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1 Introduction

Paret (1897) introduced the Pareto income distribution. Later this
distribution has been used in connection with studies of income by
Hayakowa (1951) and Champernowne (1953); of wealth by Wold &
Whittle (1957); of service time queuing system by Harris (1968).
Ahmed & Bhattacharya (1974) used the Pareto distribution to es-
timate the size distribution of percapita personal income in India.
Steindl (1965) used the Pareto distribution in the study of distribu-
tion of business firms according to various factors.

The classical Pareto distribution is defined with the following den-
sity

fα,σ(x) =
ασα

xα+1
, x > σ

=
ασα

xα+1
u(x− σ) (1.1)

where u(t) = 1 if t ≥ 0 and 0 otherwise. The parameter σ is clearly
a scale parameter, while α may be called the shape parameter. Both
α and σ are positive. Some parametric functions of potential interest
are:

(i) α, shape parameter;

(ii) σ, scale parameter;

(iii) min[(x0/σ)−α, 1], the probability that X exceeds x0 (for some
specified x0), the survival probability;

(iv) G = 1/(2α− 1), α > 1, the Gini index;

(v) M = σα/(α− 1), α > 1, the mean;

(vi) α0 = 1− λα
0 , with x0(> σ) and λ0 = σ/x0, the poverty index;

(vii) P = (α− 1)α−1/αα, the Pietra index.

The use of the Pareto distribution as a model for various socio-
economic phenomena dates back to the late nineteenth century. An
extensive historical survey of its use in the context of income distribu-
tion may be found in Arnold (1983). Classical estimation techniques
have been studied extensively for some time, see Arnold (1983) and
Voinov & Nikulin (1993), for a guide to the relevant literature.
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It is remarkable that the development of appropriate Bayesian in-
ference procedure has been quite limited. Zellner (1971) includes an
example involving Bayesian inference in the classical Pareto distribu-
tion for the special case in which the scale parameter is known. Malik
(1970) and, earlier, Muniruzzaman (1968) were apparently the first
to consider the case with known scale parameter. Sinha & Howlader
(1980) studied Bayesian estimators in the known scale case. Arnold
& Press (1983,1986) discussed possible forms of priors and Bayesian
analysis for different cases of Pareto distribution Including censored
and/or grouped data case. Pandey, et al (1996) and Bhattacharya,
et al (1999) provide a recent thorough study of Bayesian estimation
on the subject.

Clearly, the choice of the loss function may be crucial. In all the
above mentioned references, except Pandey, et al (1996), the loss un-
der consideration was Squared Error loss (SEL). It has always been
recognizes that the most commonly used SEL function is inappropri-
ate in many situations. If the SEL is taken as a measure of inaccuracy
then the resulting risk is often too sensitive to the assumptions about
the behavior of the tail of the probability distribution. The choice of
SEL may be even more undesirable if it is supposed to represent a
real financial loss. In some estimation problems overestimation may
be more serious than underestimation, or vice-versa, see Parsian &
Kirmani (2002) and the references there in. In such cases, the usual
methods of estimation may be inappropriate. To deal with such cases,
a useful and flexible class of asymmetric loss functions was introduced
by Varian (1975) as

L(∆) = b{eα∆ − a∆− 1} (1.2)

where ∆ is the estimation error, a 6= 0 is a shape parameter and b > 0
is a scale parameter. For some insight in this regard see Parsian &
Kirmani (2002).

We believe that, as stated in Arnold & Press (1983) that from a
strict Bayesian viewpoint, there is clearly no way in which one can
say that one prior is better than any other. Presumably one has one’s
own subjective prior and must live with all of its lumps and bumps.
It is more frequently the case that we elect to restrict attention to
a given flexible family of priors and we choose one from that family,
which seems to best match our personal, believes. If all members
of a family of prior distribution posses undesirable features, such as
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insensitivity to the data, we should elect to use a different family
of priors. With this in mind, all the above mentioned references,
except Bhattacharya, et al (1999), on the Bayesian analysis of the
Pareto income distribution, used a prior density that assumes possible
values over the entire region of the natural parameter space. For
some functions of (α, σ), say ϕ(α, σ), there are some restrictions on
the values of the unknown parameters. So, it is erroneous to assign
positive prior probabilities on unnecessary regions. With this in mind,
a suitable choice of prior on the restricted space is crucial.

The outline of this paper is as follows. Some necessary preliminary
results are mentioned in section 2. Section 3 is concerned with Bayes
estimation of some of the parameters of interest under the LINEX
loss (1.2) and a suitable choice of priors when the scale parameter
is known, namely α (shape parameter), G (Gini index), M (mean)
and α0 (poverty index). In section 4 the Bayes estimation of α, σ

and G is discussed under LINEX loss when both scale and shape
parameters are unknown. Finally, in section 5 results of a Monte
Carlo simulation study conducted to evaluate the performances of
these estimators compared to the MME’s and MLE’s in terms of
estimated risks under LINEX loss function.

2 Preliminaries

Suppose we have n independent observations X1, . . . , Xn from the
classical Pareto income distribution, denoted by Pa(α, σ), with den-
sity given in (1.1). It is easy to verify that

a) the distribution function of Pa(α, σ) is given by

Fα,σ(x) =
{

0 x < σ

1− (σ
x )α x ≥ σ

(2.1)

b) the mean is

M = Eα,σ(X1)

=
σα

α− 1
if α > 1 (2.2)
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c) the Lorenz curve is (see Gastwirth 1971)

L(p, α) = M−1

∫ p

0
F−1(t)dt

= 1− (1− p)1−α−1
, 0 < p < 1, α > 1 (2.3)

d) the Gini index is (see Moothathu, 1985 and Sen, 1986)

G = 1− 2
∫ 1

0
L(p, α)dp

=
1

2α− 1
, α > 1 (2.4)

(cf. With Bhattacharya, et al, 1999 that assumed α > 1/2.)

e) survival probability is

F̄α,σ(x0) = 1− Fα,σ(x0)

= (
σ

x0
)α

= min{( σ

x0
)α, 1} (2.5)

f) Poverty index is

α0 = Fα,σ(x0)

= 1− λα
0 (2.6)

where x0(> σ) is the so-called poverty line, λ0 = σ/x0. Thus
x0 is the per capita annual income representing a minimum
acceptable standard of living and α0 represents the proportion
of population having income equal to or less than the poverty
line x0.

In this paper we will consider separately two cases out of the fol-
lowing three cases, namely (i) and (iii).

(i) σ known, α unknown

In this case, W.O.L.G. we assume that σ = 1 and the likelihood of
the sample assumes the form

L(α) = αn(
n∏

i=1

Xi)−(α+1)u(X(1) − 1) (2.7)
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where X(1) = min{X1, . . . , Xn}. from (2.7) it is apparent that a
minimal sufficient statistic for α is of the form T =

∑
lnXi. So the

likelihood in (2.7) may be written in terms of t as

L(α) ∝ αne−tα (2.8)

where ∝ denotes proportionality. Notice that 2αT ∼ χ2
(2n) and using

Method of Moments(MM) and Maximum Likelihood (ML) estima-
tion, we summarized estimators of parameters of interest in Table
1.

MME MLE

α̃ = X̄
X̄−1

α̂ = n
T if α > 0

α̂∗ = max( n
T , 1) if α > 1

M̃ = X̄ M̂ = α̂∗

α̂∗−1

G̃ = X̄−1
X̄+1

Ĝ = 1
2 max(n/T,1)−1

α̃0 = 1− λ
X̄

X̄−1

0 â0 = 1− λ
n/T
0

Table 1: MM and ML estimators of parameters of interest when σ is
known

(ii) σ unknown, α known

This was considered by Lewin (1972). It is perhaps appropriate to
remark that such a case would not be expected to occur commonly
in practice and we are not going to discuss this case so far.

(iii) σ and α both are unknown

Typically we might expect both α and σ to be unknown. The likeli-
hood of the sample assumes the form

L(α, σ) = αnσnα(
n∏

i=1

Xi)−(α+1)u(X(1) − σ) (2.9)

A minimal sufficient statistic for (σ, α) is (X(1), T ), with X(1) ∼
Pa(nα, σ) and 2α(T − n lnX(1)) ∼ χ2

(2n−2). And using methods of
MM and ML estimation, we summarized estimators of parameters of
interest in Table 2.
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MME MLE

α̃ = 1 +
√ ∑

X2
i∑

(X2
i −X̄)2

α̂ = n
T−n ln X(1)

if α > 0

α̂∗ = max(1, α̂) if α > 1

σ̃ = X̄(1− 1
α̃) σ̂ = X(1)

G̃ = 1

1+2

√ ∑
X2

i∑
(X2

i
−X̄)2

Ĝ = 1/(2α̂∗ − 1)

α̃0 = 1− λ
1+

√ ∑
X2

i∑
(X2

i
−X̄)2

0 â0 = 1− λα̂
0

Table 2: MM and ML estimators of parameters of interest when both α

and σ are unknown

General form of Bayes estimator under LINEX loss

Throughout this paper, we will write θ | X to indicate the posterior
distribution of θ. Then the posterior risk for δ under the LINEX loss
(1.2) is

Eθ|X [L(θ, δ(X))] = eaδ(X)Eθ|X(e−aθ)− a[δ(X)−Eθ|X(θ)]− 1 (2.10)

Writing
Mθ|X(t) = Eθ|X(etθ)

for the moment generating function of the posterior distribution of
θ, it is easy to see that the value of δB(X) that minimizes (2.10) is

δB(X) = −1
a

lnMθ|X(−a) (2.11)

provided, of course that, M(.) exits and is finite, see Parsian & Kir-
mani (2001).

It is easy to verify that, the posterior risk of δB(X) w.r.t. the
prior Π is simplify to

lnMθ|X(−a) + aEθ|X(θ) (2.12)

and the Bayes risk of δB(X) w.r.t. the given prior and the LINEX
loss (1.2) is

r(Π, δB) = EX [lnMθ|X(−a)] + aEθ|X(θ) (2.13)
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In the following sections, we will recognize that analytical calcula-
tions of the estimators and their risks for comparison with other
available estimators may not be possible. However, in the age of
computer, with access to so many suitable and available softwares
it is not difficult to optain the possible values numerically and hence
for an empirical comparison. Obviously, since all obtained estimators
are unique Bayes w.r.t. a proper prior, they are all admissible under
LINEX loss (1.2).

3 Bayes Estimators of α, G, M and α0

In this section we discuss the Bayes estimation of the unknown pa-
rameters of iterest when σ is known and α is unknown. We consider
tow cases in this section: A complete sample data is available, A
complete sample data is not available (right censored data, special
sampling scheme).

Case I: Let X1, . . . , Xn be a random sample from Pa(α, σ) with
density given in (1.1). Usually, σ is the minimum income in the the
population under study and is assumed to be known. W.L.O.G. we
can assume that σ = 1. In this case the likelihood function is

L(α) ∝ αne−αt, t > 0 (3.1)

Here, we will assume the following two-parameter exponential prior
density for α,

Π(α) = λe−λ(α−µ), α > µ, λ > 0

∝ e−λαu(α− µ), (3.2)

i.e., α ∼ E(µ, λ), where the hyperparameters µ and λ are assumed to
be known. Based on the estimation of parameter of interest we will
assign an appropriate value for µ. So, the posterior density of α is

Π(α|X) ∝ αne−tαeλαu(α− µ)

∝ αne−α(t−λ)u(α− µ)

Let t∗ = t + λ, then

Π(α|X) =
t∗n

Γ(n + 1, t∗µ)
αne−t∗αu(α− µ) (3.3)
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where,

Γ(r, y) =
∫ ∞

y
ur−1e−udu

denotes the incomplete gamma function. Now, we are ready to ob-
tain the Bayes estimator of parameters of interest under the LINEX
loss (1.2) with respect to the given E(µ, λ)-prior in (3.2).

Bayes Estimator of α

Here,

Mα|X(−a) =
∫ ∞

µ
e−aαΠ(α|X)dα

=
Γ(n + 1, (a + t∗)µ)

Γ(n + 1, t∗µ)

( t∗

a + t∗

)n+1

provided that a + t∗ ≥ 0. Therefore, the Bayes estimator of α is

α̂B(µ) = −1
a

lnMα|X(−a)

=
n + 1

a
ln(1 +

a

T ∗ ) +
1
a

ln
{ Γ(n + 1, T ∗µ)

Γ(n + 1, (a + T ∗)µ)
}

provided a + T ∗ > 0. Notice that in this case α > 0, so there is
enough evidence to choose µ = 0, hence

α̂B(0) =
n + 1

a
ln(1 +

a

T ∗ ) (3.3a)

Now, as a → 0, then

α̂B(0) −→ n + 1
T ∗

which is the Bayes estimator of α under SEL. Also, as λ → 0,

α̂B(0) −→ n + 1
a

ln(1 +
a

T
)

which is the Bayes estimator of α w.r.t. the uniform diffuse prior over
the entire natural parameter space of α.

Bayes Estimator of M = α/(α− 1)

Here we insist α > 1. So, we impose on µ the restriction of µ ≥ 1. It
can be seen that

M α
α−1

|X(−a) =
∫ ∞

µ
e−a α

α−1 Π(α|X)dα.
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Let η = α− 1 and after some simplifications we have

M α
α−1

|X(−a) =
t∗(n+1)e−(t∗+a)

Γ(n + 1, t∗µ)

∫ ∞

µ−1
(η + 1)ne

−( a
η
+t∗η)

dη.

and so the Bayes estimator of M = α/(α− 1) under the LINEX loss
(1.2) is

MB(µ) = (1 +
T ∗

a
)− 1

a
ln

{ T ∗n+1

Γ(n + 1, T ∗µ)
Φ1,n(a, µ, T ∗)

}
where

Φ1,n(a, µ, t∗) =
∫ ∞

µ−1
(η + 1)ne

−( a
η
+t∗η)

dη

Obviously, it is natural to take µ = 1, then using the formula #9 of
3.471 on page 363 of Gradshtein & Ryzhik (2000), we get

Φ1,n(a, 1, t∗) = 2
∑ (

n

j

)( a

t∗
) j+1

2 Kj+1(2
√

at∗)

where Kν(.) is the modified Bessel function of the third kind and
a > 0. So

_
MB (1) = (1 +

T ∗

a
)− 1

a
ln

{ T ∗n+1

Γ(n + 1, T ∗)
Φ1,n(a, 1, T ∗)

}
(3.3b)

Bayes Estimator of G = 1/(2α− 1)

Bhattacharya, et al (1999) declare that α should be greater than 1
2 ,

while according to the definition of Gini index in section 2, α should
be greater than 1. It can be seen that

MG|X(−a) =
∫ ∞

µ
e−

a
2α−1

t∗n+1

Γ(n + 1, t∗µ)
αne−t∗αdα

Let η = 2α− 1, and after some simplifications we have

MG|X(−a) =
t∗n+1e−

t∗
2

2n+1Γ(n + 1, t∗µ)

∫
(η + 1)ne

−( a
η
+ t∗

2
η)

dη

So, the Bayes estimator of G = 1/(2α − 1) under the LINEX loss
(1.2) is

_
GB (µ) =

T ∗

2a
− 1

a
ln

{ T ∗n+1

2n+1Γ(n + 1, T ∗µ)
Φ2,n(a, µ, T ∗)

}
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where
Φ2,n(a, µ, t∗) =

∫ ∞

2µ−1
(η + 1)ne

−( a
η
+ t∗

2
η)

dη

Once again, using the formula #9 of 3.471 on page 363 of Gradshtein
& Ryzhik (2000) we get

Φ2,n(a,
1
2
, T ∗) = 2−(n+1)

n∑
j=0

(
n

j

)( 2a

T ∗
) j+1

2 Kj+1(2
√

aT ∗)

where Kν(.) is the modified Bessel function of the third kind and
a > 0. Hence,

_
GB (

1
2
) =

T ∗

2a
− 1

a
ln

{ T ∗n+1

2n+1Γ(n + 1, T ∗

2 )
Φ2,n(a,

1
2
, T ∗)

}
Obviously, it is natural to take µ = 1, so the desired estimator is

_
GB (1) =

T ∗

2a
− 1

a
ln

{ T ∗n+1

2n+1Γ(n + 1, T ∗

2 )
Φ2,n(a, 1, T ∗)

}
(3.3c)

Bayes Estimator of α0

It can be shown that

Mα0|x(−a) =
∫ ∞

µ
e−a(1−λα

0 )π(α|x)dα

Let η = λα
0 , then after some simplifications we have

Mα0|x(−a) =
t∗n+1ea

Γ(n + 1, t∗µ)(lnλ0)n+1

∫ ∞

λµ
0

(ln η)nη
−1− t∗

ln λ0 eaηdη

So, the Bayes estimator of α = 1− λα
0 under the LINEX loss (1.2) is

_
α0B (µ) = 1− 1

a
ln

{ T ∗

(lnλ0)n+1Γ(n + 1, T ∗µ)
Φ3,n(a, µ, λ0, T

∗)
}

where,

Φ3,n(a, µ, λ0, t
∗) =

∫ ∞

λµ
0

(ln η)nη
−1− t∗

ln λ0 eaηdη

Here, it is natural to take µ = 0, so using the formula #1 of 4.358,
on page 607 of Gradshtein & Ryzhik (2000), we get

Φ3,n(a, µ, λ0, t
∗) =

∂n

∂νn

{
(−a)−νΓ(ν,−a)

}
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whenever ν = −t∗/ lnλ0, a < 0 and (n+1) is even. Thus, the desired
estimator is

_
α0B (0) = 1− 1

a
ln

{ T ∗

(lnλ0)n+1Γ(n + 1)
Φ3,n(a, 0, λ0, T

∗)
}
. (3.3d)

Case II: The precise observations would correspond to documented
incomes. The censored observations would correspond to reported
undocumented incomes. For taxation purposes such reported incomes
are frequently under reported, i.e., we know that the income was at
least the reported level.

Now with this in mind, assume that the annual incomes of n

persons are under study but the exact figures x1, . . . , xn, n ≥ r,
are available only for those individuals whose annual incomes do not
exceed a prescribed annual income ω(> σ = 1), and for the remaining
(n − r) individuals, the exact income figures are unknown, but we
do know that their annual incomes exceed the prescribed figure ω.
This later group consists of highly affluent persons who have very
high income but the exact figures are either not available or totally
unreliable on account of rampant practices of tax evasion (this is the
situation at least in the so-called “third world”). Notice that, before
the arrival of the sample data on person incomes, n is predetermined
but not r, which is a random variable. Under such a sampling scheme
Bayesian analysis of unknown parameters of interest will be obtained
under LINEX loss (1.2).

In this case, for constructing the likelihood function, the main
tool required in Bayesian analysis of Pareto income distribution is
the product income statistic introduced by Ganguly, et al (1992),
which is defined as

Pω = ωn−r(
r∏

i=1

Xi) (3.4)

Notice that, in the case of the precise observations r = n, Pω reduces
to (2.7).

The likelihood function based on the censored sampling scheme
described above can be easily evaluated as

L(α) ∝ αre−αtω (3.5)

where tω = ln Pω.



Bayesian Estimation for the Pareto Income Distribution 125

Now combining the likelihood function (3.5) with the prior density
in (3.1), the posterior density becomes as

Πω(α|X) =
t∗ω

(r+1)

Γ(r + 1, t∗ω)
αre−t∗ωαu(α− µ) (3.6)

where t∗ω = tω + λ. As seen, the only changes in the posterior (3.2)
are replacement of n and t by r and tω respectively. So, the obtained
results in case I are valid upon on substitution of only n and T ∗ by
r and Tω respectively.

4 Bayes Estimators of α, σ and G

The case in which both scale and shape parameters are unknown is
typically the case we might expect. In this case the distribution ad-
mits a two-dimensional minimal sufficient statistic (T,X(1)) and no
analogous reduction via sufficiency is possible. It follows that no mat-
ter what prior is assumed, the posterior density will typically not be
expressible in a closed form. Lwin (1972) proposed a family of natu-
ral conjugate joint prior distribution that is mathematically tractable.
However, conceptual and philosophical difficulties associated with the
resulting marginal posterior distribution for σ. See, Arnold & Press
(1983) for a critics. They suggested the joint prior for σ and α as
product of σ and α given by power and gamma density respectively,
see also Pandey, et al (1996). Once again, the same erroneous occurs
in assigning positive prior probabilities on unnecessary regions. Here,
we suggest the joint prior for α and σ as product of marginal of σ

and α given by power function density and E(µ, λ)-density, i.e.,

Π(α, σ) = Π1(α)Π2(σ) (4.1)

where
Π1(α) = λe−λ(α−µ)u(α− µ)

and

Π2(σ) =
βσβ−1

σβ
0

u(σ0 − σ)

Once again, we will assign suitable choices for µ in each case. With
respect to the above joint prior density and the likelihood function
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given in (2.9), the posterior joint density of α and σ given X =
(X1, . . . , Xn) is

Π(α, σ|X) ∝ αne−t∗ασnα+β−1u(ν0 − σ)u(α− µ)

where t∗ = t + λ and ν0 = min(x(1), σ0). The joint density does not
belong to any recognized family. The marginal posterior densities of
α and σ are

Π1(α|X) ∝ αn

α + β∗
e−t∗∗αu(α− µ)

where t∗∗ = t∗ − n ln ν0, β∗ = β/n, and

Π2(σ|X) ∝ σβ−1 Γ(n + 1, t∗∗µ)
tn+1
∗∗

u(ν0 − σ)

where t∗∗ = t∗ − n lnσ.
If we introduce, the notation

Ψ(n, t∗∗, µ, β∗) = e−µt∗∗
∫ ∞

0

(η + µ)n

(η + µ + β∗)
e−t∗∗ηdη

then
Π1(α|X) =

1
Ψ(n, t∗∗, µ, β∗)

αn

α + β∗
e−t∗∗αu(α− µ) (4.2)

Now, we are ready to obtain the Bayes estimators of α and G under
the LINEX loss (1.2) w.r.t. the prior density (4.1).

Bayes Estimator of α

Here,

Mα|X(−a) =
∫ ∞

µ
e−aαΠ1(α|X)dα

=
Ψ(n, t∗∗ + a, µ, β∗)

Ψ(n, t∗∗, µ, β∗)

provided t∗∗ + a > 0. Thus, the Bayes estimator of α is

α̂∗B(µ) = −1
a

ln
{Ψ(n, T ∗∗ + a, µ, β∗)

Ψ(n, T ∗∗, µ, β∗)
}

Notice that, in this case α > 0, so there is enough evidence to take
µ = 0. Hence,

α̂∗B(0) = −1
a

ln
{Ψ(n, T ∗∗ + a, 0, β∗)

Ψ(n, T ∗∗, 0, β∗)
}

(4.2a)
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Bayes Estimator of G

It can be seen that

MG|X(−a) =
∫ ∞

µ
e−

a
2α−1 Π1(α|X)dα

Let η = 2α− 1, then after some simplifications, we have

MG|X(−a) =
2−(n−1)e−t∗/2

Ψ(n, t∗∗, µ, β∗)

∫ ∞

2µ−1

(η + 1)n

(η + 1 + 2β∗)
e
−( a

η
+ t∗

2
η)

dη

where

Φ∗
2,n(a, µ, t∗, β∗) =

∫ ∞

2µ−1

(η + 1)n

(η + 1 + 2β∗)
e
−( a

η
+ t∗

2
η)

dη

Thus the Bayes estimator of G is

Ĝ∗
B(µ) =

1
a

{T ∗

2
+ (n− 1) ln 2

}
− 1

a
ln

{Φ∗
2,n(a, µ, T ∗, β∗)

Ψ(n, T ∗∗, µ, β∗)
}

Notice that, in this case we require α > 1, so there is enough evidence
to take µ = 1. Hence,

Ĝ∗
B(1) =

1
a

{T ∗

2
+ (n− 1) ln 2

}
− 1

a
ln

{Φ∗
2,n(a, 1, T ∗, β∗)

Ψ(n, T ∗∗, 1, β∗)
}

(4.2b)

Bayes Estimator of σ

It is easy to verify that

Π(α, σ) =
νβ
0

nΨ(n, t∗∗, µ, β∗)
αne−t∗ασnα+β−1u(ν0 − σ)u(α− µ)

Now, let

γ(r, y) =
∫ y

0
ur−1e−udu

and
Ψ∗(γ, n, t∗, µ, β∗) =

∫ ∞

µ
γ(nα + β, ν0)αne−t∗αdα

then

M∗
σ|X(−a) =

(ν0/a)β

n

Ψ∗(γ, n, t∗∗, µ, β∗)
Ψ(n, t∗∗, µ, β∗)
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provided that a > 0 and t = t∗ − n ln a. So,

σ̂B(µ) =
lnn

a
− β

a
ln(ν0/a)− 1

a
ln

Ψ∗(γ, n, T ∗
∗ , µ, β∗)

Ψ(n, T ∗∗, µ, β∗)

Notice that, in this case we require α > 1, so there is enough evidence
to take µ = 0. Hence,

σ̂B(0) =
lnn

a
− β

a
ln(ν0/a)− 1

a
ln

Ψ∗(γ, n, T ∗
∗ , 0, β∗)

Ψ(n, T ∗∗, 0, β∗)
(4.2c)

5 Numerical Results

As recognized, the analytic calculations of some of the estimators and
their risks for comparison with other available estimators may not be
possible. However, it is not difficult to carry out an empirical com-
parison. To this end, we used the MATHLAB 7 package to generate a
sequence of independent observations from Pa(4,1) and repeated gen-
eration of sequence N = 104 times. Based on the values of x1, ..., xn

for n(=40,50,60), in each sequence the MM and ML estimates and for
the given values of λ = 0.2, 5 and a = −1, 1, the desired Bayes esti-
mates are calculated by the Metropolis-Hastings algorithm (MCMC
method). We obtained the estimates N = 104 times and calculated
the Estimated Risk (ER) given by

ER(δ) =
1
N

∑
[ea(δi−θ) − a(δi − θ)− 1]

where δi is an estimate of θ, in the following two cases.

(i) σ known, α unknown

When the scale parameter σ is known, we use a numerical technique
to compare the MM , ML and Bayes estimates according to the fol-
lowing steps:

1. Take α = 4 and σ = 1.

2. Using the values of α = 4 and σ = 1, the Pareto samples
of size n(=40,50,60) are generated using the transformation:
Xi = σ(1−Ui)−

1
α , where Ui is the uniformly distributed random

variate.
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3. The MM and ML estimates of δ are calculated from the Table
1.

4. The different Bayes estimates of δ are computed through (3.3a)-
(3.3d) by the MCMC method.

5. Steps 1-4 are repeated N = 104 times and the ER’s are calcu-
lated for each estimate.

The results are tabulated in Table 3 for different choices of the shape
parameter of the LINEX loss function.

(ii) σ and α both are unknown

As indicated in section 4 in the case of unknown σ and α for the spec-
ified prior, a simulation study was conducted in order to compare the
MM, ML and Bayes estimation methods according to the following
steps:

1. a sample of size n(=40,50 and 60) are generated from Pa(4, 1)-
distribution.

2. The MM and ML estimates of δ are calculated from the Table
2.

3. The different Bayes estimates of δ are computed through (4.2a)-
(4.2c) by the MCMC method.

4. Steps 1-3 are repeated N = 104 times and the ER’s are calcu-
lated for each estimate.

The results are tabulated in Table 4 for different choices of the shape
parameter of the LINEX loss function.
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n = 40 n = 50 n = 60
α̃ a = 1 0.3625 0.2644 0.1696

a = −1 0.2098 0.1698 0.1236
α̂ a = 1 0.3275 0.2435 0.1534

a = −1 0.1994 0.1536 0.1147

M̃ a = 1 1.7352 1.7354 1.7374
a = −1 10.7727 10.7759 10.7659

G̃ a = 1 2.8791 2.8795 2.8792
a = −1 42.5449 42.5423 42.5272

α̃0 a = 1 2.0594 2.0581 2.0580
a = −1 16.2815 16.2543 16.2510

α̂0 a = 1 2.0600 2.0583 2.0581
a = −1 16.2938 16.2584 16.2540

Ĝ a = 1 2.8765 2.8775 2.8784
a = −1 42.4216 42.4894 42.4855

α̂B(0) a = 1, λ = 0.2 0.2084 0.1883 0.1378
a = 1, λ = 5 0.6042 0.4728 0.3827
a = −1, λ = 0.2 0.2317 0.1837 0.1476
a = −1, λ = 5 1.1410 0.7977 0.5932

_
GB (1) a = 1, λ = 0.2 2.8743 2.8742 2.8761

a = 1, λ = 5 2.7910 2.8093 2.8302
a = −1, λ = 0.2 49.5982 49.5981 49.5983
a = −1, λ = 5 38.4469 39.2755 40.2272

_
MB (1) a = 1, λ = 0.2 1.7238 1.7253 1.7289

a = 1, λ = 5 1.4839 1.5405 1.6027
a = −1, λ = 0.2 10.4965 10.5324 10.5974
a = −1, λ = 5 7.2608 8.0396 8.8702

_
α0B (0) a = 1, λ = 0.2 2.8107 2.5116 2.5214

a = 1, λ = 5 2.6350 2.6160 2.6016
a = −1, λ = 0.2 27.9286 27.9669 27.9674
a = −1, λ = 5 32.2207 31.5370 31.0300

Table 3: Estimated risks of parameters of interest when α is unknown and
σ is known
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n = 40 n = 50 n = 60
α̃ a = 1 2.3468 1.4323 0.8950

a = −1 0.5005 0.4177 0.3357
σ̃ a = 1 2.0172 2.0218 2.0260

a = −1 15.4585 15.5469 15.6288
α̂ a = 1 0.4220 0.2803 0.1760

a = −1 0.2081 0.1604 0.1183
σ̂ a = 1 2.0172 2.0218 2.0260

a = −1 15.4585 15.5469 15.6288

G̃ a = 1 2.8946 2.824 2.8908
a = −1 43.6617 43.2041 43.0897

α̃0 a = 1 2.0554 2.0561 2.0563
a = −1 16.1993 16.2126 16.2170

Ĝ a = 1 2.0381 2.0368 2.0364
a = −1 15.8561 15.8298 15.8210

α̂0 a = 1 2.3390 2.3392 2.3393
a = −1 22.8692 22.8757 22.8779

α̂∗B(0) a = 1, λ = 0.2 0.2127 0.1691 0.1409
a = 1, λ = 5 0.6175 0.4335 0.3922
a = −1, λ = 0.2 0.2434 0.1855 0.1516
a = −1, λ = 5 1.1791 0.8217 0.6159

σ̂B(0) a = 1, λ = 0.2 1.8986 1.8979 1.8929
a = 1, λ = 5 1.9170 1.9113 1.9019
a = −1, λ = 0.2 13.2507 13.2401 13.1609
a = −1, λ = 5 13.5394 13.4507 13.3039

Ĝ∗
B(1) a = 1, λ = 0.2 2.9500 2.9509 2.9518

a = 1, λ = 5 3.0518 2.9071 2.9156
a = −1, λ = 0.2 45.9852 46.0340 46.0796
a = −1, λ = 5 42.5383 43.6953 44.2474

Table 4: Estimated risks of parameters of interest when both α and σ are
unknown
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