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Abstract. Some examples of absurd uniformly minimum variance
unbiased estimators are discussed. Two reasons, argued in the litera-
ture, for having such estimators are lack of enough information in the
available data and property of unbiasedness. In this paper, accepting
both of these views, we show that an appropriate choice of loss func-
tion using a general concept of unbiasedness leads to risk unbiased,
admissible and reasonable estimators. For this we extend the Rao-
Blackwell theorem using a new way of defining unbiased estimator.

1 Introduction

The possibility of an absurd mean-unbiased estimator which may
be the uniformly minimum variance unbiased estimator (UMVUE) is
illustrated by Kendall and Stuart (1979, Ex. 17.26), Lehmann (1983)
and Romano and Siegel (1986, Ch.9) in the following example.
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Example 1.1. Let X have the Poisson distribution with θ as
its mean. For the estimand g(θ) = exp(−bθ), the estimator δ(x) =
(1− b)x is the UMVUE, but this estimator is absurd for b > 1, since
it is negative for odd x and does not preserve the range of estimand.

Looking at the large maximum bias of the maximum likelihood es-
timator (MLE), δ1(x) = exp(−bx), for the estimand g(θ) = exp(−bθ)
in example 1.1, Lehmann (1983) concludes that the available informa-
tion is inadequate for the existence of reasonable unbiased estimator
or MLE. Meeden (1987) argues that the absurd estimator in example
1.1 arises because unbiasedness requires the estimator to be correct
on the average (property of unbiasedness.) In other words, the con-
cept of unbiasedness needs to be generalized to incorporate the loss
function in use. This generalization, called loss-unbiasedness or risk
unbiasedness, is presented by Lehmann (1951), Klebanov (1974) and
Noorbaloochi and Meeden (1983). Klebanov (1974) considers pos-
sibility of generalizing Rao-Blackwell theorem for the risk unbiased
estimators. Parsian and Farsipour (1999) use LINEX loss to compare
several estimators for the mean of the selected population. They use
the general concept of unbiasedness to obtain some of their estima-
tors. Parsian and Kirmani (2002) also discuss the use of the LINEX
loss function as a criterion of estimation.

The purpose of this paper, using the general definition of unbi-
asedness of Lehmann (1951), is to show that the absurd estimator in
example 1.1 is obtained because of inappropriate choice of the loss
function. We shall choose a suitable loss function and show that the
MLE has some optimal properties that make it reasonable to be used.
In fact, the appropriate choice of loss function gives some intuitive
information about the parametric function of interest. It also leads
us to think about the property of unbiasedness in its general form
(Lehmann, 1951).

In Section 2, we review the general definition of unbiasedness
(Lehmann, 1951, Klebanov, 1974, Noorbaloochi and Meeden, 1983)
and other necessary concepts of decision theory. In Section 3, we
shall give some useful theorems which show the optimal properties of
our estimators. Some more examples are illustrated in Section 4 and
we conclude in Section 5.
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2 Basic definitions

Lehmann (1951 and 1959) gives the following definition for unbiased-
ness.

Definition 2.1. The estimator δ(x) is said to be L-unbiased for
the estimand g(θ) if

Eθ{L[g(θ), δ(X)]} = min
θ′

Eθ{L[g(θ′), δ(X)]} for all θ ∈ Θ, (1)

where L[g(θ), δ(x)] is the loss of estimating g(θ) by δ(x).

In this definition of unbiasedness, one needs to have the loss of
estimating the estimand g(θ) by the estimator δ(x). We shall use the
loss function

L[g(θ), δ(x)] = [m(δ(x))−m(g(θ))]2, (2)

where m(.) is a strictly monotone and continuous function and we
shall call the loss in (2)m-loss. For instance, by ln-loss we mean

L[g(θ), δ(x)] = [ln(δ(x))− ln(g(θ))]2. (3)

For a given m(.) in (2), we shall call the estimator obtained using the
following theorem an m-unbiased estimator.

Theorem 2.1. The estimator δ(x) is m-unbiased for the estimand
g(θ) if

Eθm(δ(X)) = m(g(θ)) for all θ ∈ Θ, (4)

where m is a strictly monotone and continuous function.

The proof of this theorem is similar to the main theorem of
Lehmann (1951). Note also that for m(x) = x this theorem gives
the mean-unbiased estimator.

The risk for the estimator δ(x) corresponding to the m-loss is
defined to be

R(θ, δ) = Eθ[m(δ(X))−m(g(θ))]2. (5)

An estimator δ is said to be better than estimator η if, for all θ

R(θ, δ) ≤ R(θ, η), (6)
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with strict inequality for some θ0 ∈ Θ and δ is said to be admissible
in the class of estimators ∆ if it is not worse than any other estimator
in ∆ (Lehmann and Casella, 1998). As an example, consider example
1.1 with m(x) = x. The estimator δ∗(x) = max((1 − b)x, 0); using
squared error loss function, has uniformly smaller mean squared error
than UMVUE (1−b)x for b > 1. Hence, δ is inadmissible with respect
to squared error loss function (Romano and Siegel, 1986, Ch. 9)

We shall show that log-unbiased estimator for g(θ) in example
1.1 is the uniformly minimum risk unbiased estimator (MRUE) and
admissible. The log function is an appropriate choice for estimating
g(θ) in this example because it forces the estimator δ(x) to have a
measurement scale like that of g(θ) (exponential).

3 Main Results

The following theorem extends Rao-Blackwell theorem to m-unbiased
estimators.

Theorem 3.1. Suppose {Fθ : θ ∈ Θ} is a family of probabil-
ity distributions and δ is an m-unbiased estimator for g(θ) where
Eθ[m(δ(x))]2 < ∞. Suppose T is a sufficient statistic for {Fθ : θ ∈
Θ}. Then, η(t) = m−1E[m(δ(x)) | t] is an m-unbiased estimator for
g(θ) and

R(θ, η) ≤ R(θ, δ).

The proof of this theorem is similar to that of Rao-Blackwell
theorem (see Lehmann and Casella, 1998) and is omitted.

If T is complete for its family of distributions, then η(t) given in
theorem 3.1 is uniformly minimum risk m-unbiased estimator (UM-
RUE) for g(θ). Note that for m(x) = x, η(t) is uniformly minimum
variance unbiased estimator (UMVUE).

Theorem 3.2. The estimator δ(x) is UMVUE for g(θ) iff m−1(δ(x))
is UMRUE for m−1(g(θ)) with respect to the m-loss.

Proof. Suppose δ(x) is UMVUE for g(θ) then m−1(δ(x)) is m-
unbiased for m−1(g(θ)) with respect to m-loss. Let δ∗(x) be another
m-unbiased estimator for m−1(g(θ)). Then, m(δ∗(x)) is unbiased for
g(θ). Let denote the risk of δ for estimating g when the loss function
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is the m−loss by R(θ, δ). As δ(x) is UMVUE for g(θ) for all θ, we
have

R(θ, δ∗) = Eθ[m(δ∗(X))− g(θ)]2

≥ Eθ[δ(X)− g(θ)]2

= Eθ[m(m−1(δ(X)))−m(m−1(g(θ)))]2

= R(θ, m−1δ)

So, m−1δ(x) is UMRUE for m−1(g(θ)). The other direction of the
theorem can be proved in a similar manner.

Example 3.1. (1, continued) As Eθ(X) = θ, thus X is UMVUE.
So, if m(x) = ln(x), δ(x) = exp(−bX) is ln-unbiased estimator and
in fact, the UMRUE for exp(−bθ) with respect to the ln-loss.

Lehmann (1983) does not accept δ(x) = exp(−bX) as a reason-
able estimator because of its large bias with respect to squared error
loss. However, it should be noted that this estimator is unbiased (i.e.
with 0 absolute bias) with respect to ln-loss and as mentioned before
this loss seems more appropriate for estimating exp(−bθ).

Theorem 3.3. The estimator δ(x) is admissible for g(θ) with re-
spect to squared error loss function iff m−1(δ(x)) is admissible for
m−1(g(θ)) with respect to m-loss.

Proof. Suppose δ(x) is admissible for g(θ) with respect to squared
error loss, but m−1(δ(x)) is not admissible for m−1(g(θ)) with respect
to m-loss. Then, there exist δ∗ such that

Eθ[m(δ∗(X))−m(m−1(g(θ)))]2

≤ Eθ[m(m−1(δ(X)))−m(m−1(g(θ)))]2 for all θ, (7)

and the inequality in (7) is strict for at least one θ. This gives

Eθ[m(δ∗(X))− g(θ)]2 ≤ Eθ[δ(X)− g(θ)]2 for all θ, (8)

and strict inequality for at least one θ. So, m(δ∗(X)) is better than
δ(X) with respect to squared error loss. This is a contradiction. The
other side of the theorem can be proved in a similar manner.

Remark. A similar theorem can be established for minimaxity of
an estimator.
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Example 3.2. (1, continued) As X is admissible for θ with re-
spect to squared error loss (see Lehmann and Casella, 1998), exp(−bX)
is admissible for exp(−bθ) with respect to ln-loss.

The following theorem emphasizes that if m is strictly convex,
then m-unbiased and mean-unbiased estimators for a parametric func-
tion would not be the same.

Theorem 3.4. Suppose m is a monotone and strictly convex
function. Neither is the m-unbiased estimator δ(x) for g(θ) a mean-
unbiased estimator nor the mean-unbiased estimator for g(θ) is the
m-unbiased estimator.

Proof. If δ(x) is m-unbiased for g(θ), then

Eθm(δ(X)) = m(g(θ)) for all θ. (9)

Since m is strictly convex

m(Eθδ(X)) < Eθm(δ(X)) , (10)

which implies Eθδ(X) 6= g(θ).
This means δ(x) is not unbiased for g(θ). On the other hand. If

Eθδ(x) = g(θ), we have

m(g(θ)) < Eθm(δ(X)), (11)

which means δ(x) is not m-unbiased for g(θ).

Theorem 3.4 can be extended for two strictly monotone convex
functions (m1 and m2) which says δ(x) can not be both m1−unbiased
and m2−unbiased.

4 Examples

Example 4.1. Suppose the distribution of X is Bin(n, θ). A mean-
unbiased estimator for g(θ) = 1

θ+1 dose not exist. The squared error
loss function does not, however, incorporate the change of measure-
ment scale. A more appropriate loss function, where the action space
is (0, 1), would be a 1

x -loss. As X
n + 1 is UMVUE for θ + 1, n

X+n is a
reasonable and UMRUE for 1

θ+1 with 1
X -loss. As X

n + 1 is admissible
for θ + 1 with respect to squared error loss, then n

X+n is admissible
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for 1
θ+1 with respect to 1

X -loss.

Example 4.2. Suppose X + n is the number of Bernouilli trials
required to obtain n successes for n > 1. So X has the following
negative binomial distribution

Pr(X = x) =

(
n + x− 1

n− 1

)
pnqx x = 0, 1, ..., (12)

the UMVU estimator δ(x) for p is given by

δ(x) =

(
n + x− 2

x

)
(

n + x− 1
n− 1

) =
n− 1

n + x− 1
. (13)

Then the M
√

x-unbiased estimator for pM is

[δ(x)]M = (
n− 1

n + x− 1
)M , (14)

which is UMRU estimator with respect to M
√

x-loss. It should be
noted that this estimator is between 0 and 1 and hence preserves the
range of estimand. On the other hand, UMVUE for pM (M > n) is
absurd (see Lehmann, 1983).

Example 4.3. Let X have exponential density

Pθ(x) = β(θ) exp(θT (x)) θ, T real-valued (15)

where θ is the canonical parameter. Suppose that the natural pa-
rameter space of θ is real line. As it can be found in Lehmann and
Casella (1998, corollary 2.18, page 336), T is admissible for EθT with
squared error loss. So, g(T ) is admissible for g(EθT ) with g−1−loss.
We can call the function g(.) a link function as in generalized linear
models (McCullagh and Nelder, 1989). For instance for a random
sample of Binomial family with success probability p Logit of T is
admissible for logit of p with g−1−loss where g−1(x) = exp(x)

1+exp(x) and

T (x) =
∑

Xi

n .
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5 Conclusion

Although the lack of information to estimate some of the estimands in
this paper, as argued by Lehmann (1983), remains valid, the change
of loss function helped us to find better estimators with some op-
timal properties using available information. We believe the m-loss
discussed in this note can increase our subjective information about
the statistical problem. The m-loss also leads us to use the property
of unbiasedness for estimands and estimators which are in the same
scale of measurement. If one is not sure about the choice of m, one
can use a class of m-loss functions, for different m, to see the robust-
ness of the results to the choice of different elements of the class (see,
Dey, Lou and Bose, 1998.).
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