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Abstract. Let {Xn, n ≥ 1} be a strictly stationary sequence of neg-
atively associated random variables, with common continuous and
bounded distribution function F. In this paper, we consider the es-
timation of the two-dimensional distribution function of (X1, Xk+1)
based on histogram type estimators as well as the estimation of the
covariance function of the limit empirical process induced by the se-
quence {Xn, n ≥ 1}. Then, we derive uniform strong convergence
rates for two-dimensional distribution function of (X1, Xk+1) without
any condition on the covariance structure of the variables. Finally,
assuming a convenient decrease rate of the covariances

Cov(X1, Xn+1), n ≥ 1,

we introduce uniform strong convergence rate for covariance function
of the limit empirical process.
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1 Introduction, definitions and assumption

Let Z(t) = n−1/2 ∑n
i=1(1(−∞,t](Xi) − F (t)) be the empirical process

induced by the random variables {Xn, n ≥ 1}, with common con-
tinuous distribution function F , where 1A represents the indicator
function of the set A. As it is well known, the limit behavior of the
empirical process has been intensively studied in recent years due to
the importance of this function to many statistical applications. In
several fields of statistics we often find transformations of the em-
pirical process for which it is of interest to characterize their limit
in distribution. The results about the asymptotic behavior of the
empirical process are a valuable tool to accomplish this. Some clas-
sic examples are several goodness of fit tests statistics, such as the
Kolmogorov-Smirnov and the Cramer-von Mises ω2 test statistics,
which are, respectively, the sup-norm and the L2[0, 1] norm of the
uniform empirical process. Another example of application may be
found in Shao and Yu [14], who are interested on integral functionals
of the empirical process and on the mean residual life process in re-
liability. It is well known that the study of convergence of Z(t) can
be carried out supposing the variables {Xn, n ≥ 1} to be uniformly
distributed on [0, 1]. This is the uniform empirical process. For inde-
pendent random variables, the uniform empirical process converges in
the Skorohod space D[0, 1] to the Brownian bridge, a centered Gaus-
sian process with covariance function Γ(r, s) = Fk(r, s) − F (r)F (s)
where Fk(r, s) is the distribution function of (X1, Xk+1). For depen-
dent sequences, under certain conditions (see Newman [10] Theorem
17 and the first remark of p. 137), the limit of the uniform empir-
ical process still is a centered Gaussian process, but the covariance
function changes to

Γ(r, s) = Fk(r, s)− F (r)F (s)

+
∞∑

k=1

(Pr(X1 ≤ r, Xk+1 ≤ s)− F (r)F (s))

+
∞∑

k=1

(Pr(X1 ≤ s,Xk+1 ≤ r)− F (s)F (r)). (1)

Henriques and Oliveira [3] proved strong convergence rates for the es-
timation of Γ for positively associated random variables under some
assumptions on the covariance structure of the variables. In this ar-
ticle, we consider negative association and prove strong convergence
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rates for the estimation of Γ that are different from results of Hen-
riques and Oliveira [3].

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be
negatively associated (NA) if for every pair of disjoint subsets A and
B of {1, 2, ..., n},

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0

whenever f1 and f2 are coordinatewise increasing and such that the
covariance exists. An infinite family of random variables is NA if
every finite subfamily is NA. This definition is introduced by Alam
and Saxena [1] and carefully studied by Joag-Dev and Proschan [4].
Because of their wide applications in multivariate statistical analy-
sis and reliability theory, the notion of NA has received more and
more attention recently. We refer to Joag-Dev and Proschan [4] for
fundamental properties, Newman [9] and Su and Chi [15] for central
limit theorem, Matula [7] for three series theorem, Su et al. [16] for a
moment inequality, a weak invariance principle and example to show
that there exists an infinite family of non-degenerate non-independent
strictly stationary NA random variables, Shao [13] for the Rosenthal
type maximal inequality and Kolmogorov exponenential inequality,
Liang and Su [5] for convergence rates of law of the logarithm, Rous-
sas [11] for the central limit theorem of random fields, some examples
and applications and Yuan et al. [17] for improving the result of
Roussas [11].

The above comments motivated the interest on the estimation of
the covariance function (1). For this we will estimate the terms ap-
pearing in the series and sum a convenient number of these estimates
to approximate Γ. We will concentrate on histogram estimators and
on proving uniform strong convergence rates.

The estimator for Fk(r, s) is defined by

F̂k(r, s) =
1

n− k

n−k∑
i=1

(1(−∞,r](Xi)1(−∞,s](Xi+k)). (2)

Combining the estimator F̂k(r, s) with the empirical distribution
function defined by F̂ (r) = n−1 ∑n

i=1 1(−∞,r](Xi), we obtain a natural
estimator for the terms ϕk(r, s) = Fk(r, s)− F (r)F (s), namely,

ϕ̂k(r, s) = F̂k(r, s)− F̂ (r)F̂ (s). (3)



56 Jabbari and Azarnoosh

The estimators for the infinite sum in the expression of Γ(r, s)
and for Γ(r, s) itself are, respectively,

an∑
k=1

ϕ̂k(r, s), (4)

and

Γ̂(r, s) = F̂k(r, s)− F̂ (r)F̂ (s) +
an∑

k=1

(ϕ̂k(r, s) + ϕ̂k(s, r)), (5)

where an → +∞ is such that an
n → 0 as n →∞.

We now introduce a general assumption to be used throughout
the article.

(A). {Xn, n ≥ 1}, is an NA and strictly stationary sequence of
random variables having density function bounded by M0; let M1 =
2 max(2/π2, 45M0).

In this study, we derive uniform strong convergence rates for two-
dimensional distribution function of (X1, Xk+1) and ϕk(r, s) which
approach the best possible ones for independent samples and do not
need any condition on the covariance structure of the variables. Fur-
thermore, for estimation of covariance function of the limit empirical
process, we obtain convergence rates assuming a convenient decrease
rate of the covariances Cov(X1, Xn+1), n ≥ 1. For strictly stationary
sequence of NA random variables,

∑∞
j=2 Cov(X1, Xj) is absolutely

convergent (Lemma 8 in Newman [10]). Hence, it is clear under As-
sumption (A) Cov(X1, Xn+1), n ≥ 1 exists. The starting point for
the derivation of these rates is a moment inequality for NA random
variables by Su et al. [16] and Matula [8]. Our method was inspired
by Masry [6], who uses moment inequalities to obtain convergence
rates for the estimation of the density and its derivatives, but con-
sidering NA samples.

In Section 2 we will present some auxiliary results needed to estab-
lish the above mentioned convergence rates. The moment inequality
referred earlier is included in this section. The results establishing
rates of uniform strong convergence are presented in Sections 3 and 4,
Section 3 deals with the estimators F̂k(r, s) and ϕ̂k(r, s) and Section 4
with the estimators

∑an
k=1 ϕ̂k(r, s) and Γ̂(r, s). Section 5 summarizes

our results.
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2 Auxiliary results

In this section we introduce a moment inequality for NA random vari-
ables and an inequality that are needed for proving our convergence
rates. Throughout this paper the letter C stands for a positive con-
stant, which may take different values at each appearance. In each
case the value of the constant is independent of n but may depend
on k and p.

Lemma 2.1. [Su et al. [16] and Matula [8]] Let (X1, X2, ..., Xn) be
an NA random vector with EXj = 0 and E|Xj |p < ∞ for some p ≥ 2
and all j = 1, ..., n. Then there exists a constant C = C(p) > 0, such
that

E|
n∑

j=1

Xj |p ≤ C[
n∑

j=1

E|Xj |p + (
n∑

j=1

EX2
j )p/2]. (6)

Based on the previous result we prove an inequality that will be
essential for proving our convergence rates.

Lemma 2.2. Let k ∈ IN0 be fixed and εn a sequence of positive
numbers. Suppose (A) is satisfied. Then, there exists a constant
C = C(p) such that, for each n > k, p > 2 and r, s ∈ IR,

Pr(|F̂k(r, s)− Fk(r, s)| > εn) ≤ C

εp
n(n− k)p/2

. (7)

Proof. For each n ∈ IN and fixed r, s ∈ IR define

Wk,n = 1(−∞,r](Xn)1(−∞,s](Xk+n)− Fk(r, s),

so that we can write

F̂k(r, s)− Fk(r, s) =
1

n− k

n−k∑
i=1

Wk,i.

Given (A), since the Wk,n are decreasing functions of the variables
Xn, the sequence {Wk,n, n ≥ 1}, is NA and strictly stationary. Fur-
thermore, |Wk,n| ≤ 1 and E(Wk,n) = 0 then, E|Wk,n|p < ∞, for each
n ≥ 1 and p > 2.

We want to apply Lemma 2.1 to the sequence {Wk,n, n ≥ 1}. So
there exists a constant C = C(p) such that, for all n ≥ 1

E|
n∑

i=1

Wk,i|p ≤ C[
n∑

i=1

E|Wk,i|p + (
n∑

i=1

EW 2
k,i)

p/2]
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≤ C[n + np/2]
≤ Cnp/2. (8)

Using the Markov inequality we find, for all n > k,

Pr(|F̂k(r, s)− Fk(r, s)| > εn) ≤ 1
εp
n(n− k)p

E|
n−k∑
i=1

Wk,i|p

≤ C

εp
n(n− k)p/2

. (9)

For the formulation of the next results we need to introduce some
additional notation. Let tn be a sequence of positive integers such
that tn → +∞. For each n ∈ IN and each i = 1, ..., tn, put xn,i =
Q(i/tn), where Q is the quantile function of F . Define then, for
n, k ∈ IN ,

Dn,k = sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|,

and
D∗

n,k = max
i,j=1,...,tn

|F̂k(xn,i, xn,j)− Fk(xn,i, xn,j)|.

To prove an uniform version of the preceding lemma we will apply
the following result which is proved in Theorem 2 of Henriques and
Oliveira [2].

Lemma 2.3. If the sequence {Xn, n ≥ 1} satisfies (A) then, for
each n ∈ IN and each k ∈ IN0,

Dn,k ≤ D∗
n,k +

2
tn

a.s. . (10)

Lemma 2.4. Let εn and tn be two sequences of positive numbers
such that tn → +∞ and εntn → +∞, and k ∈ IN0 be fixed. Suppose
(A) holds. Then, for some p > 2 and any large enough n,

Pr( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ 2pt2nC

εp
n(n− k)p/2

. (11)

Proof. From Lemma 2.3 we obtain

Pr(Dn,k > εn) ≤ Pr(D∗
n,k +

2
tn

> εn)

≤ Pr(D∗
n,k >

εn

2
) + Pr(

2
tn

>
εn

2
).
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Since εntn → +∞ as n → +∞, we conclude Pr( 2
tn

> εn
2 ) → 0 as

n → +∞. So, there exists an n0 ∈ IN such that for every n ≥ n0

Pr(Dn,k > εn)

≤
∑

i,j=1,...,tn

Pr(|F̂k(xn,i, xn,j)− Fk(xn,i, xn,j)| >
εn

2
)

≤ t2n max
i,j=1,...,tn

Pr(|F̂k(xn,i, xn,j)− Fk(xn,i, xn,j)| >
εn

2
). (12)

Now, apply Lemma 2.2 to complete the proof.

3 Uniform strong convergence rates for F̂k

In this section, we use the results of last section to establish uniform
strong convergence rates for the estimator F̂k.

Lemma 3.1. Let k ∈ IN0 be fixed and suppose (A) holds. Then,
for some p > 2 and every 0 < δ < p−2

2 , we have

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O((log n)
2

p+2 n
− p−2−2δ

2p+4 ) a.s. . (13)

Proof. Fix 0 < δ < p−2
2 and put tn = log n

εn
in order to have εntn →

+∞. Now, choosing εn = (log n)
2

p+2 n
− p−2−2δ

2p+4 , we will obtain from
Lemma 2.4 for n large enough,

Pr( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ C
(log n)2

εp+2
n (n− k)p/2

≤ Cn−(1+δ).

The sequence on the right-hand side above being summable, the re-
sult follows by the Borel-Cantelli Lemma.

Note that, p−2−2δ
2p+4 approaches 1/2 as p grows to ∞, so the conver-

gence rate established in the previous lemma can be arbitrarily close
to n−1/2, if a sufficiently large p can be chosen. As stated in the next
theorem, this is always possible.

Theorem 3.1. Let k ∈ IN0 be fixed and suppose (A) holds. Then
we have, for every 0 < γ < 1/2,

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O(n−γ) a.s. . (14)
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Proof. Fix 0 < γ < 1/2. Now, choose p > 2 and 0 < δ < p/2− 1 so
that p−2−2δ

2p+4 > γ. From Lemma 3.1, it follows that

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| ≤ C(log n)
2

p+2 n
− p−2−2δ

2p+4 ≤ Cn−γ a.s. .

Note that with k = 0 and r = s the estimator F̂k(r, s) reduces
to the one-dimensional empirical distribution function F̂ (s). So, the
results of the previous theorem stay valid for F̂ . In fact, under the
condition of Lemma 2.4, with k = 0, we would obtain, for every n
large enough,

Pr(sup
s∈IR

|F̂ (s)− F (s)| > εn) ≤ 2ptnC

εp
nnp/2

.

Then, as it is displayed in the proofs of Theorem 3.1, we would find
that, for every 0 < γ < 1/2,

sup
s∈IR

|F̂ (s)− F (s)| = O(n−γ) a.s. . (15)

We note also that the convergence rate is near the optimal rate for
F̂ , in the independent setting. In fact, for independent samples, the
Law of the Iterated Logarithm implies that the best possible conver-
gence rate for the one-dimensional empirical distribution function is
O(( log log n

n )1/2), which is just slightly faster than the rate given in
the previous theorem.

The next theorem is the analogue of Theorem 3.1 for the estima-
tor ϕ̂k.

Theorem 3.2. Let k ∈ IN0 be fixed and suppose (A) holds. Then
we have, for every 0 < γ < 1/2,

sup
r,s∈IR

|ϕ̂k(r, s)− ϕk(r, s)| = O(n−γ) a.s. . (16)

Proof. As

sup
r,s∈IR

|ϕ̂k(r, s)− ϕk(r, s)|

≤ sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|+ sup
r,s∈IR

|F (r)F (s)− F̂ (r)F̂ (s)|

≤ sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|+ sup
r,s∈IR

F (r)|F (s)− F̂ (s)|

+ sup
r,s∈IR

F̂ (s)|F (r)− F̂ (r)|

≤ sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|+ 2 sup
s∈IR

|F (s)− F̂ (s)|, (17)
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the result follows immediately from Theorem 3.1.

4 Uniform strong convergence rates for Γ̂

In this section we will derive uniform strong convergence rates for the
estimators of the sum

∑∞
k=1 ϕk(r, s) and of the covariance function

Γ(r, s).
It is well known that the covariance structure of a sequence of NA

random variables highly determines its approximate independence
(see, for example, Newman [10] for a number of results regarding
this). As a natural consequence, when dealing with NA samples it
is common to have assumptions on the covariance structure of the
random variables. To introduce the condition to be considered in the
remained results of this article we define

u(n) =
∞∑

j=n+1

|Cov1/3(X1, Xj)|. (18)

Now, in order to be able to identify explicit convergence rates, we
consider some conditions on the covariance structure of the random
variables that are introduced in the next lemma.

The following lemma provides uniform strong convergence rate
for the sum

∑∞
k=1 ϕk(r, s).

Lemma 4.1. Let (A) holds and θ > 0. Suppose an = n
p−2−2δ

p2+3p for
some p > 2 and for each 0 < δ < p−2

2 . If

u(n) ≤ Cn−θ, (19)

for all n ≥ 1, we have

sup
r,s∈IR

|
an∑

k=1

ϕ̂k(r, s)−
∞∑

k=1

ϕk(r, s)| = O((log n)
2

p+2 n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .

(20)

Proof. Let 0 < δ < p−2
2 and take εn = (log n)

2
p+2 n

− (p−2)(p−2−2δ)
2p(p+2) and

tn = an
εn

log n. Now, write

Pr( sup
r,s∈IR

|
an∑

k=1

(F̂k(r, s)− Fk(r, s))| > εn)

≤
an∑

k=1

Pr( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| >
εn

an
). (21)
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Note that, as 0 < δ < p−2
2 , we have (p−2)(p−2−2δ)

2p(p+2) > 0 and p−2−2δ
p2+3p

> 0,
so that εn → 0, an → +∞, tn → +∞ and εn

an
tn → +∞. Also, as

p−2−2δ
p2+3p

< 1, an
n → 0.

From (21), applying Lemma 2.4 with εn
an

replacing εn, we conclude
that there exists a constant C = C(p) such that, for all n large
enough,

Pr( sup
r,s∈IR

|
an∑

k=1

(F̂k(r, s)− Fk(r, s))| > εn)

≤
an∑

k=1

C2pt2nap
n

εp
n(n− k)p/2

≤ C
2pt2nap+1

n

εp
n(n− an)p/2

= C
ap+3

n (log n)2

εp+2
n (n− an)p/2

. (22)

By elementary manipulations it is easy to check that

(p− 2)(p− 2− 2δ)
2p(p + 2)

=
p− 2− 2δ

p2 + 3p
.
p + 3
p + 2

− p− 2− 2δ

2p + 4
, (23)

so, we may write εn = (log n)
2

p+2 a
p+3
p+2
n n

− p−2−2δ
2p+4 . Inserting this on the

right-hand side of (22) it follows that

Pr( sup
r,s∈IR

|
an∑

k=1

(F̂k(r, s)− Fk(r, s))| > εn) ≤ C
n

p−2−2δ
2

(n− an)p/2
. (24)

As an
n → 0, we have n

p−2−2δ
2

(n−an)p/2 ∼ n−(1+δ), thus the sequence on the
upper bound of (24) is summable. Then, from Borel-Cantelli Lemma
it follows that

sup
r,s∈IR

|
an∑

k=1

(F̂k(r, s)−Fk(r, s))| = O((log n)
2

p+2 n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .

(25)
Now, we may write

|
an∑

k=1

ϕ̂k(r, s)−
∞∑

k=1

ϕk(r, s)|
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≤ |
an∑

k=1

(ϕ̂k(r, s)− ϕk(r, s))|+ |
∞∑

k=an+1

ϕk(r, s)|

≤ |
an∑

k=1

(F̂k(r, s)− Fk(r, s))|+ an|F (s)− F̂ (s)|

+an|F (r)− F̂ (r)|+ |
∞∑

k=an+1

ϕk(r, s)|. (26)

Thus,

sup
r,s∈IR

|
an∑

k=1

ϕ̂k(r, s)−
∞∑

k=1

ϕk(r, s)|

≤ sup
r,s∈IR

|
an∑

k=1

(F̂k(r, s)− Fk(r, s))|

+2an sup
s∈IR

|F (s)− F̂ (s)|

+ sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)|. (27)

The convergence rate of the first term on the right-hand side of (27)
is given in (25). From Lemma 3.1 the second term is almost surely

O(an(log n)
2

p+2 n
− p−2−2δ

2p+4 ). Since p+3
p+2 > 1 and taking into account

(23), we have

an(log n)
2

p+2 n
− p−2−2δ

2p+4 < a
p+3
p+2
n (log n)

2
p+2 n

− p−2−2δ
2p+4

= (log n)
2

p+2 n
− (p−2)(p−2−2δ)

2p(p+2) .

Thus,

an sup
s∈IR

|F (s)− F̂ (s)| = O((log n)
2

p+2 n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .

Finally, we will check that the third term on the right-hand side
of (27) is of the same order. For this goal, under (A) we may apply
Corollary of Theorem 1 in Sadikova [12] and relation (21) in Newman
[9] to find

|Cov(1(−∞,r](Xi), 1(−∞,s](Xj))|

≤ M1|Cov1/3(Xi, Xj)| r, s ∈ IR, (28)
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where M1 is defined in (A). Then, according to (28), we have

sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)|

= sup
r,s∈IR

|
∞∑

k=an+1

Cov(1(−∞,r](X1), 1(−∞,s](Xk+1))|

≤ M1

∞∑
k=an+1

|Cov1/3(X1, Xk+1)|

= M1u(an) ≤ Ca
− (p+3)(p−2)

2(p+2)
n , (29)

since condition (19) is satisfied for θ = (p+3)(p−2)
2(p+2) > 0. Now, it is easy

to check that

a
− (p+3)(p−2)

2(p+2)
n = n

− (p−2)(p−2−2δ)
2p(p+2) ,

hence,

sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)| = O(n−
(p−2)(p−2−2δ)

2p(p+2) ),

so the proof is concluded.
The next theorem summarizes the previous result.

Theorem 4.1. Suppose (A) holds. Under condition (19) for all
n ≥ 1, θ > 0 and for every 0 < γ < 1/2, we have

sup
r,s∈IR

|
an∑

k=1

ϕ̂k(r, s)−
∞∑

k=1

ϕk(r, s)| = O(n−γ) a.s. , (30)

if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that

(p− 2)(p− 2− 2δ)
2p(p + 2)

> γ.

Proof. Follow the arguments of the proof of Theorem 3.1, invoking
Lemma 4.1 instead of Lemma 3.1.

The next result implies the convergence rates for the Γ̂n.

Theorem 4.2. Suppose (A) holds. Under condition (19) for all
n ≥ 1, θ > 0 and for every 0 < γ < 1/2, we have

sup
r,s∈IR

|Γ̂(r, s)− Γ(r, s)| = O(n−γ) a.s. , (31)
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if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that

(p− 2)(p− 2− 2δ)
2p(p + 2)

> γ.

Proof. First write

sup
r,s∈IR

|Γ̂(r, s)− Γ(r, s)|

≤ sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|+ 2 sup
s∈IR

|F̂ (s)− F (s)|

+ sup
r,s∈IR

|
an∑

k=1

ϕ̂k(r, s)−
∞∑

k=1

ϕk(r, s)|

+ sup
r,s∈IR

|
an∑

k=1

ϕ̂k(s, r)−
∞∑

k=1

ϕk(s, r)|. (32)

Thus, the proof follows directly from Theorem 3.1 and 4.1.

5 Concluding Remarks

Empirical process for independent data have been used for many
years in statistics and probability theory. The need to model the
dependence structure in data sets from many different subjects areas
such as finance, insurance, telecommunications and reliability has led
to new developments concerning the empirical process for dependent
sequences. One such structure arises from negatively associated ran-
dom variables. As mentioned in previous sections, we find almost
sure convergence rates for the estimation of the two-dimensional dis-
tribution function of (X1, Xk+1) without any condition on covariance
structure of the variables. According these rates we estimate Γ, co-
variance function of the limit empirical process. For this purpose, we
considered a convenient decrease rate of the covariances. The start-
ing point for the derivation of these rates is a moment inequality.
This inequality is used to estimate each of the terms that appear in
the covariance function (1). Henriques and Oliveira [2] studies the
properties of the histogram estimator for the distribution function
of (X1, Xk+1) under positive association. They proved almost sure
and weak convergence of the estimator without any discussion about
rates. However, we derive uniform strong convergence rates of the
estimator for negatively associated samples without any restriction
on the covariance structure of (X1, Xk+1). Furthermore, we expand
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this convergence rates for the estimation of covariance operator of
the limit empirical process.

Acknowledgements

The authors would like to thank the referees for their careful read-
ing and constructive comments that improved presentation of the
manuscript.

The authors wish to acknowledge partial support from Statistics
Center of Excellence of Ferdowsi University of Mashhad.

References

[1] Alam, K. and Saxena, K. M. L. (1981), Positive dependent in
multivariate distribution. Commun. Statist-Theor. Meth., A 10,
1183–1196.

[2] Henriques, C. and Oliveira, P. E. (2003), Estimation of a two
dimensional distribution function under association. J. Statist.
Planning Inf., 113, 137–150.

[3] Henriques, C. and Oliveira, P. E. (2005), Strong convergence
rates for the estimation of a covariance operator for associ-
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