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Abstract. Let X1, X2, ..., Xr be the first r order statistics from a
sample of size n from the generalized exponential distribution with
shape parameter θ. In this paper, we consider a Bayesian approach
to predicting future order statistics based on the observed ordered
data. The predictive densities are obtained and used to determine
prediction intervals for unobserved order statistics for one-sample and
two-sample prediction plans. A numerical study is conducted to il-
lustrate the prediction procedures.

1 Introduction

Let X1, X2, ..., Xn denote the order statistics of a sample of size n from
generalized exponential (GE) distribution with probability density
function (pdf)

f(x; θ) = θ(1− e−x)θ−1e−x; x > 0, θ > 0. (1)
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and cumulative distribution function (cdf)

F (x; θ) = (1− e−x)θ; x > 0, θ > 0, (2)

where θ is a shape parameter. When θ = 1, the GE distribution
reduces to the standard exponential distribution. When θ is an in-
teger, the GE distribution is the distribution of the maximum of a
sample of size n from the standard exponential distribution. The
GE distribution has a unique mode and its median is –ln(1-(0.5)1/θ),
where ln denotes the natural logarithm. Gupta and Kundu (1999)
used the above given distribution for analyzing skewed data. Gupta
and Kundu (2001a) showed that the GE distribution can be used as a
good alternative to the gamma or the Weibull models. They observed
that this distribution has more similarities to gamma family than to
Weibull family in terms of hazard function. It has an increasing haz-
ard function if θ > 1 and decreasing hazard function if θ < 1. The
density function varies significantly depending on the shape parame-
ter. Therefore this distribution can also be used in a situation where
the course of disease is such that mortality reaches a peak after some
finite period, and then slowly decline. For example, in a study of cur-
ability of breast cancer, Langlands et al. (1979) found that the peak
of mortality occurred after three years. It is therefore, important to
analyze such data sets with appropriate models like gamma, Weibull
or GE distributions. The GE distribution has many properties that
are quite similar to those of the gamma distribution, but it has a dis-
tribution function similar to that of the Weibull distribution which
can be computed simply. The GE family has likelihood ratio order-
ing on the shape parameter; so it is possible to construct uniformly
most powerful test for testing one-sided hypothesis on the shape pa-
rameter, when the scale and location parameters are known. Gupta
and Kundu (2003) used the ratio of the maximized likelihoods in dis-
criminating between the Weibull and the GE distributions. Raqab
and Ahsanullah (2001) and Raqab (2002) obtained the estimation of
the location and scale parameters of the GE distributions based on
order statistics and record values, respectively. Recently Raqab and
Madi (2005) used importance sampling techniques in the Bayesian
estimation and prediction for the GE distribution.

Let X1, X2, ..., Xn be the order statistics from a sample of size
n from GE distribution. Let X = (X1, X2, ..., Xr), r ≤ n, be the
censored sample. Prediction problem does arise naturally in the con-
text of order statistics. Two prediction scenarios are considered; first,
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given the r observed order statistics x1 ≤ x2 ≤ ... ≤ xr, we predict
the remaining order statistics xr+1, xr+2, ..., xn. This is referred to
as one-sample prediction. The second scenario, known as the two-
sample prediction, consists of predicting the first m order statistics
in a future sample. Prediction intervals for different statistics of fu-
ture observations are discussed in the literature. Ahsanullah (1980)
developed the best linear unbiased predictors (BLUP’s) of the future
record statistics from the exponential distribution. Raqab (1997) ob-
tained the modified maximum likelihood predictors of future order
statistics from normal samples. Other prediction problems can be
found in Lawless (1973), Kaminsky and Nelson (1974), Evans and
Ragab (1983) and Sartawi and Abu-Salih (1991).

In the context of prediction, we say that (L(X), U(X)) is a 100(1−
α)% prediction interval for a future random variable Y if

P (L(X) < Y < U(X)) = 1− α,

where L(X) and U(X) are lower and upper prediction limits for the
random variable Y, and 1 − α is called the confidence prediction
coefficient.

In this paper, we use Bayesian statistical analysis to predict fu-
ture order statistics from GE distribution on the basis of some ordered
data. In Section 2, we obtain prediction intervals for order statistics
using a one-sample prediction plan. In Section 3, we present predic-
tion intervals for future order data based on a two-sample prediction
plan. Section 4 includes an illustration of the proposed methods using
a simulated data set and different choices of prior parameters.

2 Bayesian Prediction Interval for the (r+s)th

Order Statistic: One-Sample Case

The likelihood for θ of the given type II censored sample X = (X1, X2,
. . . , Xr) is given by:
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f(x| θ) =
n!

(n− r)!
θr

r∏
i=1

e−xi

r∏
i=1

(1− e−xi)θ−1
[
1−

(
1− e−xr

)θ]n−r
(3)

0 ≤ x1 ≤ ... ≤ xr, θ > 0.

We assume that θ follows a Gamma distribution with density
function

π(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0. (4)

From (3) and (4), we get the posterior density of θ as

π(θ| x) =
θa+r−1e−bθvθ(1− ωθ)n−r∑n−r

k=0

(n−r
k

)
(−1)k(b− ln(ωkv))−a−r Γ(a + r)

, (5)

where

v =
r∏

i=1

(1− e−xi) and ω = 1− e−xr .

Let Xr+1,Xr+2,..., Xn be the future remaining order statistics.
The extended likelihood function is

f(x1, x2, .., xr+s, .., xn|θ) = n!f(x1|θ)...f(xr+s|θ)...f(xn|θ),
0 ≤ x1 ≤ ... ≤ xr ≤ ... ≤ xn (6)

By integrating (6), with respect xr+1, xr+2, .., xr+s−1, xr+s+1.., xn,
we have

f(x1, x2, .., xr, xr+s|θ) =
n!

(s− 1)!(n− s− r)!

r∏
i=1

f(xi)[F (xr+s)− F (xr)]s−1

[1− F (xr+s)]n−r−s f(xr+s). (7)

On using (1) and (2), we obtain

f(x1, x2, .., xr, xr+s|θ) =
n!

(s− 1)!(n− s− r)!
θr+1

r∏
i=1

[
e−xi(1− e−xi)θ−1

]
[
exr+s(1− e−xr+s)θ−1

] [
1− (1− e−xr+s)θ

]n−r−s

s−1∑
i=1

(−1)i

i!(s− i− 1)!
(1− e−xr)θi(1− e−xr+s)θ(s−i−1) (8)
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It follows from (3) and (8) that

f(xr+s|θ,x) =

s

(
n− r

s

)
θ
[
e−xr+s(1− e−xr+s)θ−1

]
[
1− (1− e−xr+s)θ

]n−r−s
(1− ωθ)r−n

s−1∑
i=0

(−1)i

(
s− 1

i

)
(1− e−xi)θi(1− e−xr+s)θ(s−i−1) (9)

Forming the product of f(xr+s|θ,x) and the posterior density
of θ given in (5) and integrating out θ, it may be shown that for
1 ≤ s ≤ n− r, the predictive density function of xr+s given x is

p(xr+s|x) =
s
(n−r

s

)
e−xr+s

∑s−1
i=0

∑n−r−s
j=0 (−1)i+j

(s−1
i

)(n−r−s
j

)
Wij∑n−r

k=0

(n−r
k

)
(−1)k(b− ln(ωkv))−a−r Γ(a + r)

,

xr+s > 0, (10)

where

Wij =
(1− e−xr+s)−1 Γ(a + r + 1){

b− ln
[
v ωi(1− e−xr+s)(j+s−i)

]}a+r+1 .

The predictive density p(xr+s|x) can be used to find the prediction
bounds on xr+s. Note that

P (Xr+s ≥ y|x) =

s
(n−r

s

)
T

s−1∑
i=0

n−r−s∑
j=0

(−1)i+j
(s−1

i

)(n−r−s
j

)
(j − i + s)

[b− ln(ωiv)]−(a+r)

1−
[
1− (j − i + s) ln(1− e−y)

b− ln(ωi v)

]−(a+r)
 (11)

where

T =
n−r∑
k=0

(
n− r

k

)
(−1)k(b− ln(ωk v))−(a+r).

Let L(x) and U(x) be the lower and upper bounds for 100(1−α)%
prediction interval, respectively. Then 100(1−α)% prediction bounds
can be obtained by equating (11) to 1− α/2 for the lower limit and
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α/2 for the upper limit and solving the resulting equations for y using
numerical techniques.

When s = 1 (we wish to predict the next failure time), Equation
(11) becomes

P (Xr+1 ≥ y|x) =

n− r

T

n−r−1∑
j=0

(−1)j
(n−r−j

j

)
(j − i + s)

[b− ln(v)]−(a+r)

1−
[
1− (j + 1) ln(1− e−y)

b− ln(v)

]−(a+r)
 . (12)

When s = n− r ; that is, we predict the last failure time. In this
case, Equation (11) reduces to

P (Xn ≥ y|x) =

n− r

T

n−r−1∑
i=0

(−1)i
(n−r−1

i

)
(i + n− r)

[
b− ln(ωiv)

]−(a+r)

1−
[
1− (n− r − i) ln(1− e−y)

b− ln(ωi v)

]−(a+r)
 . (13)

from which prediction can be made about Xn. Consider the special
case where r = n − 1, and s = 1. In this case, we predict the last
failure time Xn based on observing X1, X2, ..., Xn−1. Substituting
r = n− 1 in (13) and solving the equation:

P (Xn ≥ y|x) = γ, (14)

where γ = 1 − α/2 and γ = α/2, we get a 100(1 − α)% prediction
interval for Xn as (L(x), U(x)), so that

L(x) = − ln

1−
(

eb

v

)ξ1
 and U(x) = − ln

1−
(

eb

v

)ξ2
 ,

where

ξ1 = 1−

1− 1

1− c
(

1+α
2

)
 1

r+a

,

and
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ξ2 = 1−

1− 1

1− c
(

1−α
2

)
 1

r+a

,

with

c = 1−
[
1− ln(ω)

b− ln(v)

]−(r+a)

.

Prediction intervals for the remaining order statistics can also be
found using The Gibbs Sampler. Let Z = (Xr+1,Xr+2,..., Xn). By
forming the product of the extended likelihood and the prior of θ,
the full Bayesian model is expressed as

π(θ, z|x) ∝ θn+a−1 exp { − nx− θ(D + b) + D},

where D = −
∑n

i=1 ln(1− e−xi) and x =
∑n

i=1 xi/n.
Setting Zs = (Xr+1, ..., Xs−1, Xs+1, ...Xn), the full conditional

distribution of Xs (r + 1 ≤ s ≤ n), is found to be

π(xs|x, zs, θ) =


θe−xs (1−e−xs )θ−1I[xs−1<xs<xs+1]

(1−e−xs+1 )θ−(1−e−xs−1 )θ , s = r + 1, ..., n− 1

θe−xn (1−e−xn )θ−1I(xn>xn−1)

1−(1−e−xn−1 )θ , s = n.

(15)
and the full conditional distribution of θ |x,y is G(n + a,D + b).

Given an arbitrary set of starting values of θ and z, we gener-
ate values from (15) using the inverse cdf transformation method
(Devroye, 1986) as follows:

Xj = − ln
{

1−
[
(1− e−Xj−1)θ + U

[
(1− e−Xj+1)θ − (1− e−Xj−1)θ

]]θ−1}
,

for j = r + 1, ..., n− 1,

Xn = − ln
{

1−
[
(1− e−Xj−1)θ + U

[
1− (1− e−Xn−1)θ

]]θ−1}
(16)

where U ∼ U(0, 1). In fact, θ is generated directly from its standard
full conditional distribution.

3 Bayesian Prediction Interval for Future
order Statistics: Two-Sample Case

Let Y = (Y1, Y2, ..., Ym) be a future ordered random sample indepen-
dent of X from the GE distribution with density (3). It can be shown
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that the predictive density of Yk given x is expressed as

p(yk| x) =
k
(m

k

)
e−yk(1− e−yk)−1∑n−r

i=0

∑m−k
j=0

(n−r
i

)(m−k
j

)
(−1)i+j Vij

Q(x)

where

Q(x) =
n−r∑
k=0

(
n− r

k

)
(−1)k(b− ln(ωkv))

−a−r
Γ(a + r)

and
V =

Γ(a + r + 1)

{b− ln [ωi v(1− e−yk)k+j ]}a+r+1

It follows that

P (Yk ≥ y|x) =
k
(m

k

)
T

n−r∑
i=0

m−k∑
j=0

(n−r
i

)(m−k
j

)
(−1)i+j [b− ln(ωiv)]−a−r

(k + j)

.

1−
[
1− (k + j) ln(1− e−y)

b− ln(ωk v)

]−a−r
 , (17)

where

T =
n−r∑
k=0

(
n− r

k

)
(−1)k[b− ln(ωi v)]−a−r.

Since (17) does not permit explicit solution for the prediction
bounds on yk, numerical methods have to be employed. The 100(1−
α)% prediction bounds for the kth order statistic Yk can be obtained
by equating (17) to 1 − α/2 for the lower limit and α/2 for the up-
per limit and solving the resulting equations for y using numerical
techniques.

For example, to predict Ym, we need to solve

1− 1
T

n−r∑
i=0

(
n− r

i

)
(−1)i[(b− ln(ωi v))−m ln(1−e−y)]−a−r = γ (18)

and if r = n (prediction of Ym based on a complete sample), (18)
reduces to

1−
[
1− m ln(1− e−y)

b− ln v

]−a−n

= γ

and results in

L(x) = − ln

1−
(

eb

v

)δ1
 and U(x) = − ln

1−
(

eb

v

)δ2
 ,
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where

δ1 = m−1[1− (
2

2− α
)

1
a+n and δ2 = 1− (

2
α

)
1

a+n .

When r = n and k = 1, we predict Y1 based on a complete sample
of size n. Then we have to solve

m
m−1∑
j=0

(m−1
j

)
(−1)j

(1 + j)

1−
[
1− (1 + j) ln(1− e−y)

b− ln v

]−a−n
 = γ (19)

A special case of (19) is to predict a single future failure. Setting
m = 1 in (19), we get

1−
[
1− ln(1− e−y)

b− ln v

]−a−n

= γ.

The resulting 100(1− α)% prediction limits are

L(x) = − ln

[
1−

(
eb

v

)κ1
]

and U(x) = − ln

[
1−

(
eb

v

)κ2
]

.

where
κ1 = 1− (

2
α

)
1

a+n and κ2 = 1− (
2

2− α
)

1
a+n .

Prediction intervals for the future order statistics can also be
found via MCMC. By forming the product of the extended likeli-
hood and the prior of θ, the full Bayesian model is expressed as

π(θ,y|x) ∝ θm+r+a−1 exp { −my − θ(Dm + b) + Dm}
n−r∑
i=0

(
n− r

i

)
(−1)i exp {−θ[Dr + iTr]} ,

where Dm = −
∑m

i=1 ln(1 − e−yi), y =
∑m

i=1 yi/m,Dr = −
r∑

i=1
ln(1 −

e−xi) and Tr = − ln(1− e−xr).

Setting Yk = (Y1, ..., Yk−1, Yk+1, ...Ym), the full conditional distri-
bution of Yk (1 ≤ k ≤ m), is found to be

π(yk|x,yk, θ) =


θ e−yk (1−e−yk )θ−1 I[yk−1<yk<yk+1]

(1−e−yk+1 )θ − (1−e−yk−1 )θ
, k = 1, ...,m− 1

θe−ym (1−e−ym )θ−1I(ym>ym−1)

1 − (1−e−ym−1 )θ , k = m,

(20)
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and the full conditional distribution of θ |x,y is given by

π(θ |x,y) ∝ θm+r+a−1
n−r∑
i=0

(
n− r

i

)
(−1)i exp {−θ[Dr + Dm + iTr + b]}

Using the Gibbs sampler to estimate the posterior distribution
requires being able to sample from the full conditional distributions
for each quantity involved. This is the case for Yk but not for
θ. Consequently, Metropolis-Hastings (M-H) steps are introduced into
the Gibbs sampler so that Yk is sampled directly from its full con-
ditional distribution via the the inverse cdf transformation method,
whereas θ is updated via a M-H step as explained in Tierney (1994),
using G(m+ r+a,Dr +Dm + b) as a proposal distribution. The M-H
step proceeds as follows:

Given θ(i−1),
(i) Sample y from G[m + r + a,Dr + Dm + b] and u from U(0, 1)
(ii) If u < min(1, ϑ) then let θ(i) = y else go to (i), where

ϑ =
∑n−r

i=0 (−1)i(n−r
i )e−(iyTr)∑n−r

i=0 (−1)i(n−r
i )e−(iθTr)

.

4 Data Analysis

In this section, we illustrate the procedures by presenting a complete
analysis for a simulated data set. The following data sample was gen-
erated from GE distribution G(3, 1). Suppose that r = 15 observed
order statistics are available from a sample of size n = 20.These ob-
servations are as follows:

0.65306, 0.67631, 0.68341, 1.05645, 1.46194, 1.71555, 1.73903, 1.78940,

1.79847, 1.82522, 1.95587, 2.16530, 2.35033, 2.38706, 2.39005

We present some results to compare the performance of the classi-
cal and Bayesian approaches for different choices of prior parameters.
All computations are performed via Mathematica 5.0 and Fortran-90.

We use the iterative alogirthm to find the root y that solves
P (Xr+s > y) = γ = 0.975 and γ = 0.025 and the iterative pro-
cess stops when the difference between two consecutive iterates are
less than 10−10. This allows us to compute 95% confidence inter-
vals. Tables 1 and 3 present 95% Bayesian prediction intervals of
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Xi(i = 16, 17, ..., 20) and Yi(i = 1, 2, ..., 5) for prior parameters
(a = 4, b = 2), (a = b = 0.25), (a = 3, b = 1) and (a = 1, b = 0).
Further, we apply the Gibbs and Metropolis samplers to determine
the Bayesian prediction intervals. After setting initial values of θ
and x for the one-sample prediction and θ and y for the 2-sample
prediction, a sampler single chain with pre-determined number of
iterations is run and used as input in Raftery & Lewis Fortran pro-
gram (Raftery and Lewis, 1992) to determine the required number
of iterations needed to attain convergence. Subsequent to conver-
gence, 5, 000 draws of equally spaced variates were collected for the
parameter θ as well as x and y. Tables 2 and 4 present 95% MCMC
prediction intervals for the remaining and future order statistics.

Although, both mehods provide close lower and upper limits of
95% prediction intervals, it is observed that the prediction intervals
tend be wider when s and k increase. This is a natural, since the
prediction of the future order statistic that is far a way from the
last observed value has less accuracy than that of other future order
statistics.

Table 1: Bayesian Prediction Intervals: One-Sample Case
a = 4, b = 2 a = b = 0.25 a = 3, b = 1 a = 1, b = 0

n r s L U L U L U L U
20 15 1 2.396 3.197 2.396 3.212 2.396 3.210 2.396 3.223

2 2.337 3.743 2.335 3.762 2.336 3.759 2.334 3.776
3 2.569 4.418 2.573 4.440 2.573 4.437 2.576 4.456
4 2.127 5.450 2.119 5.475 2.120 5.471 2.113 5.492
5 3.103 7.801 3.116 7.826 3.114 7.826 3.126 7.844

Table 2: MCMC Bayesian Prediction Intervals: One-Sample Case
a = 4, b = 2 a = b = 0.25 a = 3, b = 1 a = 1, b = 0

n r s L U L U L U L U
20 15 1 2.397 3.184 2.396 3.209 2.396 3.210 2.396 3.212

2 2.452 3.752 2.457 3.792 2.458 3.741 2.456 3.757
3 2.566 4.442 2.575 4.447 2.577 4.444 2.572 4.461
4 2.764 5.474 2.773 5.503 2.755 5.524 2.758 5.503
5 3.113 7.994 3.127 7.954 3.088 7.968 3.112 7.891

Table 3: Bayesian Prediction Intervals: Two-Sample Case
a = 4, b = 2 a = b = 0.25 a = 3, b = 1 a = 1, b = 0

n r k L U L U L U L U
20 15 1 0.222 1.854 0.273 1.991 0.273 1.969 0.318 2.073

2 0.521 2.475 0.597 2.617 0.596 2.595 0.661 2.702
3 0.815 3.187 0.906 3.324 0.904 3.309 0.979 3.417
4 1.153 4.235 1.255 4.377 1.252 4.357 1.335 4.466
5 1.630 6.582 1.743 6.723 1.738 6.705 1.828 6.813
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Table 4: MCMC Bayesian Prediction Intervals: Two-Sample
Case

a = 4, b = 2 a = b = 0.25 a = 3, b = 1 a = 1, b = 0
n r k L U L U L U L U
20 15 1 0.233 1.989 0.338 2.203 0.383 2.095 0.420 2.222

2 0.540 2.468 0.717 2.825 0.777 2.749 0.718 2.847
3 0.846 3.280 1.083 3.486 1.005 3.512 1.119 3.637
4 1.166 4.288 1.470 4.457 1.342 4.496 1.481 4.694
5 1.788 6.397 1.990 6.806 1.862 7.040 2.036 7.565
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