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Abstract. In this paper, we first show that Renyi distance between
any member of a parametric family and its perturbations, is pro-
portional to its Fisher information. We, then, prove some relations
between the Renyi distance of two distributions and the Fisher infor-
mation of their exponentially twisted family of densities. Finally, we
show that the partial ordering of families induced by Renyi distance
is the same as that induced by Fisher information.

1 Introduction and Preliminaries

Consider a parametric density p(x; θ) defined over a probability space
X parameterized by θ ∈ Ω. Renyi information (distance) between
p(x; θ0) and p(x; θ1) is defined by

Dα(p(x; θ1), p(x; θ0)) =
1

α− 1
log

∫
X

[
p(x; θ1)
p(x; θ0)

]α−1

p(x; θ1)dx

for all α > 0 (α 6= 1) ( Renyi, 1961 ).
Kullback-Leibler (K-L) information is a limiting case of the above

Key words and phrases: Exponentialy twisted family, Fisher information,
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as α tends to 1; that is,

lim
α→1

Dα(pθ1 , pθ0) = D(pθ1 , pθ0) =
∫

χ
p(x; θ1) log

p(x; θ1)
p(x; θ0)

dx.

The paper is organized as follows: In section 2, we show that
when θ1 = θ0 + δ, where δ is a perturbation, Renyi distance between
pθ1 and pθ0 is proportional to the family’s Fisher information at θ0.

In section 3, we generalize the relation between Renyi and Fisher
information when the condition “δ small” may not hold and when
we do not have parametric densities. Thus we prove that for two
exponential families, their order in terms of Renyi information is the
same as their order in terms of Fisher information. Finally, in section
4, we prove a general relation between Renyi and Fisher information,
generalizing the result of Habibi et al (2006), who proved a general
relation between K-L and Fisher information.

2 A link between Renyi and Fisher informa-
tion in the case of parametric families

Suppose that θ0 and θ0 + δ are neighboring points in the parameter
space Ω. The following Theorem states in effect that for small δ,
Dα(pθ0+δ, pθ0) and its derivatives are proportional to Fisher informa-
tion at θ = θ0.

Theorem 2.1. Suppose that density p(x; θ) satisfies the follow-
ing regularity conditions:
1. For all x ∈ X , p(x; θ) is twice differentiable with respect to θ and
integral and derivatives can be interchanged.
2. Fisher information is finite.
3. For every θ ∈ Ω,

∣∣∣ ∂
∂θp(x; θ)

∣∣∣ < K(x) and
∣∣∣ ∂2

∂θ2 p(x; θ)
∣∣∣ < H(x),

where K(x) and H(x) are integrable function over X .
Then

(i) lim
δ→0

1
δ2
Dα(pθ0+δ, pθ0) =

α

2
IX(θ0)

(ii)
∂2

∂θ2
Dα(pθ, pθ0)|θ=θ0 = αIX(θ0).

The above two relations for α = 1 were proved by Kullback (1959, p
27).
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Proof. (i) Assuming we can take the differentiation under the inte-
gral sign, we can write

lim
δ→0

1
δ2
Dα(pθ0+δ, pθ0)

= lim
δ→0

(1/(α− 1)) log
∫
pα

θ0+δ(x)p
1−α
θ0

(x)dx
δ2

= lim
δ→0

∫
αpα−1

θ0+δ(x)p
1−α
θ0

(x) ∂
∂θpθ0+δ(x)dx

2δ(α− 1)
∫
pα

θ0+δ(x)p
1−α
θ0

(x)dx

=
α

2
lim
δ→0

∫
pα−2

θ0+δ(x)[
∂pθ0+δ(x)

∂δ ]2p1−α
θ0

(x)dx∫
p1−α

θ0
(x)

[
pα

θ0+δ(x) + δαpα−1
θ0+δ(x)

∂pθ0+δ(x)

∂δ

]
dx

+ lim
δ→0

α
∫
pα−1

θ0+δ(x)
∂2pθ0+δ(x)

∂δ2 p1−α
θ0

(x)dx

2(α− 1)
∫
p1−α

θ0
(x)

[
pα

θ0+δ(x) + δαpα−1
θ0+δ(x)

∂pθ0+δ(x)

∂δ

]
dx
,

by regularity conditions, it is possible to change the order of integra-
tion and taking limits. Hence

lim
δ→0

1
δ2
Dα(pθ0+δ, pθ0) =

α

2

∫ [p′θ0
(x)]2

pθ0
(x) dx∫

pθ0(x)dx
+

α
∫
p′′θ0

(x)dx
2(α− 1)

∫
pθ0(x)dx

=
α

2

∫ (p′θ0
(x))2

pθ0(x)
dx

=
α

2
IX(θ0),

where p′θ0
and p′′θ0

denote the first and the second derivatives of pθ0 .
(ii) We have

Dα(pθ, pθ0) =
1

α− 1
log

∫
pα

θ (x)p1−α
θ0

(x)dx .

Then

∂

∂θ
Dα(pθ, pθ0) =

1
α− 1

∫
αpα−1

θ (x)p1−α
θ0

(x)p′θ(x)dx∫
pα

θ (x)p1−α
θ0

(x)dx

and
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∂2

∂θ2
Dα(pθ, pθ0)

= α
[
∫
pα−2

θ (x)p1−α
θ0

(x)(p′θ(x))
2dx][

∫
pα

θ (x)p1−α
θ0

(x)dx][∫
pα

θ (x)p1−α
θ0

(x)dx
]2

+
1

α− 1
[
∫
αpα−1

θ (x)p1−α
θ0

(x)p′′θ(x)dx][
∫
pα

θ (x)p1−α
θ0

(x)dx][∫
pα

θ (x)p1−α
θ0

(x)dx
]2

− 1
α− 1

[∫
αpα−1

θ (x)p1−α
θ0

(x)p′θ(x)dx
]2

[∫
pα

θ (x)p1−α
θ0

(x)dx
]2

and if θ = θ0 we have

∂2

∂θ2
Dα(pθ, pθ0)|θ=θ0 = α

[
∫ (

(p′θ0
(x))2

pθ0
(x) + αp′′θ0

(x)
)
dx][

∫
pθ0(x)dx]

[
∫
pθ0(x)dx]2

−
[
∫
αp′θ0

(x)dx]2

(α− 1)[
∫
pθ0(x)dx]2

= α

∫ (p′θ0
(x))2

pθ0(x)
dx

= αIX(θ0). 2

3 Exact relations between Renyi distance and
Fisher information

Consider two probability density functions p0(x) and p1(x) defined
on a probability space X . They could be arbitrary densities, not
necessarily members of a parametric family of densities. Suppose p1

and p0 have common support. The following parametric family of
densities is well defined.

Definition 3.1. Let p0(x) and p1(x) be two densities with common
support X . Then the family of densities defined by

pt(x) =
1
Nt
p0(x)

[
p1(x)
p0(x)

]t

x ∈ χ, t > 0,
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is called the exponentially twisted family of densities of p0 and p1 and
is denoted by ET (p0, p1).

Here
0 < Nt =

∫
[p0(x)]1−t[p1(x)]tdx <∞,

where the first inequality above is obvious and the second inequality
follows from the fact that Dα(p1, p0) = +∞ if and only if Supp(p1)∩
Supp(p0) = ∅, or α > 1 and Supp(p1) is not a subset of Supp(p0),
where Supp(p) = {x : p(x) > 0} (Csiszar, 1995).

Since we can write

pt(x) =
1
Nt
p0(x) exp

{
t log

p1(x)
p0(x)

}
,

the above family is a one parameter exponential family (for any pair
of densities p0 and p1), where t is considered as the parameter.

Fisher information of pt(x) is

I(t) =
∫
X

(
d log pt(x)

dt

)2

pt(x)dx t > 0 (3.1)

It is easy to show that

d log pt(x)
dt

= log
p1(x)
p0(x)

−
∫
X
pt(x) log

p1(x)
p0(x)

dx.

Substituting the above in (3.1) and simplifying gives

I(t) =
∫
X
pt(x)

(
log

p1(x)
p0(x)

)2

dx−
(∫

X
pt(x) log

p1(x)
p0(x)

dx

)2

.

By noting that Renyi information is finite and using Jensen’s inequal-
ity, it follows that I(t) <∞ for t > 0. Theorem 3.1 below generalizes
the following results by Dabak and Johnson (2002).

(i)
∂D(pt, pu)

∂t
= (t− u)I(t) ∀ t, u ∈ [0, 1],

(ii)
∂2D(pt, pu)

∂t2
|t=u = I(t),

(iii) D(pt, p0) =
∫ t

0
uI(u)du.
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Theorem 3.1. Let p0(x) and p1(x) be two densities with common
support X . Then

(i)
∂Dα(pt, pu)

∂t
=

α

α− 1

∫ α(t−u)+u

t
I(z)dz ∀ t > u > 0 (3.2)

(ii)
∂2Dα(pt, pu)

∂t2
|t=u = αI(t) (3.3)

(iii) Dα(pt, p0) =
α

α− 1

[∫ t

0

∫ αw

w
I(z)dz dw

]
. (3.4)

Proof. To prove the theorem, we need following relations:

dpt(x)
dt

= pt(x)
[
log

p1(x)
p0(x)

− d logNt

dt

]
, (3.5)

d logNt

dt
=

∫
pt(x) log

p1(x)
p0(x)

dx, (3.6)

Also,

∂
∫
pt(x) log p1(x)

p0(x)dx

∂t
=

∫
dpt(x)
dt

log
p1(x)
p0(x)

dx

=
∫
pt(x)

[
log

p1(x)
p0(x)

− d logNt

dt

]
log

p1(x)
p0(x)

dx

=
∫
pt(x)

[
log

p1(x)
p0(x)

−
∫
pt(x) log

p1(x)
p0(x)

dx

]
× log

p1(x)
p0(x)

dx

=
∫
pt(x)

[
log

p1(x)
p0(x)

]2

dx

−
[∫

pt(x) log
p1(x)
p0(x)

dx

]2

= I(t), (3.7)

and
∂

∫
pα(t−u)+u(x) log p1(x)

p0(x)dx

∂t
= αI(α(t− u) + u). (3.8)

(i) Differentiating both sides of

Dα(pt, pu) =
1

α− 1
log

∫
pα

t (x)
pα−1

u (x)
dx
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with respect to t, we have

∂Dα(pt, pu)
∂t

=
1

α− 1

∫
αdpt(x)

dt
pα−1

t (x)

pα−1
u (x)

dx∫ pα
t (x)

pα−1
u (x)

dx
.

Using the equalities (3.5) and (3.6) we can write

∂Dα(pt, pu)
∂t

=
α

α− 1

∫ [
pα

t (x)

pα−1
u (x)

log p1(x)
p0(x) −

pα
t (x)

pα−1
u (x)

∫
pt(x) log p1(x)

p0(x)dx

]
dx∫ pα

t (x)

pα−1
u (x)

dx

=
α

α− 1


∫ pα

t (x)

pα−1
u (x)

log p1(x)
p0(x)dx∫ pα

t (x)

pα−1
u (x)

dx
−

∫
pt(x) log

p1(x)
p0(x)dx


=

α

α− 1

∫
(p1(x)

p0(x))
α(t−u)+up0(x) log p1(x)

p0(x)dx∫
(p1(x)

p0(x))
α(t−u)+up0(x)dx


− α

α− 1

∫
pt(x) log

p1(x)
p0(x)

dx.

But ∫
(
p1(x)
p0(x)

)α(t−u)+up0(x)dx = Nα(t−u)+u.

So, we have

∂Dα(pt, pu)
∂t

=

α

α− 1

[∫
pα(t−u)+u(x) log

p1(x)
p0(x)

dx−
∫
pt(x) log

p1(x)
p0(x)

dx

]
Now using relations (3.7) and (3.8), it follows that

∂Dα(pt, pu)
∂t

=
α

α− 1

[∫ t

u
αI(α(z − u) + u)dz −

∫ t

u
I(z)dz

]
=

α

α− 1

∫ α(t−u)+u

t
I(z)dz.

(ii) To prove the second relation, we differentiate both sides of (3.2)
and obtain

∂2Dα(pt, pu)
∂t2

=
α

α− 1
[αI(α(t− u) + u)− I(t)] .
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Substituting t = u gives (3.3).
(iii) Integrating (3.2) with respect to t and putting u = 0 proves the
result. 2

Example 3.1. Let p0(x) =
√

2
πe

−x2

2 x > 0 and p1(x) =

xe−
x2

2 x > 0. Then pt(x) = 1

Γ( t+1
2

)2
t−1
2

xte−
x2

2 x > 0. It can

be easily shown that I(t) = 1
4ψ

′( t+1
2 ) where ψ′(t) = d2

dt2
log Γ(t) is

the trigamma function. Using the relation (3.4), we get Dα(pt, p0) =
1

α−1 [log Γ(αt+1
2 )− α log Γ( t+1

2 )] + 1
2 log π.

Comparing two families of distributions with respect to their
Fisher information is often easier than establishing their order in
terms of Renyi distance.

Now we use the above established link between Renyi and Fisher
information to prove a result for exponential families.

Lemma 3.1. If p0(x) = p(x; θ0) and p1(x) = p(x; θ1) are two mem-
bers of the exponential family P={p(x; θ), θ ∈ Ω}, then ET (p0, p1) is
a sub family of P.

Proof. The proof is easy and is given in Habibi et al (2006). 2

Theorem 3.3. Let P ={p(x; θ), x ∈ X, θ ∈ Ω} and Q ={q(y; θ), y ∈
Y, θ ∈ Ω} be exponential families, then the following three statements
are equivalent:

(i) IX(θ) > (<, =) IY (θ), ∀θ ∈ Ω,
(ii) Dα(pθ1 , pθ0) > (<, =) Dα(qθ1 , qθ0), ∀θ0, θ1 ∈ Ω,
(iii) Jα(pθ1 , pθ0) > (<, =) Jα(qθ1 , qθ0), ∀θ0, θ1 ∈ Ω,

where pθi
and qθi

(i = 0, 1) are members of P and Q, respectively and
Jα(pθ1 , pθ0) = Dα(pθ1 , pθ0) +Dα(pθ0 , pθ1).

Proof. Assuming θ0 < θ1, by (3.4) we can write

Dα(pt, p0) =
α

α− 1

[∫ t

0

∫ αw

w
I(z)dz dw

]
.

But IX(z) = I∗X(θ)[dθ
dz ], where θ = θ0 + (θ1 − θ0)z (Lehmann,1983,

p.118). Thus∫ αw

w
IX(z)dz =

∫ θ0+(θ1−θ0)αw

θ0+(θ1−θ0)w
I∗X(θ)(θ1 − θ0)2(

1
θ1 − θ0

)dθ
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=
∫ θ0+(θ1−θ0)αw

θ0+(θ1−θ0)w
I∗X(θ)(θ1 − θ0)dθ.

Thus the result follows. 2

Example 3.2. Let X have a Weibull distribution with pdf

f(x; θ, β) = θβxβ−1e−θxβ
x > 0, θ, β > 0

and Y be a random variable with gamma density as

g(y; θ, β) =
θβ

Γ(β)
xβ−1e−θx x > 0, θ, β > 0.

Here IX(θ) = 1
θ2 and IY (θ) = β

θ2 . Using Theorem 3.2 we have

Dα(gθ1 , gθ0) > Dα(fθ1 , fθ0) ∀ θ1 > θ0, β > 1

Dα(gθ1 , gθ0) = Dα(fθ1 , fθ0) ∀ θ1 > θ0, β = 1

Dα(gθ1 , gθ0) < Dα(fθ1 , fθ0) ∀ θ1 > θ0, β < 1.

4 A general theorem

Classifying a distribution family with respect to Renyi distance is not
usually (algebraically) easy, while it is relatively easier with respect
to Fisher information.

In this section, we generalize relations between K-L distance and
Fisher information established by Habibi et al (2006) to the case of
Renyi distance which gives a partial ordering of parametric families
of distributions in terms of Dα (and hence in terms of Jα ).

Theorem 4.1. Let {pθ, θ ∈ Ω} and {qθ, θ ∈ Ω} be two families
of densities. Assume that both family have finite Fisher and Renyi
information, continuous in θ. If the following conditions hold

(i) IX(θ)− IY (θ) ≥ d0 > 0, ∀θ ∈ I = [θ0, θ1]
(ii) The third derivatives of Dα

X(pθ+δ, pθ) and Dα
Y (qθ+δ, qθ) with re-

spect to (w.r.t) δ are bounded for every θ ∈ I and every δ in the
neighborhood I0 = [0, c] of zero, then

Dα
X(pθ1 , pθ0) > Dα

Y (qθ1 , qθ0)



34 Abbasnejad and Arghamir

To prove the above Theorem along the line of proof of a similar
theorem in Habibi et al (2006), we need the following lemmas.

Lemma 4.1. Let θ be fixed, and let

hα
θ (δ) = Dα

X(pθ+δ, pθ) =
1

α− 1
log

∫
X

[
pθ+δ(x)
pθ(x)

]α−1

pθ+δ(x)dx.

for α > 0 (α 6= 1).
Then
(i) hα

θ (0) = 0
(ii) d hα

θ (δ)

d δ |δ=0 = 0
(iii) [Hα

θ (δ)]′ = 1
2h

α(3)
θ (ξ2)− 1

3h
α(3)
θ (ξ1), for some 0 < ξ1, ξ2 < δ,

where Hα
θ (δ) = 1

δ2h
α
θ (δ).

Proof. Relations (i) and (ii) are easy to see.
(iii) We have

[Hα
θ (δ)]′ = − 2

δ3
hα

θ (δ) +
1
δ2
d hα

θ (δ)
d δ

.

By Taylor expansion we have

[Hα
θ (δ)]′

= − 2
δ3

[
hα

θ (0) + δ
d hα

θ (δ)
d δ

|δ=0 +
δ2

2
d2 hα

θ (δ)
d δ2

|δ=0 +
δ3

6
h

(3)α
θ (ξ1)

]

+
1
δ2

[
d hα

θ (δ)
d δ

|δ=0 + δ
d2 hα

θ (δ)
d δ2

|δ=0 +
δ2

3
h

(3)α
θ (ξ2)

]

= −1
3
h

(3)α
θ (ξ1) +

1
2
h

(3)α
θ (ξ2). 2

Corollary 4.1. If the third derivative of Dα
X(pθ+δ, pθ) w.r.t δ is

bounded in B = I0 ⊗ I, then Hα
θ (δ) is bounded in B.

Corollary 4.2. If the third derivatives of Dα
X(pθ+δ, pθ) and

Dα
Y (pθ+δ, pθ) w.r.t δ are bounded in B, then Gα

θ (δ) is bounded in B,
where

Gα
θ (δ) =

1
δ2

[Dα
X(pθ+δ, pθ)−Dα

Y (qθ+δ, qθ)] .

Lemma 4.2. Under the assumptions of Theorem 4.1, there exists
δ0 > 0 such that for every θ ∈ I and every δ ≤ δ0

Gα
θ (δ) >

d1

8
,
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where d1 = αd0
2 .

Proof. Let

Gα
θ (δ) =

1
δ2

[Dα
X(pθ+δ, pθ)−Dα

Y (qθ+δ, qθ)] .

By part (i) of Theorem 2.1,

lim
δ→0

Gα
θ (δ) =

α

2
[IX(θ)− IY (θ)] ≥ d1

2
> 0 (4.1)

To prove the lemma by contradiction, suppose it doesn’t hold. Then
we have

∀ δ > 0 ∃ θ ∈ I s.t. Gα
θ (δ) ≤ d1

8
.

Thus for some δ1 > 0 in I0, there exist θ1 ∈ I such that Gα
θ1

(δ1) ≤
d1/8.
But by (4.1)

∃ γ1 > 0 s.t. Gα
θ1

(γ) >
d1

4
, ∀ 0 < γ < γ1,

where (obviously) γ1 < δ1. Now, let δ2 = 1
2γ1, again

∃ θ2 ∈ I s.t. Gα
θ2

(δ2) ≤
d1

8
,

and again by (4.1)

∃ γ2 > 0 s.t. Gα
θ2

(γ) >
d1

4
, ∀ 0 < γ < γ2,

where γ2 < δ2. If we continue in this manner, we shall have three
sequences δ1, δ2, . . .,θ1, θ2, . . . and γ1, γ2, . . . such that for every n ≥ 1,
we have γn < δn and

Gα
θn

(γn)−Gα
θn

(δn) >
d1

4
− d1

8
=
d1

8
.

But by mean value theorem we have

Gα
θn

(γn)−Gα
θn

(δn) = (γn − δn)(Gα
θn

(ξn))′ >
d1

8
,

where γn < ξn < δn. We know that (γn − δn) → 0, as n → ∞, so
(Gα

θn
(ξn))′ →∞ as n→∞. But this contradicts the assumption that

(Gα
θn

)′ is bounded. Thus the lemma is proved. 2
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Now by noting that we can always restrict c in condition (ii) of
the Theorem 4.1 to be less than unity, we have the following

Corollary 4.3. Under the conditions of Theorem 4.1 there ex-
ist δ0 > 0 such that for every θ ∈ I and every δ ≤ δ0

Dα
X(pθ+δ, pθ)−Dα

Y (qθ+δ, qθ) >
d1

8
.

Lemma 4.3. Under the assumptions of Theorem 4.1, there exist
δ′ > 0 such that for every θ ∈ I and every δ ≤ δ′

−d1

32
< Dα

X(pθ, pθ0)−Dα
X(pθ+δ′ , pθ0) +Dα

X(pθ+δ′ , pθ) <
d1

32

−d1

32
< Dα

Y (qθ, qθ0)−Dα
Y (qθ+δ′ , qθ0) +Dα

Y (qθ+δ′ , qθ) <
d1

32

Proof. By considering the fact that the expressions between in-
equality signs tend to zero when δ′ → 0, the proof is obvious. 2

Proof of Theorem 4.1. Let δ∗ = Min[δ0, δ′] and K = [ θ1−θ0
δ∗ ],

where δ0 and δ′ are as in Lemma 4.2 and Lemma 4.3, respectively,
and [u] means the smallest integer greater than or equal to u. By
Lemma 3.2 the inequality

Dα
X(pθ0+kδ∗ , pθ0)−Dα

Y (qθ0+kδ∗ , qθ0) > 0, (4.2)

holds for k = 1. Aiming to give a proof by induction, we assume (4.2)
holds for k. Let

Q = Dα
X(pθ0+(k+1)δ∗ , pθ0)−Dα

Y (qθ0+(k+1)δ∗ , qθ0)

It is easy to show that Q = Q′ +Q′′, where

Q′ = Dα
X(pθ0+(k+1)δ∗ , pθ0+kδ∗)−Dα

Y (qθ0+(k+1)δ∗ , qθ0+kδ∗),

and

Q′′ = Dα
X(pθ0+(k+1)δ∗ , pθ0)−Dα

X(pθ0+(k+1)δ∗ , pθ0+kδ∗)
+ Dα

Y (qθ0+(k+1)δ∗ , qθ0)−Dα
Y (qθ0+(k+1)δ∗ , qθ0+kδ∗)

By Lemma 4.2 Q′ > d1
8 and by Lemma 4.3

Q′′ > Dα
X(pθ0+kδ∗ , pθ0)−Dα

Y (qθ0+kδ∗ , qθ0)−
d1

16
.
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So, Q > (d1/8)− (d1/16) > 0. Thus (4.2) holds for k+ 1. The result
follows by induction. 2

Theorem 4.1 and its reverse (which is trivial, in view of Theo-
rem 2.1 part (ii)) states in effect that the partial ordering of families
of distributions (under the stated regularity conditions) with respect
to Renyi information is the same as that with respect to Fisher infor-
mation. This knowledge can be useful when comparing experiments’
potential evidence in terms of one or the other of the two indices.
There is more about this point in our other article, also in the present
volume, where we present some applications and examples.
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