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Abstract. Let X1 and X2 be two independent random variables
from gamma populations Π1,Π2 with means αθ1 and αθ2 respectively,
where α(> 0) is the common known shape parameter and θ1 and θ2
are scale parameters. Let X(1) ≤ X(2) denote the order statistics of
X1 and X2. Suppose that the population corresponding to the largest
X(2) (or the smallest X(1)) observation is selected. The problem of
interest is to estimate the scale parameters θM (and θJ) of the selected
gamma population under an asymmetric scale invariant loss function.
We characterize admissible estimators of θM (or θJ) within the class
of linear estimators of the form cX(2) (or cX(1)). In estimating θM ,
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we derive a minimax estimator and provide sufficient conditions for
the inadmissibility of arbitrary invariant estimators of θM . We apply
our results to k-Records and censored data. Finally, we extend our
results to a subclass of exponential family of distributions.

1 Introduction

The problem of estimating parameter(s) of a selected population is
an important estimation problem having wide practical applications
in various agricultural, industrial or medical experiments and in some
cases it is related to ranking and selection methodology. There are
numerous such examples in the literature. As an example, an agri-
cultural experimenter, who has selected the variety with the highest
yield, would naturally be interested in estimating the average yield
of the selected variety, see Kumar and Kar (2001), a commercial ve-
hicle operator not only prefer to buy a vehicle with maximum fuel
efficiency, but he also wants to estimate the average fuel efficiency
of the selected vehicle, see Kumar and Gangopadhyay (2005), or a
drug company selects the regimen with maximal efficacy or minimal
toxicity from a set of regimens and estimates a treatment effect for
the selected regimen, see Sill and Sampson (2007).

The problem of estimating after selection has been a subject of
interest over the past three decades. Readers may refer to Gibbons
et al. (1999) and Gupta and Panchapakesan (2002). Some other
contributions in this area are: Sarkadi (1967), Dahiya (1974), Kumar
and Kar (2001), Misra et al. (2006a,b) and Kumar et al. (2009).

Let X1 and X2 be two independent random variables from popu-
lations Π1 and Π2 having gamma distributions with means αθ1 and
αθ2 respectively, where α is the common known shape parameter and
θ1, θ2 are unknown scale parameters. Let X(1) = min(X1,X2) and
X(2) = max(X1,X2) denote the order statistics of X1,X2. For select-
ing the best population, we use the natural selection rule and select
the population corresponding to X(2) (or X(1)). Optimum properties
of the natural selection rule are studied in details by Eaton (1967).
Our goal is to estimate the scale parameters associated with the larger
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and smaller selected population which are given by

θM =

{
θ1 X1 ≥ X2

θ2 X1 < X2
and θJ =

{
θ2 X1 ≥ X2

θ1 X1 < X2.

Note that the parameters θM and θJ are data-dependent and need
not be the same as the maximum or minimum of the θi,s, respectively.

The problem of estimating the scale parameter of selected gamma
population has been receiving a lot of attention in the literature. Vel-
laisamy and Sharma (1988,1989) and Vellaisamy (1992,1993,1996)
dealt with UMVU, admissible and minimax estimation of θM under
the Squared Error Loss (SEL) function. Misra et al. (2006a,b) ex-
tended the admissibility and inadmissibility results of Vellaisamy and
Sharma (1988) to the case of known and arbitrary shape parameter
for estimation of θM and θJ .

In this paper, we discuss the estimation of the scale parameter of
a selected gamma population under the following asymmetric scale
invariant loss function

L(θ, δ) =
(√

δ

θ
−
√
θ

δ

)2

=
δ

θ
+
θ

δ
− 2. (1.1)

The loss function (1.1) is strictly convex and asymmetric in δ and as
a function of δ has a unique minimum at δ = θ. This loss is useful in
situations where underestimation is more serious than overestimation.
For example, in dam construction, an underestimation of the peak
water level is usually much more serious than an overestimation, see
Zellner (1986). Under the loss function (1.1), it is easy to show that
the best scale invariant estimator of θi is [α(α− 1)]−

1
2Xi, α > 1, i =

1, 2.

We consider estimating the random parameters θM and θJ of the
selected gamma population under the loss function (1.1) with some
applications on k-records and censored data. The paper is organized
as follows. In section 2, we discuss the admissibility of invariant
estimators in the form of cX(2) and cX(1) for estimating θM and θJ ,
respectively. In section 3, we obtain minimax estimator of θM . In
section 4, we employ the technique of Brewster and Zidek (1974)
for providing sufficient conditions for the inadmissibility of arbitrary
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invariant estimators of θM . In section 5, we consider applications on
k-records and censored data and an extension of the problem to some
subclass of exponential family. Finally, we conclude the paper and
discuss unsolved problems in section 6.

2 Characterization of admissible estimators

Let X1 and X2 be two independent random variables from popu-
lations Π1 and Π2, respectively, where Πi has probability density
function (pdf)

f(x|θi, α) =
1

θαi Γ(α)
xα−1 e

− x
θi , x > 0, α > 0, θi > 0, i = 1, 2,(2.1)

where the shape parameter α is known and θi, i = 1, 2 are unknown.
In estimating the unknown random parameters θM and θJ under the
loss function (1.1), the problem is invariant under the scale and per-
mutation group of transformations (X1,X2) → (cX2, cX1), c > 0.
Therefore, it is natural to consider only those estimators which are
permutation and scale invariant, i.e. estimators satisfying δ(cX1, cX2)
= cδ(X2,X1), ∀c > 0. For this purpose, consider the following two
subclasses of permutation and scale invariant estimators of θM and
θJ respectively

D1 = {δ1c : δ1c(X1,X2) = cX(2), c > 0} (2.2)

and

D2 = {δ2c : δ2c(X1,X2) = cX(1), c > 0}. (2.3)

In this section, we characterize the admissible estimators of θM and θJ
within the subclasses D1 and D2, respectively, under the loss function
(1.1). The following lemma plays a key role in deriving the subsequent
results of Sections 2 and 3.

Lemma 2.1. Let X1 and X2 be two independent random variables
such that Xi, i = 1, 2 has pdf (2.1) and X(1) ≤ X(2) be the order

statistics of X1 and X2. Let S =
X(2)

θM
, U =

X(1)

θJ
, μ = max(θ1,θ2)

min(θ1,θ2)
≥ 1,
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A(μ) = 2
B(α,α)

μα

(1+μ)2α and for a, b > 0, define

Ga,b(t) =
1

B(a, b)

∫ t

0
xa−1(1 − x)b−1dx (2.4)

and

Ha,b(t) = Ga,b(t) +Ga,b(1 − t) (2.5)

where B(., .) stands for the Beta function. Then

(i) E(Sk) = Γ(α+k)
Γ(α) Hα,α+k

(
1

1+μ

)
, which is an increasing (a decreas-

ing) function of μ for k < 0 (> 0).

(ii) E(Uk) = Γ(α+k)
Γ(α)

[
2−Hα,α+k

(
1

1+μ

)]
= Γ(α+k)

Γ(α) Hα+k,α

(
1

1+μ

)
, which

is an increasing (a decreasing) function of μ for k > 0 (< 0).

(iii) Hα,α+1( 1
1+μ) = 1 + 2

αB(α,α)
μα

(1+μ)2α = 1 + A(μ)
α .

(iv) Hα,α−1( 1
1+μ) = 1− 1

(2α−1)B(α,α)
μα−1

(1+μ)2(α−1) = 1− 1
2(2α−1)

(1+μ)2

μ A(μ),
α > 1.

Proof. For a proof of (i), (iii) and (iv) see Lemma 2.1(i) of Motamed-
Shariati and Nematollahi (2009) and Lemma 3.1(iii) and 3.1(iv) of
Nematollahi and Motamed-Shariati (2009). For a proof of (ii), note
that

E(Sk + Uk) = E
[(X2

θ2

)k +
(X1

θ1

)k] = 2
Γ(α + k)

Γ(α)
.

Therefore, for all μ ≥ 1,

d

dμ
E(Sk) =

Γ(2α + k)
Γ2(α)

μα−1

(1 + μ)2α+k

(
1 − μk

) ≤ 0 (≥ 0), k > 0 (< 0)

and

d

dμ
E(Uk) =

Γ(2α + k)
Γ2(α)

μα−1

(1 + μ)2α+k

(
μk − 1

) ≥ 0 (≤ 0), k > 0 (< 0). �

In the following theorem, we characterize admissible estimators
of θM within the subclass D1 under the loss function (1.1).
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Theorem 2.1. Let u(α) = αB(α,α)22α−1,

c�1 =
[

1
α(α−1)

{
1− 4α−1

(2α−1)(u(α)+1)

}] 1
2 and c�2 = [ 1

α(α−1) ]
1
2 , α > 1. Then,

under the loss function (1.1), the estimators δ1c(X1,X2) = cX(2) are
admissible within the subclass D1 of invariant estimators of θM , if
and only if c ∈ [c�1, c

�
2].

Proof. For fixed μ(≥ 1), the risk function

R(θM , cX(2)) = E

(
c
X(2)

θM
+

θM
cX(2)

− 2
)

= cE(S) +
1
c
E(S−1) − 2

is a strictly convex function of c and minimizes at c = c1(μ), where

c1(μ) =
(
E(S−1)
E(S)

) 1
2

. (2.6)

Using Lemma 2.1(i), [E(S)]−1 and E(S−1) are continuous, increasing
and positive functions of μ(≥ 1). Therefore the function c1(μ) given
by (2.6) is a continuous and increasing function of μ(≥ 1), and hence

sup
μ≥1

c1(μ) = lim
μ→∞ c1(μ) =

[
1

α(α − 1)
Hα,α−1(0)
Hα,α+1(0)

] 1
2

= c�2.

and

inf
μ≥1

c1(μ) = c1(1) =
[

1
α(α− 1)

{
1 − 4α− 1

(2α− 1)(u(α) + 1)

}]1
2

= c�1

Thus, any value of c ∈ [c�1, c
�
2) minimizes the risk function R(θM , δ1c)

for some values of μ ≥ 1 and hence such a c corresponds to an admis-
sible estimator. The admissibility of the estimator δc�2 , follows from
the continuity of the risk function.

Also, for each fixed μ ≥ 1, the risk function R(θM , cX(2)) is an
increasing function of c if c > c1(μ) and it is a decreasing function
of c if c < c1(μ). Since c�1 ≤ c1(μ) ≤ c�2, ∀μ ≥ 1, we conclude that
the estimators δ1c = cX(2) for c ∈ (0, c∗1)∪ (c∗2,∞) are inadmissible in
estimating θM , which completes the proof. �

In the following theorem, we characterize admissible estimators
of θJ within the subclass D2 under the loss function (1.1).
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Theorem 2.2. Let c�2 = [ 1
α(α−1) ]

1
2 and

c�3 =
[

1
α(α−1)

{
1 + 4α−1

(2α−1)(u(α)−1)

}] 1
2 , α > 1. Then, under the loss

function (1.1), the estimators δ2c(X1,X2) = cX(1) are admissible
within the subclass D2 of invariant estimators of θJ , if and only if
c ∈ [c�2, c

�
3].

Proof. As in the proof of Theorem 2.1, for fixed μ(≥ 1), the risk
function

R(θJ , cX(1)) = E

(
c
X(1)

θJ
+

θJ
cX(1)

− 2
)

= cE(U) +
1
c
E(U−1) − 2

is a strictly convex function of c and minimizes at c = c2(μ), where

c2(μ) =
(
E(U−1)
E(U)

) 1
2

. (2.7)

Using Lemma 2.1(ii), [E(U)]−1 and E(U−1) are continuous, positive
and decreasing functions of μ(≥ 1), so c2(μ) is a decreasing function
of μ(≥ 1), and hence

inf
μ≥1

c2(μ) = lim
μ→∞ c2(μ) =

[
1

α(α− 1)
Hα−1,α(0)
Hα+1,α(0)

] 1
2

= c�2

and

sup
μ≥1

c2(μ) = c2(1) =
[

1
α(α− 1)

Hα−1,α(1
2)

Hα+1,α(1
2)

] 1
2

= c�3.

Now, an argument analogous to the one in the proof of Theorem 2.1
completes the proof. �

Figure 1 shows the graphs of R2(c) = R(θM , cX(2)) and R1(c) =
R(θJ , cX(1)) for α = 2, 3 and some values of c. Note that from The-
orems 2.1 and 2.2, R2(c�1) < R2(c) for c < c�1, R2(c�2) < R2(c) for
c > c�2, R1(c�2) < R1(c) for c < c�2 and R1(c�3) < R1(c) for c > c�3,
which are clear from Figure 1.
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Figure 1: Graphs of R(θM , cX(2)) and R(θJ , cX(1)) for α = 2, 3
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3 Minimax estimation of θM

In this section, we deal with minimax estimation of θM . For find-
ing minimax estimator of θM , we use the results of Sackrowitz and
Samuel-Cahn (1987). So, we first deal with the minimax estimation
in the component problem for θi, i = 1, 2. Assuming IGamma(υ, β)-
prior for θi, i = 1, 2, with pdf

πυ,βi (θi) =
βυ

Γ(υ)θυ+1
i

e
− β

θi , θi > 0, υ > 0, β > 0, i = 1, 2, (3.1)

the posterior pdf of θi given Xi = xi is IGamma(υ+α, β + xi). It is
easy to show that the Bayes estimator of θi with respect to (w.r.t.)
the prior (3.1) and under the loss function (1.1) is given by

δiυ,β(Xi) =
(
E(θi|Xi)
E(θ−1

i |Xi)

) 1
2

=
Xi + β√

(α+ υ)(α + υ − 1)
, i = 1, 2. (3.2)

Also the posterior risk of δiυ,β(Xi) under the loss function (1.1) is

r(xi, δiυ,β(xi)) = 2
[√

α+ υ

α+ υ − 1
− 1
]
, (3.3)

which does not depend on xi. Therefore the Bayes risk of δiυ,β(Xi) is
also

r�(πυ,βi , δiυ,β) = 2
[√

α+ υ

α+ υ − 1
− 1
]
, i = 1, 2. (3.4)

Now, we consider Bayes estimation of θM under the loss function
(1.1). Suppose θ1 and θ2 are two independent and identically dis-
tributed (i.i.d.) random variables with inverted gamma priors whose
densities is given in (3.1). Then using (3.2) and Lemma 3.2 of Sack-
rowitz and Samuel-Cahn (1987), the unique Bayes estimator of θM
under the loss function (1.1) w.r.t. the prior πυ,β = (πυ,β1 , πυ,β2 ) is
given by

δIυ,β(X1,X2) =
X(2) + β√

(α+ υ)(α + υ − 1)
.

Notice that, the limiting Bayes estimator of θM , i.e., δI0,0(X1,X2) =
X(2)√
α(α−1)

, α > 1, is the generalized Bayes estimator of θM w.r.t. non-

informative prior π(θ1, θ2) = (θ1θ2)−1, θ1, θ2 ∈ (0,∞) = 
+. Since
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the posterior risk (3.3) for the component problem is independent of
x = (x1, x2), therefore by Theorem 3.1 of Sackrowitz and Samuel-
Cahn (1987), the Bayes risk of δIυ,β(X1,X2), is the same as the one
given in (3.4), i.e.,

r�(πυ,β , δIυ,β) = r�(πυ,βi , δiυ,β) = 2
[√

α+ υ

α+ υ − 1
− 1
]
, i = 1, 2.

Hence,

lim
υ→0

r�(πυ,β , δIυ,β) = 2
[√

α

α− 1
− 1
]
, α > 1.

Now using the Theorem 3.2 of Sackrowitz and Samuel-Cahn (1987),
the estimator δM (X1,X2) is minimax for θM if

R(θM , δM ) ≤ lim
υ→0

r�(πυ,β , δIυ,β) = 2
[√

α

α− 1
− 1
]
, (3.5)

α > 1, ∀θ = (θ1, θ2)

where R(θM , δM ) is the risk function of δM under the loss function
(1.1).

In the following theorem we show that the generalized Bayes es-
timator δI0,0(X1,X2) = X(2)√

α(α−1)
is a minimax estimator of θM .

Theorem 3.1. Let X1 and X2 be two independent gamma ran-
dom variables with pdf (2.1). If X(2) = max(X1,X2), then under the
loss function (1.1), the generalized Bayes estimator δI0,0(X1,X2) =

X(2)√
α(α−1)

, α > 1 is a minimax estimator of θM .

Proof. Using Lemma 2.1, the risk function of δI0,0(X1,X2) = X(2)√
α(α−1)

for α > 1 is given by

R(θM , δI0,0) =
1√

α(α − 1)
E(S) +

√
α(α− 1) E(S−1) − 2

≤ 2
[√

α

α− 1
− 1
]
− 1√

α(α − 1)

[
2α

2α− 1
− 1
]
A(μ)

< 2
[√

α

α− 1
− 1
]
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where A(μ) > 0 is given in Lemma 2.1. Now, the result follows from
(3.5). �

Remark 3.1. From Theorem 2.1, the minimax and natural estimator
δI0,0(X1, X2) = X(2)√

α(α−1)
, α > 1, of θM , which is the analog of the

best scale invariant estimators of θ2, is admissible within the subclass
D1 of invariant estimators of θM .

Remark 3.2. Using similar argument that leads to (3.5), we can
show that an estimator δJ(X1,X2) is minimax for θJ if

R(θJ , δJ ) ≤ 2
[√

α

α− 1
− 1
]
, α > 1, ∀θ = (θ1, θ2). (3.6)

We cannot find an estimator δJ that satisfies (3.6), so the problem
of finding minimax estimator of θJ remains unsolved.

4 Sufficient Conditions for Inadmissibility

Consider the following class of invariant estimators

D3 = {δψ : δψ(X1,X2) = X(2)ψ(Y )}, (4.1)

for θM , where Y = X(1)

X(2)
and ψ is some real valued function defined on

(0, 1]. In this section we give sufficient conditions for inadmissibility
of some permutation and scale invariant estimators for θM in the class
D3 under the loss function (1.1) by deriving dominating estimators.
For deriving dominating estimators, we use the technique of Brewster
and Zidek (1974). The following lemma is useful in deriving the
improved estimators for estimating θM .

Lemma 4.1. Let Y = X(1)

X(2)
, μ = max(θ1,θ2)

min(θ1,θ2)
and ψ be a real valued

function defined on (0, 1]. For α > 1
2 , x > 0 and μ ≥ 1 define the

function ηx(μ) as

ηx(μ) = 2α(2α − 1)
μ(x+ μ)−(2α+1) + (1 + xμ)−(2α+1)

μ−1(x+ μ)−(2α−1) + (1 + xμ)−(2α−1)
.
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(i) For y ∈ (0, 1], the conditional pdf of S = X(2)

θM
given Y = y is

fS|Y=y(s) =
yα−1s2α−1

Γ2(α)fY (y)

[
μ−αe−( y

μ
+1)s + μαe−(1+μy)s

]
, s > 0.

where fY (y) denotes the pdf of Y .

(ii) For α > 1
2 and y ∈ (0, 1]

sup
μ≥1

ηy(μ) =
2α(2α − 1)
(1 + y)2

=
(

1
ψ�(y)

)2

. (4.2)

Proof. (i) For a proof, see Lemma 16(i) of Misra et al. (2006a).

(ii) Note that

ηy(1) =
2α(2α − 1)

(1 + y)2
.

Thus, it suffices to show that

ηy(μ) ≤ 2α(2α − 1)
(1 + y)2

∀μ ≥ 1 (4.3)

Now, with some awkward algebraic calculations, it can be shown that
the inequality (4.3) holds if and only if

(
y + μ

1 + yμ

)2α+1

≥ 1,

which is satisfied for y ∈ (0, 1] and μ ≥ 1. Hence the result follows. �

The next theorem gives a sufficient condition for inadmissibility
of arbitrary invariant estimators δψ(X1,X2) ∈ D3.

Theorem 4.1. Let δψ(X1,X2) ∈ D3 be an invariant estimator of θM ,
ψ11(y) a function defined on (0, 1] such that ψ11(y) ≤ ψ�(y), ∀y ∈
(0, 1] and Pθ

(
ψ(Y ) < ψ11(Y )) > 0, ∀θ = (θ1, θ2) ∈ 
+ × 
+ = 
2

+.
Then under the loss function (1.1), the invariant estimator δψ is
inadmissible for estimating θM , and is dominated by δψ1(X1,X2) =
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X(2)ψ1(Y ), where for 0 < y ≤ 1,

ψ1(Y ) =

⎧⎪⎨
⎪⎩

ψ11(Y ) ψ(Y ) < ψ11(Y )

ψ(Y ) o.w.

Proof. For μ ≥ 1, the risk difference of δψ and δψ1 is

Δ(μ) = R(θM , δψ) −R(θM , δψ1)

= Eθ
{
Dθ(y)

}
,

where for y ∈ (0, 1],

Dθ(y) =

[ψ1(y) − ψ(y)]Eθ
(
S−1|Y = y

){ 1
ψ1(y)ψ(y)

− Eθ
(
S|Y = y

)
Eθ
(
S−1|Y = y

)
}
.(4.4)

Now from Lemma 4.1(i), we have

Ky(μ) = Eθ
(
S−1|Y = y

)

=
Γ(2α − 1)yα−1μα

Γ2(α)fY (y)

[
μ−1(y + μ)−(2α−1) + (1 + yμ)−(2α−1)

]
,

and

Eθ
(
S|Y = y

)
=

Γ(2α + 1)yα−1μα

Γ2(α)fY (y)

[
μ(y + μ)−(2α+1) + (1 + yμ)−(2α+1)

]
.

So, by substituting the above formula in (4.4), we have

Dθ(y) = [ψ1(y) − ψ(y)]Ky(μ)
{

1
ψ1(y)ψ(y)

− ηy(μ)
}
,

where ηy(μ) is defined in Lemma 4.1. Clearly, if ψ(y) ≥ ψ11(y), then
Dθ(y) = 0, ∀θ ∈ 
2

+ and ∀y ∈ (0, 1]. For ψ(y) < ψ11(y), using (4.2)
we have

Dθ(y) ≥ [ψ11(y) − ψ(y)]Ky(μ)
[

1
ψ11(y)ψ(y)

−
(

1
ψ�(y)

)2]
> 0,∀θ ∈ 
2

+.
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Since Pθ(ψ(Y ) < ψ11(Y )) > 0, ∀θ ∈ 
2
+, it follows that Δ(μ) >

0, ∀θ ∈ 
2
+. �

The following corollary is an immediate consequence of the The-
orem 4.1.

Corollary 4.1. Let δψ(X1,X2) ∈ D3 be an invariant estimator of
θM . If Pθ

(
ψ(Y ) < ψ�(Y )) > 0, ∀θ = (θ1, θ2) ∈ 
2

+, then under
the loss function (1.1), the invariant estimator δψ is inadmissible for
estimating θM , and is dominated by δψ1(X1,X2) = X(2)ψ1(Y ), where
for 0 < y ≤ 1,

ψ1(Y ) =

⎧⎪⎨
⎪⎩

ψ�(Y ) ψ(Y ) < ψ�(Y )

ψ(Y ) o.w.

Remark 4.1. Consider the following class of convex combination
estimators of θM

δp,ψ(X1,X2) = pX(2) + (1 − p)X(1)

= X(2)[p + (1 − p)Y ] = X(2)ψ(Y ),

where p ∈ [0, 1], and let A = 1√
2α(2α−1)

. If p < A ≤ 1
2 ≤ 1−A, which

is true for α ≥ 5
4 , then Pθ

(
ψ(Y ) < ψ�(Y )) = Pθ

(
p + (1 − p)Y ≤

A(Y +1)
)

= Pθ
(
Y ≤ A−p

1−p−A
)
> 0. So, by Corollary 4.1, the estimator

δp,ψ(X1,X2) is inadmissible and is dominated by

δ�p,ψ(X1,X2) =

⎧⎪⎪⎨
⎪⎪⎩

X(1)+X(2)√
2α(2α−1)

p+ (1 − p)Y < 1+Y√
2α(2α−1)

δp,ψ(X1,X2) o.w.

when 0 ≤ p ≤ 1√
2α(2α−1)

and α ≥ 5
4 . Figure 2 shows the graph of risk

functions of the estimators δp,ψ and δ�p,ψ for some values of α and p.
It is evident from these graphs that the estimator δ�p,ψ dominates the
estimator δp,ψ.
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Remark 4.2. Let Xi1,Xi2, . . . ,Xin, i = 1, 2, be two independent
random samples from Πi, i = 1, 2, where for each i, Πi has pdf (2.1).
Then Ti(Xi) =

∑n
i=1Xij , i = 1, 2, is a complete sufficient statistic

for θi and has a gamma distribution with parameters (nα, θi), respec-
tively, where Xi = (Xi1, . . . ,Xin). Therefore, the results of Sections
2-4 hold for this case if we replace α by nα and Xi by Ti(Xi), i = 1, 2.

Figure 2: Graph of risk functions of the estimators δp,ψ,— and
δ�p,ψ,−−−
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5 Applications and extensions

In this section, an application of estimation after selection in k-
records and Type-II censored data and extension of the results of
Sections 2-4 to a subclass of exponential family are considered.

5.1 Estimation After Selection Based on k-Record data

Research in the area of records has progressed steadily since 1952’s,
where, Chandler began studying the distributions of lower records,
record times and inter-record times for i.i.d. sequences of random
variables. Let Xi1,Xi2, . . . ,Xin, i = 1, 2, be a pair of independent
random samples from negative exponential populations with pdf

f(x|θi) =
1
θi
e
− x

θi , x > 0, θi > 0, i = 1, 2, (5.1)

where θ1, θ2 are unknown scale parameters. Let Rim(k) be the upper

k-records of i-th sample, i = 1, 2 and R(1)
m(k) ≤ R

(2)
m(k) denote the order

statistics of R1
m(k) and R2

m(k). Suppose the population corresponding

to the largest R(2)
m(k) (or the smallest R(1)

m(k)) observation is selected.
Our aim is to estimate the following random parameters:

θmM =

{
θ1 R1

m(k) ≥ R2
m(k)

θ2 R1
m(k) < R2

m(k)

and θmJ =

{
θ2 R1

m(k) ≥ R2
m(k)

θ1 R1
m(k) < R2

m(k).

It is easy to verify that kRim(k) has a Gamma
(
m, θi

)
-distribution,

see Arnold et al. (1998), Nevzorov (2001). Therefore, the results
of Sections 2-4 hold for this case if we replace α by m and Xi by
kRim(k), i = 1, 2.

5.2 Estimation after selection using Type-II censored

data

The most common censoring scheme is so called Type-II censoring.
This is the situation that occurs when, for example, n items are put
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on test and the test is terminated after a predetermined number of
items have failed. Complete observations on the first r (r fixed)
order statistics X(1) ≤ X(2) ≤ . . . ≤ X(r) are available, and the
remaining n − r unobserved lifetimes are known to be greater than
X(r). For the case of negative exponential in (5.1), it is easy to
show that in this scheme Ti =

∑r
j=1Xi(j) + (n − r)Xi(r), i = 1, 2,

has a Gamma(r, θi)-distribution, see Lehmann and Romano (2005).
Let T(1) = min(T1, T2) and T(2) = max(T1, T2) and suppose that the
population corresponding to the largest T(2) (or the smallest T(1)) is
selected. Our goal is to estimate the random parameters

θM =

{
θ1 T1 ≥ T2

θ2 T1 < T2
and θJ =

{
θ2 T1 ≥ T2

θ1 T1 < T2.

Since Ti, i = 1, 2, has a Gamma
(
r, θi

)
-distribution, therefore, the

results of Sections 2-4 hold if we replace α by r and Xi by Ti, i = 1, 2,
in this case.

5.3 Extension to a subclass of exponential family

Let Xi = (Xi1,Xi2, · · · ,Xin), i = 1, 2, be a random sample of size n
from the ith population Πi, i = 1, 2, with the joint scale probability
density function

f(xi, τi) =
1
τni
f
(xi
τi

)
, i = 1, 2,

where xi = (xi1, · · · , xin). In some cases the above model reduces to

f(xi, θi) = C(xi, n)θ−γi e−Ti(xi)/θi , i = 1, 2, (5.2)

where C(xi, n) is a function of xi and n, θi = τ ri for some r > 0, γ is
a function of n and Ti(Xi) is a complete sufficient statistic for θi with
Gamma(γ, θi)- distribution, see Parsian and Nematollahi (1996).

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(γ, θi)-distribution,
therefore we can extend the results of Sections 2-4 to a subclass of the
exponential family (5.2) with replacing α and Xi by γ and Ti(Xi),
respectively.
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The results of Section 2-4 can also be extended to the family
of transformed chi-square distributions introduced by Rahman and
Gupta (1993) and which includes Pareto and beta distributions. For
details see Jafari Jozani et al. (2002).

6 Further investigation

In the previous sections, we discuss estimation after selection under
the loss function (1.1). Now, consider a generalization of the loss
function (1.1) with the following structure

L(θ, δ) =
[(

δ

θ

) p
2

−
(
θ

δ

) p
2
]2

=
(
δ

θ

)p
+
(
θ

δ

)p
− 2, p > 0. (6.1)

and use this loss function for the problem of estimating the scale
parameter of selected gamma population. Using the argument as in
Section 2, it is easy to verify that under the loss function (6.1), the
estimators δ1c(X1,X2) = cX(2) are admissible within the subclass D1

of invariant estimators of θM , if and only if c ∈ [c�1, c
�
2], where

c�1 =
[
Γ(α− p)
Γ(α+ p)

Hα,α−p(1
2)

Hα,α+p(1
2)

] 1
2p

and c�2 =
[
Γ(α− p)
Γ(α+ p)

] 1
2p

provided α > p. Also, under the loss function (6.1), the estima-
tors δ2c(X1, X2) = cX(1) are admissible within the subclass D2 of
invariant estimators of θJ , if and only if c ∈ [c�2, c

�
3], where

c�3 =
[
Γ(α− p)
Γ(α+ p)

Hα−p,α(1
2 )

Hα+p,α(1
2 )

] 1
2p

We cannot find minimax estimator for θM and sufficient condi-
tions for inadmissibility of some permutation and scale invariant esti-
mators for θM in the class D3 under the loss function (6.1). So, these
problems remained unsolved.
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