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Abstract. In this paper, the two parameter ADK entropy, as a
generalized of Re’nyi entropy, is considered and some properties of it,
are investigated. We will see that the ADK entropy for continuous
random variables is invariant under a location and is not invariant
under a scale transformation of the random variable. Furthermore,
the joint ADK entropy, conditional ADK entropy, and chain rule of
this entropy is discussed. The ADK entropy rate is defined and is
used for deriving the entropy rate of stationary Gaussian processes
and an irreducible- aperiodic Markov chain.

1 Introduction

The concept of entropy or (more accurately) entropy rate whether
of a stochastic process, information source or dynamical system has
proved to be instrumental in many fields of science. Shannon [16] in-
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troduced his entropy and axiomatic characterization of it. But since
then a number of entropy-like quantities have appeared in the sci-
entific literature. All these new quantities share some but not all
properties with the Shannon entropy. The most important examples
are the Renyi entropy and the Tsallis entropy. There are so many
other definitions of entropy-like quantities that Arndt [2] was able
to write a whole book entitled ”Information Measures ”. The Renyi
entropy was introduced by Renyi [13, 14] and soon after it found ap-
plication in graph theory. The original reason for Renyi to introduce
his new entropy is said to be that he planned to use it in an informa-
tion theoretic proof of the central Limit Theorem. Renyi entropies
of order greater than 2 are also known to be related to search prob-
lems, see [6, 18]. Aczel and Daroczy [1], Kapur [8], have introduced
a general form of entropy,which will henceforth be called ADK en-
tropy, and of which Re’nyi entropy is a special case. The focus in
this paper will be on some properties of this entropy. the entropy
rate was defined for stochastic processes. The Shannon entropy rate
is extensively studied for stochastic processes, especially for station-
ary processes with discrete or continuous time (see [5] and references
therein). For example, the rate of Shannon entropy for a stationary
Gaussian process was obtained by Kolmogorov [9]. The rate of Renyi
entropy for stochastic processes was obtained by Rached et al. [12].
He also obtained an operational characteristic for the Renyi entropy
rate in coding theory. Obviously this paper can only present a few
results on this huge topic and give some pointers to the literature.
The fact is that most of the alternative definitions of entropy may be
useful in very special situations or may fulfill modified axiom systems
but they do not have operational definitions. Some of the alternative
and definitions will find applications and operational definitions in
the future, but most of them have already been more or less forgot-
ten. This was what happened with the ADK entropy.

This paper is organized as follows:
In Section 2, the ADK entropy for discrete random variables are

introduced and the chain rule of this entropy is proved. In Section 3,
the ADK entropy for continuous random variables is presented and
the chain rule of this entropy is obtained. In section 4 a relation
for obtaining the rate of ADK entropy is obtained. Then, using this
relation, the ADK entropy rate for an irreducible-aperiodic Markov
chain is derived. Furthermore, the ADK entropy rate is calculated
for Gaussian stationary processes. Also in this section its shows that
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the ADK entropy rate for two family (AR(p) and MA(q)) time series
is same. Finally, the conclusions are drawn in section 5.

2 ADK entropy for discrete random variables

In information theory, the ADK entropy, as a generalization of Renyi
and Shannon entropy, is one of a family of functional for quantifying
the diversity, uncertainty or randomness of a system. It is named
ADK because Aczel, Daroczy and Kapur initial works. In this paper
assumes that:

1. All integrals and sums exist.

2. α, β > 0 , α+ β > 1 , α �= 1.

3. log is to the base 2 and entropy is expressed in bits.

Let (S, βS , P )p ∈ Δn be an statistical space, where S = {x1, x2, . . . , xn},
Δn = {P = (p1, p2, . . . , pn), pi ≥ 0,

∑n
i=1 pi = 1} and βS is the σ-field

of all the subsets of S.

Definition 2.1. ADK entropy of any probability distribution P =
(p1, p2, . . . , pn) of a random variable is defined as

Hα,β(X) ≡ Hα,β(P ) =
1

1 − α
log
∑n

i=1 p
α+β−1
i∑n

i=1 p
β−1
i

(2.1)

Definition 2.2. (The joint ADK entropy):If X1,X2, . . . ,Xn are
distributed according to p(x1, x2, . . . , xn) then

Hα,β(X1,X2, . . . ,Xn) =
1

1 − α
log

∑
x1,x2,...,xn

p(x1, x2, . . . , xn)α+β−1

∑
x1,x2,...,xn

p(x1, x2, . . . , xn)β−1

(2.2)

Definition 2.3. (Conditional ADK entropy ): Let X1,X2, . . . ,Xn

are distributed according to p(x1, x2, . . . , xn). Then the conditional
ADK entropy of random variable Xn , given X1,X2, . . . ,Xn−1, is
defined as

Hα,β(Xn|X1,X2, . . . ,Xn−1) =
1

1 − α
log (2.3)

∑
x1,x2,...,xn−1

p(x1, x2, . . . , xn−1)β−1
∑

x1,x2,...,xn
p(x1, x2, . . . , xn)α+β−1

∑
x1,x2,...,xn−1

p(x1, x2, . . . , xn−1)α+β−1
∑

x1,x2,...,xn
p(x1, x2, . . . , xn)β−1
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It’s easy to show that the ADK entropy of a collection of random
variables is the sum of the conditional ADK entropies. i.e.

Hα,β(X1,X2, . . . ,Xn) =
n∑
j=1

Hα,β(Xj |Xj−1, . . . ,X1) (2.4)

3 ADK entropy for continuous random
variables

Let X be a random variable having an absolutely continuous distri-
bution with density function f(x). The ADK entropy of order α and
β is defined as

Hα,β(X) =
1

1 − α
log

∫ +∞
−∞ fα+β−1(x)dx∫ +∞

−∞ fβ(x)dx
. (3.1)

Two particular cases of this family are :

Hα,1(X) =
1

1 − α
log
∫ +∞

−∞
fα(x)dx, (3.2)

which is the Renyi entropy of order α, and

H(X) = lim
α→1

Hα,1(X) = −
∫ +∞

−∞
f(x) log f(x)dx, (3.3)

is the Shannon entropy.

Theorem 3.1. Let X ∼ N(μ, σ2) then

Hα,β(X) = log σ
√

2π − log(α+ β − 1)
2(1 − α)

+
log β

2(1 − α)
(3.4)

Proof.
∫ +∞

−∞
fα+β−1(x)dx =

∫ +∞

−∞

(
1

σ
√

2π

)(α+β−1)

e
−(α+β−1)(x−μ)2

2σ2 dx

=
(

1
σ
√

2π

)(α+β−1) σ√
α+ β − 1

∫ +∞

−∞
e−

z2

2 dz

=
(σ
√

2π)2−α−β√
α+ β − 1

,
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and similarly, ∫ +∞

−∞
fβ(x)dx =

(σ
√

2π)1−β√
β

.

Then ∫ +∞
−∞ fα+β−1(x)dx∫ +∞

−∞ fβ(x)dx
=

(σ
√

2π)1−α(α+ β − 1)−
1
2√

β
.

By taking log and multiply in 1
1−α the theorem is proved.

Corollary 3.2. The Renyi and Shannon entropy for normal dis-
tribution are

Hα,1(X) = log σ
√

2π − log α
2(1 − α)

,

and
H(X) = lim

α→1
Hα,1(X) = log σ

√
2π +

1
2
,

respectively.

Theorem 3.3. The ADK entropy is invariant under a location and
is not invariant under a scale transformation of the random variable
i.e. , suppose that a �= 0 then

Hα,β(aX + b) = log |a| +Hα,β(X) (3.5)

Proof. Put Y = aX + b then
∫ +∞

−∞
fα+β−1
Y (y)dy = (

1
a
)(α+β−1)

∫ +∞

−∞
fα+β−1
X (

y − b

a
)dy

= a2−α−β
∫ +∞

−∞
fα+β−1
X (x)dx,

and similarly,
∫ +∞

−∞
fβY (y)dy = a1−β

∫ +∞

−∞
fβX(x)dx.

Then from (3.1) relation (3.5) is obtained.

Definition 3.4. The joint ADK entropy Hα,β(X1,X2) of a pair of
continue random variables (X1,X2) with a joint distribution f(x1, x2)
is defined as

Hα,β(X1,X2) =
1

1 − α
log

∫
R2 f

α+β−1(x1, x2)dx1dx2∫
R2 fβ(x1, x2)dx1dx2

. (3.6)
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From this definition its obvious that if X1 and X2 are independent
random variables then

Hα,β(X1,X2) = Hα,β(X1) +Hα,β(X2).

Definition 3.5. If (X1, . . . ,Xn) be a random vector with density
function f(x1, . . . , xn) then

Hα,β(X1, . . . ,Xn) =
1

1 − α
log

∫
Rn f

α+β−1(x1, . . . , xn)dx1 . . . dxn∫
Rn fβ(x1, . . . , xn)dx1 . . . dxn

.

(3.7)

Definition 3.6. If (X1,X2) ∼ f(x1, x2) then the conditional ADK
entropy of random variable X2, given X1, is defined as

Hα,β(X2|X1) =
1

1 − α
log

∫
R f

β(x1)dx1

∫
R2 f

α+β−1(x1, x2)dx1dx2∫
R f

α+β−1(x1)dx1

∫
R2 fβ(x1, x2)dx1dx2

.

(3.8)

From this equation we get

Hα,β(X2|X1) = Hα,β(X1,X2) −Hα,β(X1).

For two independent random variables X1 and X2 we have

Hα,β(X2) −Hα,β(X2|X1) = 0,

and we have
Hα,β(X2|X1) = Hα,β(X2).

Definition 3.7. If X1,X2, . . . ,Xn are distributed according
f(x1, x2, . . . , xn), then the conditional ADK entropy of random vari-
able Xn, given X1,X2, . . . ,Xn−1 , is defined as small

Hα,β(Xn|X1,X2, . . . ,Xn−1) =
1

1 − α
log

∫
Rn−1 f

β(x1, . . . , xn−1)dx1 . . . dxn−1

∫
Rn f

α+β−1(x1, . . . , xn)dx1 . . . dxn∫
Rn−1 fα+β−1(x1, . . . , xn−1)dx1 . . . dxn−1

∫
Rn fβ(x1, . . . , xn)dx1 . . . dxn

.

(3.9)

Theorem 3.8. (Chain rule) Let (X1, . . . ,Xn) be a random vector
with density function f(x1, . . . , xn) and have finite ADK entropy for
every n, then

Hα,β(X1, . . . ,Xn) =
n∑
i=1

Hα,β(Xi|Xi−1, . . . ,X1). (3.10)
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Proof. We can write∫
Rn f

α+β−1(x1, . . . , xn)dx1 . . . dxn∫
Rn fβ(x1, . . . , xn)dx1 . . . dxn

=

∫
R f

α+β−1(x1)dx1∫
R f

β(x1)dx1

×
∫
R f

β(x1)dx1

∫
R2 f

α+β−1(x1, x2)dx1dx2∫
R f

α+β−1(x1)dx1

∫
R2 fβ(x1, x2)dx1dx2

×
∫
R2 f

β(x1, x2)dx1dx2

∫
R3 f

α+β−1(x1, x2, x3)dx1dx2dx3∫
R2 fα+β−1(x1, x2)dx1dx2

∫
R3 fβ(x1, x2, x3)dx1dx2dx3

× . . .×∫
Rn−1 f

β(x1, . . . , xn−1)dx1 . . . dxn−1

∫
Rn f

α+β−1(x1, . . . , xn)dx1 . . . dxn∫
Rn−1 fα+β−1(x1, . . . , xn−1)dx1 . . . dxn−1

∫
Rn fβ(x1, . . . , xn)dx1 . . . dxn

Now, multiplying both sides of the above relation through 1
1−α and

taking the log, the desired result is obtained.

4 ADK entropy rate

Roughly speaking, the entropy rate quantifies the limiting average of
uncertainty, disorder or irregularity generated by a process or system
per time unit.

Definition 4.1. The regular relation for ADK entropy rate of a
discrete-time stochastic process {Xn}n∈Z is defined as

Hα,β = lim
n→∞

Hα,β(X1, . . . ,Xn)
n

, (4.1)

when the limit exists. Furthermore, by (2.4) we have

Hα,β = lim
n→∞

∑n
i=1Hα,β(Xi|Xi−1, . . . ,X1)

n
, (4.2)

when the limit exists.

Remark 4.2. If the limits exists, then by Cesaro mean

lim
n→∞

∑n
i=1Hα,β(Xi|Xi−1, . . . ,X1)

n
= lim

n→∞Hα,β(Xn|Xn−1, . . . ,X1)

(4.3)
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A discrete-time stochastic process is said to be stationary if the
joint distribution of any subset of the sequence of random variables
is invariant with respect to shifts in the time index, i.e., if the dis-
tribution of (Xn1+h, . . . ,Xnk+h) is independent of h for any positive
integer k and n1, . . . , nk ∈ Z. Hence we can write

Hα,β(Xnk
|Xn1 , . . . ,Xnk−1

) = Hα,β(Xnk+h|Xn1+h, . . . ,Xnk−1+h
).

Then the ADK entropy rate of a stationary process is equal to

Hα,β = lim
n→∞Hα,β(X1|X0, . . . ,X2−n) = Hα,β(X1|X0, . . .) (4.4)

Theorem 4.3. The ADK entropy rate of an ergodic Markov chain
with a infinite state space is

Hα,β =
1

1 − α
(logR−1 + log R̃−1), (4.5)

where, R is the convergence radius of the matrix M = [pα+β−1
xixj ]xi,xj∈S

and R̃ is the convergence radius of the matrix M̃ = [pβxixj ]xi,xj∈S.

Proof. From Markov chain properties and (2.3) we have

Hα,β(Xn|X1,X2, . . . ,Xn−1) =
1

1 − α
log (4.6)

∑
x1,x2,...,xn−1

pβx1p
β
x1x2 . . . p

β
xn−2xn−1

∑
x1,x2,...,xn

pα+β−1
x1 pα+β−1

x1x2 pα+β−1
xn−1xn∑

x1,x2,...,xn−1
pα+β−1
x1 pα+β−1

x1x2 . . . pα+β−1
xn−2xn−1

∑
x1,x2,...,xn

pβx1p
β
x1x2p

β
xn−1xn

.

By defining two row vectors U = [pα+β−1
xi ]xi∈S and Ũ = [pβxi ]xi∈S a

column vector 1 we have (see [10, 15])

Hα,β(Xn|X1,X2, . . . ,Xn−1) =
1

1 − α
log[

UMn−11
UMn−21

× ŨM̃n−21

ŨM̃n−11
].

(4.7)
Suppose that Rij = Supz≥0{z :

∑∞
k=0M

k
ijz

k < ∞} and R̃ij =
Supz≥0{z :

∑∞
k=0 M̃

k
ijz

k < ∞} are convergence radius for generating
functions of M and M̃ respectively. Since, this chain is irreducible,
the matrices M and M̃ are also irreducible and by Theorem1 of the
chapter 6 of Seneta’s book [15], these matrices have common con-
vergence radiuses R and R̃ respectively, where 0 < R, R̃ < 1. Now
by using this and taking the limit as n → ∞ and making use of the
fact that all of the assumptions of Theorem 5 of chapter 6 of Seneta’s
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book [15] hold, relation (4.5) is obtained.
Suppose that for all n, E(Xn) = 0. Consider autocovariance function
γ(k) = E(XnXn+k) and the spectral density function f(w) as

f(w) =
1
2π

Σ∞
k=−∞γ(k)e

−iwk, − π ≤ w ≤ π. (4.8)

For stationary Gaussian processes we have the following representa-
tion [3, 7]

Xn = Σ∞
j=0ϕjZn−j , n ∈ Z, (4.9)

where ϕj with j ≥ 0 are constant, Σ∞
j=0ϕ

2
j < ∞, and {Zn} is a

sequence of independent Gaussian random variables with identical
distribution N(0, 1). This expression is known as the moving average
representation of the process.

Theorem 4.4. For stationary Gaussian processes, the ADK en-
tropy rate is equal to

Hα,β = log σ
√

2π− log(α+ β − 1)
2(1 − α)

+
log β

2(1 − α)
+

1
4π

∫ π

−π
log 2πf(w)dw.

(4.10)

Proof. By relations (4.4) and (4.9) we have

Hα,β = Hα,β(Σ∞
j=0ϕjZ1−j |X0, . . .) = Hα,β(ϕ0Z1+Σ∞

j=1ϕjZ1−j |X0, . . .).
(4.11)

We know that

σ{Zk, k ≤ 1} = σ{Xk, k ≤ 1},
and since Z1 is independent of {Zk, k ≤ 0}, then Z1 is independent
of {Xk, k ≤ 0}. Since Σ∞

j=1ϕjZ1−j is measurable with respect to
σ{Xk, k ≤ 0}, is constant, and by ((3.5) we have

Hα,β = Hα,β(ϕ0Z1) = Hα,β(Z1) + log |ϕ0|.
Finally we can use (3.4) to get

Hα,β = log σ
√

2π − log(α+ β − 1)
2(1 − α)

+
log β

2(1 − α)
+

1
2

logϕ2
0, (4.12)

where ϕ0 is constant. On one hand, from [7] we have

ϕ2
0 = 2π2

1
2π

∫ π
−π log f(w)dw. (4.13)

Consequently, by (4.12) and (4.13) we get (4.10).
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Corollary 4.5. Let {Xn} be an autoregressive process of order p,
i.e.,

Xn = Σp
j=0πjXn−j + Zn,

or, a moving average process of order q with φ0 = 1, i.e.,

Xn = Σq
j=0φjZn−j,

for these processes [7],
∫ π
−π log 2πf(w)dw = 0. Then from (4.10) the

ADK entropy rate for these Gaussian stationary processes is equal to
ADK entropy rate for normal distribution, i.e.

Hα,β = log σ
√

2π − log(α+ β − 1)
2(1 − α)

+
log β

2(1 − α)
. (4.14)

Its reminded that [7] in time series analysis we often use Xn =
Σ∞
j=0ϕjZn−j form with ϕ0 = 1 which, also has ADK entropy rate as

normal distribution.

5 Conclusion

In this paper, I considered a definition for ADK entropy and some
correlated concepts. Here, demonstrated that the chain rule holds
for this definition. Furthermore, two relations for the rate of ADK
entropy and stationary Gaussian processes was obtained. We used
this relation to obtain the rate of ADK entropy for an irreducible-
aperiodic Markov chain. Also we showed that the rate of stationary
Gaussian processes depends on the spectral density function of the
processes. In other words, whatever carried out here is an extension
of [10, 6].
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