = 3). These estimates
are summarized in Table 1.

(iv) The MLE β̂ = 2.206 is computed using (2.24).

(v) Applying the estimate β̂ = 2.206 in the Bayes estimates, we
also computed and reported the empirical Bayes estimates in
Table 1.

(vi) We also computed and reported the 95% Bayes and empirical
Bayes prediction intervals for Y = Xs:Ri (s = 1, 2, ..., Ri; i =
1, 2, ..., 10) in Tables 2.

Table 1. The MLEs, UMVUEs and Bayes and Empirival Bayes
estimates of the parameter, reliability and hazard rate functions in

Example 4.1.
BL BG

ML UMVU BS a q
-2 -0.5 0.5 5 -5 -3 -1 1

θ̂ 0.680 0.612 0.688 0.733 0.699 0.678 0.602 0.804 0.747 0.688 0.629

R̂(t = 3) 0.130 0.128 0.150 0.157 0.151 0.148 0.134 0.229 0.192 0.150 0.103

Ĥ(t = 3) 0.680 0.612 0.688 0.733 0.699 0.678 0.602 0.804 0.747 0.688 0.629

EBS EBL EBG

θ̂ 0.680 0.724 0.690 0.670 0.596 0.794 0.738 0.680 0.621

R̂(t = 3) 0.153 0.160 0.155 0.151 0.137 0.232 0.195 0.153 0.106

Ĥ(t = 3) 0.680 0.724 0.690 0.670 0.596 0.794 0.738 0.680 0.621

Table 2. 95% Bayesian and Empirical Bayesian prediction intervals
for Xs:Ri in Example 4.1

X1:R1 X1:R3 X1:R4 X2:R4 X1:R7

Bayesian (0.046,6.326) (0.114,6.394) (0.237,3.377) (0.016,7.920) (0.810,2.904)
prediction
interval X2:R7 X3:R7 X1:R9 X1:R10 X2:R10

(0.937,4.979) (1.274,9.347) (1.119,7.399) (2.337,5.447) (2.116,10.020)

X1:R1 X1:R3 X1:R4 X2:R4 X1:R7

Empirical (0.046,6.404) (0.114,6.472) (0.237,3.416) (0.013,8.015) (0.810,2.930)
Bayesian
prediction X2:R7 X3:R7 X1:R9 X1:R10 X2:R10
interval

(0.939,5.031) (1.280,9.452) (1.119,7.477) (2.337,5.516) (2.113,10.115)
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Example 4.2. (Real Data): We consider the following set of data
reported in Nelson (1982, Table 1.1). Nelson presents the results of a
life-test experiment in which specimens of a type of electrical insulat-
ing fluid were subject to a constant voltage stress(34 KV/minutes).
The 19 times to breakdown are:

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50
7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

We checked the validity of the exponential model based on the pa-
rameter θ = 0.07, using the Kolmogorov-Smirnov (K-S) test. It is
observed that the K-S distance is K−S = 0.2464 with a correspond-
ing p − vale = 0.1678. This indicates that the exponential model is
adequate for these data. Let us consider the following progressively
Type-II censored sample of size m = 8 generated randomly from the
n = 19 observations. The observations and the censoring scheme ap-
plied, are reported in Table 3. These data has been used earlier by
Viveros and Balakrishnan (1994) and Basak et al. (2006).

Table 3. Progressively censored data given in Example 4.2.
i 1 2 3 4 5 6 7 8

Xi 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35
Ri 0 0 3 0 3 0 0 5

To compute the Bayes and empirical Bayes estimates and Bayes
and empirical Bayes prediction intervals , since we do not have any
prior information, we assume that α = β = 0. Although it implies an
improper prior on θ, but the corresponding posterior is proper. The
MLEs, the UMVUEs and Bayes estimates for θ, R(t) and H(t) (at
t = 3), and Bayes prediction intervals are given in Tables 4 and 5.
Note that in this case β̂ = β, and hence the empirical Bayes estimates
and empirical Bayes prediction intervals correspond with the Bayes
estimates and Bayes prediction intervals.
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Table 4. The MLEs, UMVUEs and Bayes and Empirical Bayes
estimates of the parameter, reliability and hazard rate functions in

Example 4.2.
BL BG

ML UMVU BS a q
-2 -0.5 0.5 5 -5 -3 -1 1

θ̂ 0.110 0.096 0.110 0.112 0.110 0.110 0.106 0.136 0.123 0.110 0.096

R̂(t = 3) 0.719 0.745 0.724 0.730 0.725 0.722 0.706 0.741 0.733 0.724 0.714

Ĥ(t = 3) 0.110 0.096 0.110 0.112 0.110 0.110 0.106 0.136 0.123 0.110 0.096

EBS EBL EBG

θ̂ 0.110 0.112 0.110 0.110 0.106 0.136 0.123 0.110 0.096

R̂(t = 3) 0.724 0.730 0.725 0.722 0.706 0.741 0.733 0.724 0.714

Ĥ(t = 3) 0.110 0.112 0.110 0.110 0.106 0.136 0.123 0.110 0.096

Table 5. 95% Bayesian and Empirical Bayesian prediction intervals
for Xs:Ri in Example 4.2.

X1:R3 X2:R3 X3:R3 X1:R5 X2:R5 X3:R5

Bayesian (1.037,15.154) (1.821,29.541) (3.874,59.666) (2.857,16.975) (2.061,31.361) (5.695,61.486)
prediction
interval X1:R8 X2:R8 X3:R8 X4:R8 X5:R8

(7.396,15.867) (6.956,22.646) (8.683,31.404) (5.681,44.830) (12.604,74.182)

X1:R3 X2:R3 X3:R3 X1:R5 X2:R5 X3:R5

Empirical (1.037,15.154) (1.821,29.541) (3.874,59.666) (2.857,16.975) (2.061,31.361) (5.695,61.486)
Bayesian
prediction X1:R8 X2:R8 X3:R8 X4:R8 X5:R8
interval

(7.396,15.867) (6.956,22.646) (8.683,31.404) (5.681,44.830) (12.604,74.182)

From Table 1 and for the sample generated in Example 4.1, we ob-
serve most of estimates of parameter θ is underestimated, and when
q = −3 and q = −5, the Bayes estimates relative to GEL function
are overestimated. From Tables 1 and 4, as anticipated, we note that
for for a close to 0, and q = −1, all Bayes and empirical Bayes esti-
mates relative to both LINEX loss and GEL function are very close
to the corresponding estimates under SEL function. From Tables ,
we observe that the empirical Bayes estimators and predictors are
very close to the Bayes estimators and predictors.
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