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Abstract. When an ordering among parameters is known in ad-
vance, the problem of estimating the smallest or the largest param-
eters arises in various practical problems. Suppose independent ran-
dom samples of size ni drawn from two gamma distributions with
known arbitrary shape parameter νi > 0 and unknown scale param-
eter βi > 0, i = 1, 2. We consider the class of mixed estimators of
β1 and β2 under the restriction 0 < β1 ≤ β2. It has been shown
that a subclass of mixed estimators of βi, beats the usual estima-
tors Xi/νi, i = 1, 2, and a class of admissible estimators in the class
of mixed estimators are derived under scale-invariant squared error
loss function. Also it has been shown that the mixed estimator of
(β1, β2), 0 < β1 ≤ β2, beats the usual estimator

(
X1/ν1, X2/ν2

)
simultaneously, and a class of admissible estimators in the class of
mixed estimators of (β1, β2) are derived. Finally the results are ex-
tended to some subclass of exponential family.
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1 Introduction

The problem of estimating order restricted parameters has its origins
in the study of isotonic regression and has found applications in areas
such as bio-assays, reliability and life testing and various agricultural
and industrial experiments. For example, suppose it is desired to
estimate the average yields, say, β1 and β2, under treatments τ1 and τ2

respectively, where the treatment τ2 is using certain fertilizer for the
crop, while treatment τ1 is not using any fertilizer. In this situation,
it is reasonable to assume that β1 ≤ β2.

Estimation of ordered parameters has received attention of several
researchers during the past 50 years. Most of the earlier work on this
problem deals with methods for finding maximum likelihood estima-
tors (MLEs) when the underlying distributions are normal, gamma,
binomial, etc. Barlow et al. (1972) and Roberstson et al. (1988) dis-
cuss these results in details. Katz (1963) introduced mixed estimators
for simultaneous estimation of two ordered binomial parameters and
showed that they are better than the unrestricted MLEs. Kumar
and Sharma (1988) consider mixed estimators for two ordered nor-
mal means and discuss the minimaxity and inadmissibility of them.
Mixed estimators for ordered parameters of two exponential popula-
tion have been studied by Vijayasree and Singh (1991, 1993), Kaur
and Singh (1991), Kumar and Kumar (1993, 1995) and Misra and
Singh (1994). Some estimation problem in connection with ordered
scale parameters of two (or k ≥ 2) gamma populations can be found
in Vijayasree et al. (1995), Chang and Shinozaki (2002) and Misra et
al. (2002). For estimation of ordered parameters of uniform, normal
and von mises distributions, see Misra and Dhariyal (1995), Misra
and van der Meulen (1997), Misra et al. (2004), Kumar et al. (2005),
and Singh et al. (2005). For a classified and extensively reviewed
work in this area, see van Eeden (2006).

In estimation of ordered scale parameters of two exponential pop-
ulations, Kaur and Singh (1991) showed that the unrestricted MLEs
of two exponential means are inadmissible and are dominated by their
respective restricted MLEs. Vijayasree and Singh (1991, 1993) dis-
cussed componentwise and simultaneous estimation of ordered mean
of two exponential distributions and considered mixed estimators
based on sample mean, and obtained classes of estimators that are
minimal complete in the class(es) of mixed estimators. However the
work of these authors are in the framework of ordered scale parame-
ters of gamma populations with known shape parameters which are
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integers. In their inadmissibility and admissibility results they em-
ployed to use the relationship between: binomial and negative bino-
mial, binomial and incomplete beta function, and gamma and poisson
distribution. This method only can be used for the shape parameters
that are integers.

In estimation of the ordered scale parameters of two gamma dis-
tribution, Misra et al. (2002) derived smooth estimator that improve
upon the best scale equivariant estimators, and compared it to non-
smooth improved estimators of Vijayasree et al. (1995). Also Chang
and Shinozaki (2002) considered estimation of linear functions of or-
dered scale parameters, and showed that the inadmissibility results
of Kaur and Singh (1991) are special cases of their results.

In this paper we extend the results of Vijayasree and Singh (1991,
1993) in estimation of ordered scale parameters of two gamma popu-
lations with arbitrary known shape parameters under scale-invariant
squared error loss function and then extend it to some subclass of
exponential family of distributions.

Suppose Xij , j = 1, 2, · · · , ni, i = 1, 2 be two independent random
samples from gamma distribution with known shape parameter νi > 0
and unknown scale parameter βi > 0, i = 1, 2, with density

fXij (x) =
1

βνi
i Γ(νi)

xνi−1e−x/βi ,

x > 0, νi > 0, βi > 0, j = 1, . . . , ni, i = 1, 2. (1.1)

We assume 0 < β1 ≤ β2, and want to estimate β1 and β2 component-
wise under the scale-invariant squared error loss function

L(βi, δi) =
(

δi

βi
− 1

)2

, i = 1, 2, (1.2)

and simultaneously estimate β = (β1, β2) under the following loss

L(β, δ) =
2∑

i=1

(
δi

βi
− 1

)2

, (1.3)

where δ = (δ1, δ2).
In Section 2, a subclass of mixed estimators of βi that beats the

usual estimators Xi/νi, i = 1, 2, is obtained. In Section 3 the class
of admissible estimators in the class of mixed estimators are derived
under the loss (1.2). In Section 4, for simultaneous estimation of
(β1, β2), 0 < β1 ≤ β2, a subclass of mixed estimators of (β1, β2)
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that beats the usual estimator
(
X1/ν1, X2/ν2

)
is obtained and the

class of admissible estimators in the class of mixed estimators are
derived under the loss(1.3). Finally, an extension to some subclass of
exponential families of distributions is considered in Section 5 and a
discussion is given in Section 6.

2 Inadmissibility of Usual Estimators

Let Xij , j = 1, 2, . . . , ni, i = 1, 2 be two independent random samples
from Gamma(νi, βi)- distribution, i = 1, 2, with density(1.1) where
0 < β1 ≤ β2 and ν1, ν2 are known positive real valued shape pa-

rameters. Let mi = niνi and δi =
ni∑

j=1
Xij/mi = Xi/νi, i = 1, 2.

Then miδi
βi

∼ Gamma(mi, 1), i = 1, 2, and δ1 and δ2 are MLEs of
β1 and β2, respectively, when β1 and β2 are unrestricted. Define the
component-wise mixed estimator of β1 and β2, as

δ1α = min (δ1, αδ1 + (1− α)δ2)

= αδ1 + (1− α) min (δ1, δ2) , 0 ≤ α < 1 (2.1)

and

δ2α = max (δ2, αδ2 + (1− α)δ1)

= αδ2 + (1− α) max (δ1, δ2) , 0 ≤ α < 1 (2.2)

respectively. When α = m1
m1+m2

, then δ1α is the MLE of β1 and if
α = m2

m1+m2
, then δ2α is the MLE of β2 when 0 < β1 ≤ β2. Note that

in general m1 and m2 are not integers.
In Vijayasree and Singh (1993), δ2α is defined by δ2α = max(δ2, αδ1

+(1−α)δ2), 0 < α ≤ 1. Since we want to construct the admissibility
results for simultaneous mixed estimators δα = (δ1α, δ2α), we use δ2α

in the form (2.2) which is used in Vijayasree and Singh (1991).
In this section, we show that δiα dominates the usual estimator

δi of βi, i = 1, 2, for some 0 ≤ α < 1. The risk functions of δiα and δi

with respect to the loss(1.2) are given by

R(δiα,β) = E

[(
δiα

βi
− 1

)2
]

, i = 1, 2
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and

R(δi,β) = E

[(
δi

βi
− 1

)2
]

=
1

mi
, i = 1, 2

respectively. Let y1 = β2/β1, y2 = β1/β2 and z = m1y1/(m1y1 +m2).
Since 0 < β1 ≤ β2, we have y1 ≥ 1, 0 < y2 ≤ 1 and 0 < z < 1.

Theorem 2.1. (a) For α ∈ [0, 1) and m2 ≥ m1 − 1,

R(δ1α,β) < R(δ1,β).

(b) Let α1 = m1/(m1+m2+1), then for α ∈ (α1, 1) and 0 < β1 ≤ β2,

R(δ1α1 ,β) < R(δ1α,β) < R(δ1,β) (2.3)

Proof. (a) Let T1 = m2δ2
m1y1δ1+m2δ2

and T2 = m1δ1
β1

+ m2δ2
β2

. Then δ1 =
β1T2(1−T1)

m1
, δ2 = β2T1T2

m2
and T1 and T2 are statistically independent

with T1 ∼ Beta(m2,m1) and T2 ∼ Gamma(m1 + m2, 1). If ∆1 =
R(δ1,β)−R(δ1α,β), then

∆1 = (1− α)×

E

[
δ1 − δ2

β1

{
(1 + α)δ1 + (1− α)δ2

β1
− 2

}
I[0,∞)(δ1 − δ2)

]
=

1− α

m2
1m

2
2

E[{m2 − (m1y1 + m2)T1}{[m2(1 + α) +

(m1y1(1− α)−m2(1 + α))T1)]T 2
2 − 2m1m2T2}I[0,1−z](T1)]

=
(1− α)(m1 + m2)

m2
1m

2
2

E
[
g1,y1,α(T1)I[0,1−z](T1)

]
(2.4)

where

g1,y1,α(x) = [m2 − (m1y1 + m2)x]×

[(m2(1 + α)(1− x) + m1y1(1− α)x)(m1 + m2 + 1)

−2m1m2]

= A1(y1, α)x2 + B1(y1, α)x + C1(y1, α) (2.5)
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and

A1(y1, α) = (m1 + m2 + 1)(m1y1 + m2)×

[α(m1y1 + m2) + m2 −m1y1],

B1(y1, α) = 2m2[(m1y1 + m2)(m1 − α(m1 + m2 + 1))−

m2(m1 + m2 + 1)],

C1(y1, α) = m2
2[α(m1 + m2 + 1) + m2 + 1−m1] (2.6)

Note that C1(y1, α) > 0 for all y1 ≥ 1 when m2 ≥ m1 − 1 or α >
m1

m1+m2+1 = α1. The risk difference ∆1 in (2.4) and the coefficients in
(2.5) are the same as the risk difference and coefficients in (2.1) of
Vijayasree and Singh (1993) with replacing ni by mi, i = 1, 2, where
mi is not an integer. Hence the rest of the proof is similar to proof
of Theorem 2.1 of Vijayasree and Singh (1993), and is omitted. So,
g1,y1,α(x) > 0 for x ∈ [0, 1−z]. and hence ∆1 > 0 for all 0 < β1 ≤ β2,
when α ∈ (α1, 1) or α ∈ [0, 1) and m2 ≥ m1 − 1.

(b) The right inequality in (2.3) follows from the proof of part (a).
For a proof of the left inequality in (2.3), from (2.4) we have

∂R(∂1α,β)
∂α

= −∂∆1

∂α
=

2(m1 + m2)
m2

1m
2
2

E[h1,y1,α(T1)I[0,1−z](T1)] (2.7)

where

h1,y1,α(x) = [m2 − (m1y1 + m2)x]{−m1m2 + (m1 + m2 + 1)×

[αm2(1− x) + (1− α)m1y1x]}

= A∗1(y1, α)x2 + B∗
1(y1, α)x + C∗

1 (y1, α) (2.8)

and

A∗1(y1, α) = (m1 + m2 + 1)(m1y1 + m2)(αm2 − (1− α)m1y1)

B∗
1(y1, α) = m2[(m1y1 + m2)(m1 − 2α(m1 + m2 + 1))

+m1y1(m1 + m2 + 1)]

C∗
1 (y1, α) = m2

2[α(m1 + m2 + 1)−m1]. (2.9)

Note that C∗
1 (y1, α) > 0 for all y1 ≥ 1 and α > α1. When A1(y1, α) 6=

0, the quadratic function (2.8) has the roots

x1 = 1− z, x2 = 1− z +
m1m2[m2(y1 − 1) + y1]

A∗1(y1, α)
.
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If A∗1(y1, α)> 0 then x1 = 1 − z is the smaller positive root, and if
A∗1(y1, α) < 0 then x1 = 1 − z is the only positive root when α ∈
(α1, 1). For the case A∗1(y1, α) = 0, x1 = 1− z is the only root. Thus
from (2.8), h1,y1,α(x) > 0 for x ∈ [0, 1 − z] and hence ∂R(δ1α,β)

∂α > 0
for all 0 < β1 ≤ β2 when α ∈ (α1, 1), i.e., R(δ1α1 ,β) < R(δ1α,β) for
α ∈ (α1, 1), which completes the proof.

Remark 2.1. For driving ∆1 and g1,y1,α(x) in (2.4), Vijayasree
and Singh (1993) used the method of Kaur and Singh(1991) in which
they used the relationships between: binomial and negative binomial,
binomial and incomplete beta function, and gamma and poisson dis-
tribution. Their method only applied for the shape parameters when
they are integers. However we use the relationship between gamma
and beta random variables to drive ∆1 and g1,y1,α(x), which is cover
positive real valued shape parameters and hence their results are spe-
cial cases of our results.

Remark 2.2. Since m1
m1+m2

> m1
m1+m2+1 = α1, by Theorem 2.1 (b)

the ML estimator of β1, i.e., δ1α with α = m1/(m1 + m2), is beaten
by the mixed estimator δ1α1 .

Theorem 2.2. Let α2 = m1(2m1+m2)
(m1+m2)(m1+m2+1) and α∗2 = 1− α2,

(a) If m1 = 1 and β1 = β2, then R(δ2α∗2
,β) = R(δ2,β).

(b) If m1 ≥ 1 and 0 < β1 ≤ β2, then for α ∈ [α∗2, 1), R(δ2α,β) <
R(δ2,β).
Proof. Let ∆2 = R(δ2,β) − R(δ2α,β), then similar to the proof of
Theorem 2.1 we have

∆2 = (1− α)×

E

[
δ1 − δ2

β2

{
2− (1− α)δ1 + (1 + α)δ2

β2

}
I[0,∞)(δ1 − δ2)

]

=
(1− α)(m1 + m2)

m2
1m

2
2

E
[
g2,y2,α(T1)I[0,1−z](T1)

]
(2.10)

where

g2,y2,α(x) = [m2y2 − (m1 + m2y2)x][2m1m2 − (m1 + m2 + 1)×

(m2y2(1− α)(1− x) + m1(1 + α)x)]

= A2(y2, α)x2 + B2(y2, α)x + C2(y2, α), (2.11)
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and

A2(y2, α) = (m1 + m2 + 1)(m1 + m2y2)×

[2m1 − (1− α)(m1 + m2y2)],

B2(y2, α) = −2m2{(m1 + m2 + 1)y2[m1 − (1− α)(m1 + m2y2)]

+m1(m1 + m2y2)},

C2(y2, α) = m2
2y2{2m1 − (1− α)y2(m1 + m2 + 1)}. (2.12)

The risk difference ∆2 in (2.10) and the coefficients in (2.11) are the
same as the risk difference and coefficients in (2.2) of Vijayasree and
Singh (1993), with replacing α by 1−α and ni by mi, i = 1, 2, where
mi is not an integer. Hence the rest of the proof is similar to the
proof of Theorem 2.2 of Vijayasree and Singh (1993), and is omitted.
Note that in Theorem 2.2 of Vijayasree and Singh (1993) we replace
α by 1− α, hence 1− α ≤ α2, i.e., α ≥ 1− α2 = α∗2.

3 Class of Admissible Mixed Estimators

In this section we find the class of admissible estimators in the class
of mixed estimators (2.1) and (2.2) of β1 and β2 respectively. The
admissible mixed estimators of β1 are given in the next theorem.

Theorem 3.1. Let ρ = m2
m1+m2

and

α∗ = 1− ρ− ρ

m2Bρ(m2,m1)[ρ−m2(1− ρ)−m1 ]− 1−2ρ
1−ρ

, (3.1)

where B(., .) is the beta function and Bρ(., .) is the incomplete beta
function given by Bρ(a, b) =

∫ ρ
0 xa−1(1−x)b−1dx. Then for α ∈ [0, α∗]

and m2(m2 + 1) > 2m1, the estimator δ1α is admissible.

Proof. see the Appendix.

Remark 3.1. If m1 = m2 = m, i.e., n1ν1 = n2ν2, then the con-
dition m2(m2 + 1) > 2m1 reduces to m > 1 and using the fact
B 1

2
(m,m) = 1

2B(m,m), α∗ simplifies to α∗ = 1
2 −

1
m22mB(m,m)

, which
is the value given in Theorem 3.1 of Vijayasree and Singh (1993) with
replacing m by integer n. So, Theorem 3.1.a of Vijayasree and Singh
(1993) is a special case of Theorem 3.1. Note that this is the case
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when n1 = n2 and ν1 = ν2.

Remark 3.2. In Theorem 2.1.b and Theorem 3.1, it is shown
that the estimator δ1α in the class of mixed estimators (2.1) is in-
admissible when α ∈ (α1, 1) and is admissible when α ∈ [0, α∗]
where α∗ is given in (3.1) and α1 = m1

m1+m2+1 . It can be shown
that 1−ρ

2 < α∗ < α1 < 1 − ρ and hence the admissibility of δ1α for
α ∈ (α∗, α1] remained unsolved.

The admissible and inadmissible class of mixed estimators of β2

are given in the next theorem.

Theorem 3.2. Let α∗∗ = 1− α∗, then
(a) For α ∈ (α∗∗, 1), and for all β1 ≤ β2, R(δ2α∗∗ ,β) < R(δ2α,β).
(b) For α ∈ [0, α∗∗] and m2 > 1, the estimator δ2α is admissible.

Proof. see the Appendix.

Remark 3.3. Theorem 3.2 shows that the estimator δ2α in the
class of mixed estimators (2.2) is admissible, if and only if α ∈ [0, α∗∗]
and m2 > 1. Since α∗∗ > ρ = m2

m1+m2
, therefore the ML estimator

of β2, i.e., δα with α = m2
m1+m2

, is admissible in the class of mixed
estimators of β2.

Remark 3.4. If m1 = m2 = m then α∗∗ = 1 − α∗ = 1 −(
1
2 −

1
m22mB(m,m)

)
, which is the same as 1 − α∗ given in Theorem

3.1 of Vijayasree and Singh (1993) with replacing m by integer n and
α by 1 − α, respectively. So, Theorem 3.1.b and 3.1.c of Vijayas-
ree and Singh (1993) are special cases of Theorem 3.2. Note that
0 ≤ α ≤ α∗∗ = 1 − α∗ is equivalent to α∗ ≤ 1 − α ≤ 1, and hence
the results of Vijayasree and Singh (1993) follows with replacing α
by 1− α.

4 Simultaneous Estimation

In this section we consider simultaneous estimation of (β1, β2) when
β1 ≤ β2. We compare the mixed estimator δα = (δ1α, δ2α) and the
usual estimator δ = (δ1, δ2) =

(
X1/ν1, X2/ν2

)
under the loss func-

tion (1.3).
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Theorem 4.1. (a) R(δα,β) < R(δ,β), for all 0 < α < 1 , 0 <
β1 ≤ β2 and m2 ≥ m1 − 1.

(b) R(δ0,β) = R(δ,β), for β1 = β2.

(c) R(δ0,β) < R(δ,β), for 0 < β1 < β2 and m2 ≥ m1 − 1.

Proof. Using (2.4) and (2.10), we have

∆ = ∆1 + ∆2 = R(δ,β)−R(δα,β)

=
(1− α)(m1 + m2)

m2
1m

2
2y

2
1

E
[
Hy1,α(T1)I[0,1−z](T1)

]
(4.1)

where

Hy1,α(x) = y2
1g1,y1,α(x) + y2

1g2,y2,α(x)

= [m2 − (m1y1 + m2)x]{2m1m2y1(1− y1)

+(m1 + m2 + 1)[α(y2
1 + 1)

(
m2(1− x)−m1y1x)

+(y2
1 − 1)(m2(1− x) + m1y1x)]}

= A3(y1, α)x2 + B3(y1, α)x + C3(y1, α) (4.2)

and

A3(y1, α) = (m1 + m2 + 1)(m1y1 + m2)[α(m1y1 + m2)(y2
1 + 1)

+(m2 −m1y1)(y2
1 − 1)],

B3(y1, α) = 2m2{(m1y1 + m2)[y2
1(m1 − α(m1 + m2 + 1))−

α(m1 + m2 + 1)−m1y1] + (m1 + m2 + 1)m2(1− y2
1)},

C3(y1, α) = m2
2[α(m1 + m2 + 1)(y2

1 + 1) + (m2 −m1 + 1)(y2
1 − 1)

+2m1(y1 − 1)]. (4.3)

When α > 0 and m2 ≥ m1 − 1, C3(y1, α) > 0 for all y1 ≥ 1. When
A3(y1, α) 6= 0, the quadratic form (4.2) has the roots

x1 = 1− z, x2 = 1− z +
2m1m2y1(y1 − 1)[(m2 + 1)y1 + (m1 + 1)]

A3(y1, α)
.

Now, if A3(y1, α) < 0 then x1x2 = C3(y1,α)
A3(y1,α) < 0 and x1 = 1− z is the

only positive root, and if A3(y1, α) > 0 then x1 = 1− z is the smaller
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positive root. For the case A3(y1, α) = 0, x1 = 1− z is the only root.
Thus from (4.2) Hy1,α(x) > 0 for x ∈ [0, 1− z], which yields part (a)
of the Theorem.

For α = 0 and y1 = 1, (4.2) and (4.3) implies that Hy1,α(x) = 0,
i.e., R(δ0,β) = R(δ,β). For α = 0 and y1 > 1, a similar argument
as in the proof of part (a) implies that Hy1,0(x) > 0 for x ∈ [0, 1− z]
and m2 ≥ m1 − 1, which completes the proof.

Remark 4.1. Vijayasree and Singh (1991) used the sum of squared
error loss

L(β, δ) =
2∑

i=1

(δi − βi)2

which does not have the same behavior and risk difference as the one
we used. Also their method only applied for integer shape parameters.
However our method covers positive real valued shape parameters
under the loss (1.3), which is more appropriate in estimation of scale
parameters (β1, β2) than the loss they used.

In the next theorem we show that δα is inadmissible for α ∈
(1/2, 1).

Theorem 4.2. For α ∈ (1
2 , 1), R(δ 1

2
,β) < R(δα,β) for all 0 < β1 ≤

β2 and m2 ≥ m1 − 1.
Proof. From (4.1) and (4.2) we have

∆∗ = R(δα,β)−R(δ 1
2
,β)

= [R(δ,β)−R(δ 1
2
,β)]− [R(δ,β)−R(δα,β)]

=
(m1 + m2)
m2

1m
2
2y

2
1

E

[
(
1
2
Hy1, 1

2
(T1)− (1− α)Hy1,α(T1))I[0,1−z](T1)

]

=
(α− 1

2)(m1 + m2)
m2

1m
2
2y

2
1

E
[
Hy1,α− 1

2
(T1)I[0,1−z](T1)

]
So, the quadratic form in ∆∗ is the same as ∆ in (4.2) with replacing
α > 0 by α − 1/2 > 0. Therefore Hy1,α− 1

2
(x) > 0 for x ∈ [0, 1 − z] ,

m2 ≥ m1 − 1 and α > 1/2, which completes the proof.
Now we find the class of admissible estimators in the class of

mixed estimators.
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Theorem 4.3. For 0 ≤ α ≤ 1
2 and 2m1 < m2(m2+1), the estimators

δα are admissible in the class of mixed estimators.
Proof. From (4.1) and (4.2) we have

∂R(δα,β)
∂α

= −∂∆
∂α

= −m1 + m2

m2
1m

2
2y

2
1

E[{[m2 − (m1y1 + m2)T1]2

×(m1 + m2 + 1)(1− 2α)(y2
1 + 1)

−[m2 − (m1y1 + m2)T1][(m1 + m2 + 1)(y2
1 − 1)

×(m2 + (m1y1 −m2)T1)

+2m1m2y1(1− y1)]}I[0,1−z](T1)]. (4.4)

So, ∂R(δα,β)
∂α is a strictly increasing function of α, i.e., R(δα,β) for

fixed β, is a strictly convex function of α. Therefore for fixed β,
R(δα,β) will be minimized at the point α given by ∂R(δα,β)

∂α = 0
which gives

α(y1) =
1
2
− A(y1)

B(y1)

=
1
2
− y2

1 − 1
2(y2

1 + 1)
− m1y1(1− y1)

(m1 + m2 + 1)(1 + y2
1)
× γ(y1) (4.5)

where

A(y1) = E[{m2 − (m1y1 + m2)T1}{(m1 + m2 + 1)(y2
1 − 1)

×(m2 + (m1y1 −m2)T1) + 2m1m2y1(1− y1)}I[0,1−z](T1)],

B(y1) = 2E[{m2 − (m1y1 + m2)T1}2(m1 + m2 + 1)

×(y2
1 + 1)I[0,1−z](T1)],

γ(y1) =
E[{m2 − (m1y1 + m2)T1}[m2 − (m1 + m2 + 1)(1 + y1)T1]I[0,1−z](T1)]

E[{m2 − (m1y1 + m2)T1}2I[0,1−z](T1)]
.

Note that y1 → ∞ if and only if 1 − z → 0, so by L’Hospital’s rule
it can be easily shown that lim

y1→∞
γ(y1) = m1+m2+1

m1
− (m2+1)(m2+2)

2m1
.

Therefore for 2m1 < m2(m2 + 1) we have

lim
y1→∞

α(y1) =
m1

m1 + m2 + 1
{m1 + m2 + 1

m1
− (m2 + 1)(m2 + 2)

2m1
}

=
2m1 −m2(m2 + 1)
2(m1 + m2 + 1)

< 0.
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From (4.5) α(1) = 1/2 and for all y1 > 1, α(y1) is continuous in
y1. Thus for α ∈ [0, 1

2 ] there is a y1 for which R(δα,β) is minimum,
which implies that for 0 ≤ α ≤ 1/2 and 2m1 < m2(m2 + 1), δα is
admissible in the class of mixed estimators.

Remark 4.2. If m1 = m2 = m, then the condition of Theorem
4.2 on m1 and m2 always satisfy and condition of Theorem 4.3 on
m1 and m2 reduces to m > 1. Also if the conditions of Theorems 4.2
and 4.3 holds, i.e., 2m1 < m2(m2 + 1) and m2 > m1 − 1, then δα is
admissible in the class of mixed estimators if and only if α ∈ [0, 1

2 ].

5 Extension to a Subclass of Exponential
Family

Let Xi = (Xi1, Xi2, · · · , Xini
), i = 1, 2 has the joint probability den-

sity function

f(xi, θi) = C(xi, ni)θ
−γi
i e−Ti(xi)/θi , i = 1, 2, (5.1)

where xi = (xi1, · · · , xini), C(xi, ni) is a function of xi and ni, θi = τ r
i

for some r > 0, γi is a function of ni and Ti(xi) is a complete suffi-
cient statistic for θi with Gamma(γi, θi)- distribution. For example
Exponential(βi) with θi = βi, Gamma(νi, βi) with θi = βi and known
vi, Inverse Gaussian(∞, λi) with θi = 1

λi
, Normal(0, σ2

i ) with θi =

σ2
i , Weibull(ηi, βi) with θi = ηβi

i and known βi, Rayleigh(βi) with
θi = β2

i , Generalized Gamma(αi, λi, pi) with θi = λpi
i and known

pi and αi, Generalized laplace(λi, ki) with θi = λki
i and known ki

belong to the family of distributions (5.1). An admissible linear es-
timator of θi = τ r

i in this family under the entropy loss function can
be found in Parsian and Nematollahi (1996).

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(γi, θi)− distribution,
therefore we can extend the results of sections 2-4 to the subclass of
exponential family (5.1) by replacing mi = niνi, βi and

ni∑
j=1

Xij =

miδi by γi, θi and Ti(Xi), respectively.
The results of sections 2-4 can be extended to some other families

of distributions which do not necessarily belong to a scale families,
such as pareto or beta distributions. Considered the one parameter
exponential family

f(xi, ηi) = eai(xi)b(ηi)+c(ηi)+h(xi), i = 1, 2. (5.2)
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Rahman and Gupta (1993) showed that −2ai(Xi)b(ηi) has a
Gamma

(
ki
2 , 2

)
-distribution if and only if

2c′(ηi)b(ηi)
b′(ηi)

= ki. (5.3)

When ki is an integer, −2ai(Xi)b(ηi) follow a chi-square distribution
with ki degrees of freedom. They called the one parameter expo-
nential family (5.2) which satisfies (5.3), the family of transformed
chi-square distributions. For example, beta, pareto, exponential, log-
normal and some other distributions belong to this family of distri-
butions (see Table 1 of Rahman and Gupta,1993).

Now it is easy to show that if condition (5.3) holds then the
one parameter exponential family (5.2) is in the form of the scale
parameter exponential family (5.1) with γi = ki

2 , Ti(Xi) = ai(Xi)
and θi = −1/b(ηi) (see Jafari Jozani et al., 2002). Hence with these
substitutions, we can extend the results of sections 2-4 to the family
of transformed chi-square distributions.

6 Discussion

In previous sections under the order restriction 0 < β1 ≤ β2 of gamma
scale parameters, we derive the conditions that the mixed estimators

based on usual ML estimators δi =
ni∑

j=1
Xij/mi, i = 1, 2, dominates

δ1 and δ2 respectively, and characterize the admissible estimators in
the class of mixed estimators under the loss function (1.2). Also,
similar results was obtained for simultaneous estimation of (β1, β2)
when β1 ≤ β2 under the loss function (1.3).

Under the scale-invariant squared error loss function (1.2), the
best scale-invariant estimators of β1 and β2 in gamma-distribution

(1.1) is given by δ∗i =
ni∑

j=1
Xij/(niνi + 1) =

ni∑
j=1

Xij/(mi + 1), i = 1, 2,

respectively. By replacing mi by m∗
i = mi+1 and δi by δ∗i , the results

of sections 2-4 followed for mixed estimators based on the best scale-
invariant estimators δ∗1 and δ∗2 of β1 and β2, respectively. Note that
in the new framework we have

R(δ∗i ,β) = E

(
δ∗i
βi
− 1

)2

=
nivi

(nivi + 1)2
=

m∗
i − 1
m∗2

i
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7 Appendix

Proof of Theorem 3.1. From (2.7) we have

∂R(δ1α,β)
∂α

=
2(m1 + m2)

m2
1m

2
2

E[{m2 − (m1y1 + m2)T1}

×{α[m2 − (m1y1 + m2)T1](m1 + m2 + 1)

+(m1 + m2 + 1)m1y1T1 −m1m2}I[0,1−z](T1)].

So, ∂R(δ1α,β)
∂α is a strictly increasing function of α, i.e., R(δ1α,β) for

fixed β is a strictly convex function of α. Therefore for fixed β,
R(δ1α,β) will be minimized at the point α given by ∂R(δ1α,β)

∂α = 0
which reduces to

α1(y1,m1,m2)

=
E[{m1m2 −m1(m1 + m2 + 1)y1T1}{m2 − (m1y1 + m2)T1)I[0,1−z](T1)]

(m1 + m2 + 1)E[{m2 − (m1y1 + m2)T1)}2I[0,1−z](T1)]

= 1−
(1− z)E[{T1 − (1− z)}{(m1 + m2 + 1)T1 − (m2 + 1)}I[0,1−z](T1)]

(m1 + m2 + 1)E[{T1 − (1− z)}2I[0,1−z](T1)]
.

Note that y1 → ∞ if and only if 1 − z → 0, so by L’Hospital’s rule
it can be easily shown that

lim
y1→∞

α1(y1,m1,m2) = 1− (m2 + 2)(m2 + 1)
2(m1 + m2 + 1)

=
2m1 −m2(m2 + 1)
2(m1 + m2 + 1)

.

Therefore lim
y1→∞

α1(y1,m1,m2) < 0 when m2(m2 + 1) > 2m1. Using

the fact Bρ(a + 1, b) = a
a+bBρ(a, b)− ρa(1−ρ)b

a+b , we have

α1(1,m1,m2)

= 1− ρ−
ρE[(T1 − ρ){(m1 + m2 + 1)ρ− (m2 + 1)}I[0,ρ](T1)]

(m1 + m2 + 1)E[(T1 − ρ)2I[0,ρ](T1)]

= 1− ρ− [ρ(1− ρ)][ρm2(1− ρ)m1 ]
(m1 + m2)ρBρ(m2,m1)(1− ρ)− (1− 2ρ)ρm2(1− ρ)m1

= 1− ρ− ρ

m2Bρ(m2,m1)[ρ−m2(1− ρ)−m1 ]− 1−2ρ
1−ρ

= α∗.

Since α1(y1,m1,m2) is continuous in y1, therefore for each α ∈ [0, α∗]
there is a y1 for which R(δ1α,β) is minimum, which implies that for
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α ∈ [0, α∗] and m2(m2 + 1) > 2m1, δ1α is admissible in the class of
mixed estimators.

Proof of Theorem 3.2. (a) Let

∆∗
2 = R(δ2α,β)−R(δ2α∗∗ ,β)

= [R(δ2,β)−R(δ2α∗∗ ,β)]− [R(δ2,β)−R(δ2α,β)].

Then from (2.10) we have

∆∗
2 =

m1 + m2

m2
1m

2
2

E[Gy2,α,α∗∗(T1)I[0,1−z](T1)] (7.1)

where

Gy2,α,α∗∗(x) = (1− α∗∗)g2,y2,α∗∗(x)− (1− α)g2,y2,α(x)

= (α− α∗∗)(m2y2 − (m1 + m2y2)x)×

{2m1m2 − (m1 + m2 + 1)[(2− α− α∗∗)m2y2(1− x)

+m1(α + α∗∗)x]}

= (α− α∗∗){A4(y2, α, α∗∗)x2 + B4(y2, α, α∗∗)x

+C4(y2, α, α∗∗)} (7.2)

and

A4(y2, α, α∗∗) = (m1 + m2 + 1)(m1 + m2y2)×

[2m1 − (2− α− α∗∗)(m1 + m2y2)],

B4(y2, α, α∗∗) = 2m2{(m1 + m2 + 1)y2[(2− α− α∗∗)×

(m1 + m2y2)−m1]−m1(m1 + m2y2)},

C4(y2, α2, α
∗∗) = m2

2y2[2m1 − (m1 + m2 + 1)(2− α− α∗∗)y2].

Note that C4(y2, α, α∗∗) > 0 for all α > α∗∗ > ρ = m2
m1+m2

>
m2

m1+m2+1 . When A4(y2, α, α∗∗) 6= 0, the quadratic form in (7.2) has
the following roots

x1 = 1− z, x2 = 1− z +
2m1m2(m1 − y2(m1 + 1)

A4(y2, α, α∗∗)
.
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For 0 < y2 ≤ m1
m1+1 , if A4(y2, α, α∗∗) > 0 then x1 = 1 − z is the

smaller positive root, and if A4(y2, α, α∗∗) < 0 then x1 = 1− z is the
only positive root when α > α∗∗. For the case A4(y2, α, α∗∗) = 0,
x1 = 1 − z is the only root. Thus from (7.1), Gy2,α,α∗∗(x) > 0 for
x ∈ [0, 1− z] and 0 < y2 ≤ m1

m1+1 , and hence ∆∗
2 > 0.

For m1
m1+1 < y2 ≤ 1, it can be shown that ∂2∆∗

2

∂y2
2

< 0, so ∆∗
2 is a

concave function of y2 for m1
m1+1 < y2 ≤ 1. Also by similar argument

as in the proof of Theorem 3.1 we have

∆∗
2

∣∣∣
y2=1

={
(α− α∗∗)(m1 + m2)(m1 + m2 + 1)

m2
1ρ

2
E[(T1 − ρ)2I[0,ρ](T1)]

}
h(ρ)

where

h(ρ) = α + α∗∗

−2
{

ρE[(T1 − ρ){(m1 + m2 + 1)T1 − (m2 + 1)}I[0,ρ](T1)]
(m1 + m2 + 1)E[(T1 − ρ)2I[0,ρ](T1)]

}
= α + α∗∗ − 2α∗∗ = α− α∗∗.

So, h(ρ) > 0 for α > α∗∗ and hence ∆∗
2

∣∣∣
y2=1

> 0. Thus ∆∗
2 > 0 for

all 0 < y2 ≤ 1, which completes the proof of part a.
(b) By similar argument as in the proof of Theorem 3.1, it can be
shown from (2.10) that R(δ2α,β) is a strictly convex function of α
and minimized at the point α = α2(y2,m1,m2) where

α2(y2,m1,m2) =

1−
zE[(T1 − (1− z)){(m1 + m2 + 1)T1 −m2}I[0,1−z](T1)]

(m1 + m2 + 1)E[(T1 − (1− z))2I[0,1−z](T1)]

and α2(y2,m1,m2) → −∞ as y2 → 0 when m2 > 1. Also

α2(1,m1,m2)

= ρ−
(1− ρ)E[(T1 − ρ){ρ(m1 + m2 + 1)−m2}I[0,ρ](T1)]

(m1 + m2 + 1)E[(T1 − ρ)2I[0,ρ](T1)]

= ρ +
ρ

m2Bρ(m2,m1)[ρ−m2(1− ρ)−m1 ]− 1−2ρ
1−ρ

= 1− α∗ = α∗∗.

Now the result follows using similar arguments to the one in the proof
of Theorem 3.1.
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