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Abstract. Here, we propose a method of estimation of the deriva-
tives of probability density based wavelets methods for a sequence
of m−dependent random variables with a common one-dimensional
probability density function and obtain an upper bound on Lp-losses
for the such estimators.

1 Introduction

Estimation of density and its derivatives using wavelets has generated
a lot of interest in recent years. We refer to Härdle et al.(1998) and
Vidakovic (1999) for a detailed coverage of wavelet theory in statistics
and to Prakasa Rao (1999a) for a recent comprehensive review of
nonparametric functional estimation.

For the iid case, Prakasa Rao (1996) considered the use of wavelets
for estimating the derivatives of a density and obtained an upper
bound on the L2−losses for the proposed estimator. Prakasa Rao
(1999b) further investigated the use of wavelets for estimating the
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integrated squared density. For the non iid case Prakasa Rao (2003)
considered the case of associated sequences for estimation of den-
sity using wavelets. Recently, Chaubey et al. (2006a, 2006b) have
extended the results in Prakasa Rao (1996) for estimation of deriva-
tives of a density for negatively and positively associated sequences,
respectively. Here we consider yet another form of a dependence,
namely, m− dependence, described below.

Let ζ = {Xi, i ≥ 1} denote a sequence of stationary random vari-
ables defined on a common probability space such that {Xi, 1 ≤ i ≤
k} is independent of {Xi, i ≥ k +m + 1} for all k ≥ 1. Then such a
sequence ζ is called dependent of order m or in short m−dependent.
This note concerns with estimating the common one-dimensional
density f and its derivatives based on n observations observations
{X1, ..., Xn}.

The organization of the paper is as follows. In section 2, we discuss
the preliminaries of the wavelet based estimation of the derivatives of
the density along with the necessary underlying setup considered in
Prakasa Rao (1996). Section 3 provides the bounds on the Lp−losses
for the proposed estimator.

2 Preliminaries

Let {Xn, n ≥ 1} be a sequence of random variables on the probability
space (Ω,ℵ, P ). We suppose that Xi has a bounded and compactly
supported marginal density f , with respect to Lebesgue measure,
which does not depend on i. We estimate this density from n obser-
vations Xi, i = 1, ..., n. For any function f ∈ L2(R), we can write a
formal expansion (see Daubechies (1992)):

f =
∑
k∈Z

αj0,kφj0,k +
∑
j≥j0

∑
k∈Z

δj,kψj,k = Pj0f +
∑
j≥j0

Djf

where the functions

φj0,k(x) = 2j0/2φ(2j0x− k)

and
ψj,k(x) = 2j/2ψ(2jx− k)

constitute an (inhomogeneous) orthonormal basis of L2(R). Here
φ(x) and ψ(x) are the scale function and the orthogonal wavelet,
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respectively. Wavelet coefficients are given by the integrals

αj0,k =
∫
f(x)φj0,k(x)dx, δj,k =

∫
f(x)ψj,kdx

We suppose that both φ and ψ ∈ Cr+1, r ∈ N, have compact supports
included in [−δ, δ]. Note that, by corollary 5.5.2 in Daubechies (1988),
ψ is orthogonal to polynomials of degree ≤ r, i.e.∫

ψ(x)xldx = 0,∀l = 0.1, ..., r

We suppose that f belongs to the Besov class (see Meyer (1990),
§VI.10), Fs,p,q = {f ∈ Bs

p,q, ‖f‖Bs
p,q

≤M} for some 0 ≤ s ≤ r+1, p ≥
1 and q ≥ 1, where

‖f‖Bs
p,q

= ‖Pj0f‖p + (
∑
j≥j0

(‖Djf‖p2js)q)1/q

We may also say f ∈ Bs
p,q if and only if

‖αj0,.‖lp <∞, and (
∑
j≥j0

(‖δj,.‖lp2
j(s+1/2−1/p))q)1/q <∞ (2.1)

where‖γj,.‖lp = (
∑

k∈Z γ
p
j,k)

1/p. We consider Besov spaces essentially
because of their executional expressive power [see Triebel (1992) and
the discussion in Donoho et al. (1995)]. We construct the density
estimator [see Prakasa Rao (2003)]

f̂ =
∑

k∈Kj0

α̂j0,kφj0,k, with α̂j0,k =
1
n

n∑
i=1

φj0,k(Xi), (2.2)

where Kj0 is the set of k such that supp(f) ∩ suppφj0,k 6= ∅. The
fact that φ has a compact support implies that Kj0 is finite and
card(Kj0) = O(2j0). Wavelet density estimators aroused much inter-
est in the recent literature, see Donoho et al. (1996) and Doukhan
and Leon (1990). In the case of independent samples the properties
of the linear estimator (2.2) have been studied for a variety of error
measures and density classes [see Kerkyacharian and Picard (1992),
Leblanc (1996) and Tribouley (1995)].
In the setup considered by Prakasa Rao (1996) we assume φ is a scal-
ing function generating an r−regular multiresolution analysis and
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f (d) ∈ L2(R). Furthermore, we assume that there exists Cm ≥ 0 and
βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ d. (2.3)

Prakasa Rao (1996) showed that the projection of f (d) on Vj0 is

f
(d)
n,d(x) =

∑
k

aj0,kφj0,k(x),

where
aj0,k = (−1)d

∫
φ

(d)
j0,k(x)fX(x)dx.

Hence an estimator of f (d) may be given by

f̂
(d)
n,d(x) =

∑
k

âj0,kφj0,k(x), (2.4)

where

âj0,k =
(−1)d

n

n∑
i=1

φ
(d)
j0,k(Xi).

For the estimator in Eq. (2.4), the sum is considered for k ∈ Kj0 .

3 Main Results

Theorem 3.1 given below provides bounds on E‖f̂ (d)
n,d(x)− f

(d)
n,d(x)‖

2
p′

for p′ ≥ max(2, p), similar to one obtained in the iid case by Prakasa
Rao (1996).

Theorem 3.1. Let f (d)(x) ∈ Fs,p,q with s ≥ 1/p, p ≥ 1, and q ≥ 1
then for all n ≥ 2m and p′ ≥ max(2, p), there exists a constant C
such that

E‖f̂ (d)
n,d(x)− f (d)(x)‖2

p′ ≤ C (
n

m
)−

2(d−s′)
1+2s′

where s′ = s+ 1/p′ − 1/p and 2j0 = ( n
m)

1
1+2s′ .

Proof. First, we decompose E‖f̂ (d)
n,d(x)− f (d)(x)‖2

p′ into a bias term
and a stochastic term

E‖f̂ (d)
n,d(x)− f (d)(x)‖2

p′

≤ 2(‖f (d)
n,d − f (d)‖2

p′ + E‖f̂ (d)
n,d − f

(d)
n,d‖

2
p′) = 2(T1 + T2). (3.1)
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Now, we find upper bounds for T1 and T2, separately. Note that√
T1 = ‖

∑
j≥j0

Djf
(d)‖p′ ≤

∑
j≥j0

(‖Djf
(d)‖p′2js′)2−js′

≤ {
∑
j≥j0

(‖Djf
(d)‖p′2js′)q}1/q{

∑
j≥j0

2−js′q′}1/q′ .

Using the Holder’s inequality, with 1/q+1/q′ = 1, the above equation
implies

T1 ≤ C‖f (d)‖
Bs′

p′,q
2−s′j0 . (3.2)

Now using the continuous Sobolev injection [see Triebel (1992) and
the discussion in Donoho et al.(1996)] implies thatBs

p,q ⊂ Bs′
p′,q.Hence

one gets,
‖f (d)‖

Bs′
p′,q

≤ ‖f (d)‖Bs
p,q
,

and in turn, we get from Eq. (3.2)

T1 ≤ K2−2s′j0 . (3.3)

Next, we have

T2 = E‖f̂ (d)
n,d − f

(d)
n,d‖

2
p′ = E‖

∑
k∈Kj0

(âj0,k − aj0,k)φj0,k(x)‖2
p′ .

Using Lemma 1 in Leblanc (1996), p. 82 (using Meyer (1990)), the
above equation implies,

T2 ≤ CE{‖âj0,k − aj0,k‖2
lp′
}22j0(1/2−1/p′).

Further, by using Jensen’s inequality the above equation implies,

T2 ≤ C22j0(1/2−1/p′){
∑

k∈Kj0

E|âj0,k − aj0,k|p
′}2/p′ . (3.4)

Now, it is enough to find a bound for E|âj0,k − aj0,k|p
′

to complete
the proof. We know that

âj0,k − aj0,k =
1
n

n∑
i=1

{[φ(d)
j0,k(Xi)− aj0,k]} =

1
n

n∑
i=1

ξi,

where ξi = [φ(d)
j0,k(Xi)− aj0,k].
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Note that ‖ξi‖∞ ≤ K.2j0(1/2+d)‖φ‖∞,Eξi = 0,

Eξ2i ≤ ‖f‖∞22j0d

∫ ∞

−∞
φ2(d)(v)dv

and

α̂
(d)
j0,k − αj0,k =

(−1)d

n

n∑
i=1

ξi.

Now we need the following result which will be required in the rest
of the proof.

Lemma 3.1. [Romano and Wolfe (2000), Corollary A.1, p. 121] Let
{Xi} be a m-dependent sequence of mean zero. Assume E|Xi|q ≤ ∆,
for some q ≥ 2 and all i. Then, for all n ≥ 2m

E(|
n∑

i=1

Xi|q) ≤ Cq
q∆(4mn)q/2,

where Cq is a positive constant depending only upon q.

Using the above result and the fact that card(Kj0) = O(2j0) we
have,

{
∑

k∈Kj0

E|âj0,k − aj0,k|p
′}2/p′ ≤ {C2j0 1

np′
(22j0d(4mn)p′/2)}2/p′

≤ K1{
m

n
22j0(1/p′+2d/p′)}.

Now by substituting above inequality in (3.4), we get

T2 ≤ K222j0(1/2−1/p′){m
n

22j0(1/p′+2d/p′)}

= K2{22j0(1/2+2d/p′)m

n
}

≤ K3{2j0(1+2d)m

n
}. (3.5)

By Substituting (3.3), (3.5), and 2j0 = ( n
m)

1
1+2s′ in (3.1), theorem

is proved.

Remark 3.1. Letting d = 0 in Theorem 3.1 the results of Doosti
and Nezakati (2006) are obtained.
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Remark 3.2. If one considers m as a fixed integer, then it can be
shown that the upper bound in Theorem 3.1 is similar to the result
of Chaubey et al.(2006a, 2006b).

Remark 3.3. Suppose 1 < p′ ≤ 2. One can get upper bounds
similar to those given in Theorem 3.1 for the expected loss E‖f̂ (d)

n,d −
f (d)‖p′

p′ , as explained below. Observe that

E‖f̂‖p′

p′ ≤ 2p′−1(‖f (d)
n,d − f (d)‖p′

p′ + E‖f̂ (d)
n,d − f

(d)
n,d‖

p′

p′) (3.6)

‖f (d)
n,d − f (d)‖p′

p′ ≤ C12−p′s′j0 (3.7)

E‖f̂ (d)
n,d − f

(d)
n,d‖

p′

p′ ≤ C222j0(p′/2−1){
∑

k∈Kj0

E|âj0,k − aj0,k|p
′}

≤ C222j0(p′/2−1){
∑

k∈Kj0

√
E|âj0,k − aj0,k|2p′}

≤ C322j0(p′/2−1){2j0

√
22j0d

(4mn)p′

n2p′
}

= C32j0(p′−1+d)(
m

n
)p′/2. (3.8)

for some positive constant C1, C2 and C3.
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