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Abstract. The local limit theorem describes how the density of a
sum of random variables follows the normal curve. However the local
limit theorem is often seen as a curiosity of no particular importance
when compared with the central limit theorem. Nevertheless the local
limit theorem came first and is in fact associated with the foundation
of probability theory by Blaise Pascal and Pierre de Fermat and was
originally formalized by Jakob Bernoulli, Abraham DeMoivre and
Pierre-Simon Laplace.

Here we describe the historical roots of the local limit theorem.
We describe how it was supplanted by the central limit theorem in
applications. Then we review the revival started by B. V. Gnedenko
and we describe modern developments.

1 Introduction

When we say a histogram or probability density follows the nor-
mal curve we have in mind that the density resembles the density

Received: September 2005
Key words and phrases: Historical study, local limit theorem.



74 McDonald

exp(−(z − µ)2/(2σ2))/
√

2πσ2; i.e. is the normal density with mean
µ and standard deviation σ. One observes empirically that the his-
togram or empirical density of a sample of quality control measure-
ments follows this normal density. Why is this?

A quality measurement (like the measurement of the width of
ceramic tile) is in fact the sum of a large number of small errors
(like variations in the mold, the temperature of the oven, the error in
measuring length itself ...). The local limit theorem in the theory of
probability states that the distribution of such sums tends to follow
the normal curve. Consequently by the law of large numbers, the
empirical histogram of equality measurements also tends to follow the
normal. There are many proofs but in truth there is no explanation
of this minor miracle.

To make this statement more precise consider a sequence of densi-
ties gn with means an and standard deviations bn. Any measurement
x can be converted into standard units as follows, en(x) = (x−an)/bn.
We say the sequence of densities satisfies the local limit theorem if

bn|gn(x)− 1
bn

φ(en(x))| → 0 where φ(z) =
1
2π

e−z2/2

uniformly in x as n → ∞. φ(z) is called the standard normal den-
sity. Note that φ(en(x))/bn is a normal density with mean an and
standard deviation bn by a change of variable. The above local limit
theorem says the density gn may be approximated by a normal den-
sity with an error of size o(1/bn) where o(ε) is a function that satisfies
limε→0 o(ε)/ε = 0. So the error gets small if bn →∞.

Usually we are interested in the area under the density gn between
two values un and vn say. Integrating the local limit theorem we have
that

|
∫ vn

un

gn(x)dx−
∫ vn

un

1
bn

φ(en(x))dx| = |vn − un|o(1/bn)

This means that if |vn − un|/bn is bounded then difference between
the area from un to vn under the density gn and under the normal
density with mean an and standard deviation bn tends to zero. This
means we can approximate the area under the density gn by the area
under the normal over intervals of length bn.

Alternatively, define,

Φ(t) =
∫ t

−∞
φ(z)dz.
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Figure 1: Normal approximation of a Binomial.

By a change of variables,∫ vn

un

1
bn

φ(en(x))dx =
∫ en(vn)

en(un)
φ(z)dz = Φ(en(vn))− Φ(en(un))

Hence,

|
∫ vn

un

gn(x)dx− (Φ(en(vn))− Φ(en(un)))| = |vn − un|o(1/bn).

This approximation amounts to rescaling the density gn into stan-
dard coordinates so an is rescaled to zero and un and vn are rescaled
to en(un) and en(vn) respectively. Hence,∫ en(vn)

en(un)

1
bn

gn(en(x))dx =
∫ vn

un

gn(x)dx

≈
∫ vn

un

1
bn

φ(en(x))dx

=
∫ en(vn)

en(un)
φ(z)dz.

Areas under this rescaled density are approximately equal to those
under a superimposed standard normal density. This approximation
is called the central limit theorem.
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In Histogram 1 we approximate a Binomial density gn with n = 16
trials and p = 1/2 by a Normal distribution with mean an = 8
and standard deviation bn = 2. The standardized values of en(6) =
−1, en(8) = 0 and en(10) = 1 are indicated. In standard units the
area under the Binomial histogram may be approximated by the area
under a Standard Normal.

Note that for integer valued densities gn such as this one it is
better to make a continuity correction. For instance if we seek the
probability the Binomial is between 8 and 10 inclusively we really
want the area in the boxes above 8, 9 and 10 and this is best ap-
proximated by the area under the Normal between 7.5 to 10.5. In
standard units this means the area under the Standard Normal from
0.25 to 1.25. This continuity correction assumes the density gn(x)
is well approximated by gn(en(x))/bn; i.e. it assumes a local limit
theorem is valid.

The aim of this paper is to retrace the steps by Pascal, Bernoulli,
de Moivre and Laplace leading first to the local limit theorem. We
will see the local limit theorem was in some sense supplanted by
the central limit theorem and essentially forgotten until its revival by
Gnedenko forty years ago. We will also present a modern approach to
local limit theorems which in some sense returns to the original ideas
of the founders of probability theory. For simplicity we will restrict
ourself to local limit theorems for integer valued random variables.

2 Historical antecedents

Notions of chance have existed since very ancient times. Julius Caesar
was clearly using a popular metaphore when he uttered the famous
words Jacta alea est! (let the dice fly) as he decided to cross the
Rubicon with his army to overturn the Roman republic. Roman
tesserae (dice) discovered in the ruins of Herculanum are essentially
the same as modern dice. The numbers one to six are engraved on
the six sides of a die so that the sum of opposite faces is seven. We
must assume that Romans had the intuitive notion that the chance
of throwing a three is one in six.

Since Roman aleatores (gamblers) gambled with two dice, it would
not be surprising that they knew intuitively that a throw of total of
seven was more likely than a total of twelve. The question is whether
they could have made a precise estimate. The probability of throwing
a seven is equal to the number of ways of obtaining seven divided
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by the total number of outcomes. The number of outcomes for the
first die is six and for each of these outcomes there are six possible
outcomes for the second die. Hence the total number of outcomes is
36. In other words the number of outcomes is the number of pairs
(x, y) where x and y are chosen from one through six. To obtain a
seven one has the the following six possibilities: (1,6), (6,1), (2,5),
(5,2), (3,4), (4,3). It follows that the probability of throwing a seven
is 1/6. Similarly the probability of throwing a twelve is 1/36.

There is no evidence that Roman gamblers made this estimate. In
fact it is unlikely because even the mathematical technology of frac-
tions did not exist at that time. Nevertheless the idea that the cal-
culation of probability reduces to counting is certainly ancient and is
documented since the middle ages. For instance, Cardan (1576†) and
Galileo (1642†) published counting arguments for games of chance
[14]. However, the first systematic study of probability and counting
is due to Pierre de Fermat and Blaise Pascal in an exchange of letters
dating from 1654.

They were interested in the ”problem of points”. Suppose two
players decide to play for a stake according to the rule the first to
win 4 points takes all. A point could be decided by flipping heads or
tails (or ”navia aut capita” as an ancient Roman might say.) Now
suppose the game has to be suspended when one player has 3 points
while the other has only 1. How should the stake be split?

Fermat and Pascal found the solution by counting the possibil-
ities. Pascal went further and calculated the fair split for a game
where the player A needs m points to take all and player B needs
k points. Let us follow the argument of James Bernoulli in Chapter
Four of Ars Conjectandi published in 1713. The game will certainly
end in n = k + m − 1 tries. This means 2n possible sequences of
winners; i.e. like (A,A,B, . . .) where A means player A wins and B
means player B wins. Of these sequences player A will win if the
sequence has zero B’s or one B or up to k − 1 B’s. The number of
sequences with zero B’s is 1; i.e. all A’s. The number of sequences
with one B is the number of ways of choosing one spot from n spots;
i.e. n. The number of sequences with two B’s is the number of
ways of choosing two spots from n spots; i.e. n(n − 1)/2. Continue
in this way until we calculate the number of sequences with k − 1
B’s to be the number of ways of choosing k − 1 spots from n; i.e.
n(n− 1) . . . (n− k + 2)/(k− 1)!. We conclude that the probability A
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will win is

(n +
n(n− 1)

2
+ . . . +

n(n− 1) . . . (n− k + 2)
(k − 1)!

) · 2−n.

To complete his solution to the problem of points Pascal could rely
on mathematical technology unavailable to the ancients. He could
represent numbers as decimals. He could manipulate fractions and
he had algebra at his disposition. Along the way he rediscovered the
binomial coefficients; i.e. the number of ways of choosing m objects
from n different objects is(

n
m

)
=

n!
m!(n−m)!

.

This counting problem had already been solved by Chinese and Is-
lamic scholars in medieval times. Pascal’s triangle was called ”Yang
Hui’s triangle” by the Chinese. Omar Khayyam (1131†) and Al-
Karaji (1029†) had long since developed the binomial formula.

Pascal’s contribution was the systematic application of counting
methods to calculate probabilities. The construction of the abstract
probability space with n+m−1 games as above is thoroughly modern.
It is abstract because a sequence with n A’s in a row followed by m−1
B’s will never happen in practice because A wins after n games. This
abstract space of sequences is a mathematical convenience and a huge
intellectual step forward.

We can say Pascal was the first to consider a local limit theo-
rem. If one tosses a coin n times then the probability of getting m

heads is
(

n
m

)
2−n. This follows as above since there are 2n possi-

ble sequences and
(

n
m

)
of them lead to m heads. Let gn be the

density of the number of heads in n coin flips. Pascal’s result shows

gn(m) =
(

n
m

)
2−n.

An additional step was taken by James Bernoulli (1705†). In Ars
Conjectandi (published posthumously) he showed that if the prob-
ability of tossing a head is p then the density gn of the number of
heads in n tosses is

gn(m) =
(

n
m

)
pm(1− p)(n−m).
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The first local limit theorem was proved by De Moivre (1754†) in
Approximatio ad Summam Terminorum Binomii (a + b)n in Seriem
expansi expanding on James Bernoulli’s work. For the case p = 1/2
he proved;

Theorem 2.1. (DeMoivre-Laplace local limit theorem)

lim
n→∞

gn(m)/

(
1√

2πnp(1− p)
exp(− (m− np)2

2np(1− p)
)

)
= 1

uniformly for m such that | m−np√
np(1−p)

| remains bounded.

From Bernoulli’s work we know that the mean and standard devi-
ation of the density gn are an = np and bn =

√
np(1− p) respectively.

The above theorem can therefore be rewritten as

lim
n→∞

gn(m)/
(

1
bn

φ(en(m))
)

= 1

uniformly for m such that |en(m)| remains bounded. Equivalently,

lim
n→∞

|gn(m)− 1
bn

φ(en(m))| = o(
1
bn

φ(en(m))) = o(
1
bn

)

uniformly for m such that |en(m)| remains bounded. This is of the
form seen in the Introduction.

DeMoivre stated the local limit theorem for general p but the
proof was provided by Laplace (1795) in Théorie analytique des prob-
abilités. DeMoivre used the local limit theorem to add up the prob-
abilities that Sn is in an interval of length of order

√
n to prove the

first central limit theorem:

np+b
√

np(1−p)∑
m=np+a

√
np(1−p)

gn(m) → Φ(b)− Φ(a).

DeMoivre proved only the case p = 1/2 but Laplace extended these
results to all p. For this reason we call the above theorem the
DeMoivre-Laplace central limit theorem.

There was a gradual generalization of the scope of the central
limit theorem to more general densities. The central limit theorem
has been the object of research since that time and the local limit
theorem languished. The Russian school (especially A. Khintchine)
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used characteristic function methods to prove it thus avoiding the
local behaviour of Sn. A. M. Lyapounov and then Jarl Waldemar
Lindeberg (1932†) [6] extended the central limit theorem to indepen-
dent but not necessarily random variables.

Consider a sequence of discrete densities fk, k = 1, 2, . . . with
support on the integers. Consider a sequence of independent random
variables Xk, k = 1, 2, . . ., where Xk has density fk; that is P (Xk =
m) = fk(m). Define Sn = X1 +X2 + . . . Xn and let the density of Sn

be gn. Hence,

gn(m) = f1 ∗ f2 ∗ · · · ∗ fn(m) where ∗ indicates convolution;

that is

f ∗ g(m) =
∞∑

j=−∞
f(j)g(m− j).

Theorem 2.2. (Lindeberg) Suppose X1, X2, . . . are independent
random variables where the mean µm and the variance σ2

m of Xm are
both finite. Let the mean of Sn be an =

∑n
m=1 µm and let the variance

of Sn be b2
n =

∑n
m=1 σ2

m. If Lindeberg’s condition holds:

for all ε > 0, lim
n→∞

1
b2
n

n∑
m=1

∑
|x|>εbn

x2fm(x) = 0

then uniformly in i, j,

P (i ≤ Sn ≤ j) → Φ(en(j))− Φ(en(i)).

The local limit theorem was revived by B. V. Gnedenko [5] in
1948. This was a natural topic considering his illustrious teachers:
Kolmogorov and Khintchine. To state the local limit theorem we will
have to be a little bit careful because, if the summands X1, X2, . . .
are all even valued there is no way the sum Sn can be odd so the local
limit theorem will fail even when the central limit theorem holds.

Definition 2.1. We say h is the maximal span of a density f if
h is the largest integer such that the support of f is contained in the
subgroup {b + kh, k = . . . ,−2,−1, 0, 1, . . .} for some integer b.

Theorem 2.3. (Gnedenko) If X1, X2, . . . are independent ran-
dom variables with identical density f with finite mean and variance
and maximal span equal to 1 then

|bnP (Sn = k)− φ(en(k))| → 0

uniformly in k as n →∞.
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The proof uses characteristic functions.
The extension of the local limit theorem to nonidentical random

variables further complicates the problem of periodicity. Suppose
fm(0) = 1/2, fm(1) = 1/2m and fm(2) = 1/2− 1/2m. Then the sup-
port of this sequence of densities is essentially concentrated on the
even integers so the maximal span is essentially 2 so Gnedenko’s the-
orem can’t hold. This problem was first addressed by N. G. Gamkre-
lidze [3] There are also many other generalizations [11, 12, 13, 9, 10].
A proof without using transform methods appeared in [7].

3 A local limit theorem without characteris-
tic functions

Let X1, X2, . . . be independent, integer valued random variables Xm

has density fm. Let q(fm) :=
∑

k[fm(k) ∧ fm(k + 1)] and let Qn :=∑n
m=1 q(fm).

Theorem 3.1. Suppose there are numbers an and bn such that

lim
n→∞

P ((Sn − an)/bn ≤ t) = Φ(t), for −∞ < t < ∞.

and such that
lim sup

n→∞
b2
n/Qn < ∞.

Then the local limit theorem holds; that is as n →∞,

supk|bnP (Sn = k)− φ((k − an)/bn)| → 0.

The central limit theorem gives the probability that Sn falls in an
interval of length of order bn, say [k, k + εbn], as approximately∫ k+εbn

k
gn(x)dx ≈

∫ k+εbn

k

1
bn

φ(en(x))dx. (3.1)

Since en(x) is flat or constant on [k, k + εbn] if ε is small, it follows
that the integral on the right hand side of (3.1) is approximately
equal to the length of the interval times the value of g(en(x)) at the
left endpoint; i.e. εbn · φ(en(k))/bn. If we can show that gn(x) is also
fairly flat over [k, k + εbn] for ε small then∫ k+εbn

k
gn(x)dx ≈ εbn · gn(k) = εbn · P (Sn = k).
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It would then follow that bn · P (Sn = k) ≈ φ(en(k)); i.e. we would
have a local limit theorem. We can formalize the idea of flatness by
defining

s(X) = sup
k
|P (X = k + 1)− P (X = k)|.

Lemma 3.1. If an and bn are such that bn →∞ and supn b2
ns(Sn) <

∞ and (Sn−an)/bn converges in distribution to the standard normal,
then Sn satisfies the local limit theorem stated previously.

The proof is given in [8]. Since Lindeberg’s theorem gives sufficient
conditions for convergence of (Sn − an)/bn to the standard normal
we see that the main step remaining to prove Theorem 3.1 is to give
conditions ensuring that supn b2

ns(Sn) < ∞. We do this be defining
the Bernoulli part.

Suppose X has density f . Define α(k) = f(k) ∧ f(k + 1). Define

q ≡ q(f) =
∞∑

k=−∞
α(k) =

∞∑
k=−∞

f(k) ∧ f(k + 1).

q is called the amount of Bernoulli part inside of X. Define the
density

fT (k) =
α(k)

q
=

f(k) ∧ f(k + 1)
q

.

Define the density

fU (k) =
1

1− q

(
f(k)− (α(k − 1) + α(k))

2

)
.

Define fε(0) = 1− q and fε(1) = q. Define fL(0) = 1/2 and fL(1) =
1/2.

Next we build the Bernoulli Decomposition: Construct a product
space

Integers × Integers × {0, 1} × {0, 1}.

with a product measure using the densities (fT , fU .fε, fL). The pro-
jection maps (T,U, ε, L) are independent random variables with den-
sities (fT , fU .fε, fL). Now check that

P ((1− ε)U + ε(T + L) = k) = f(k).

Define V = (1− ε)U + εT so X has the same density as V + εL.
We now arrive at the crux of the matter: Construct the Bernoulli

Decomposition for each Xm: Vm + εmLm. Therefore Sn has the same
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law as
∑n

m=1[Vm + εmLm]. Define Mn =
∑n

m=1 εm. Therefore Sn has
the same law as

Zn +
Mn∑
m=1

L∗m

Zn =
∑n

m=1 Vm and L∗1, L
∗
2, . . . is another independent Bernoulli se-

quence.
We have found Mn independent Bernoulli random variables inside

Sn. We know a lot about the Binomial distribution with p = 1/2.
We can use this embedded Binomial to prove flatness of gn.

Lemma 3.2. Let

b(k, n) =
(

n
k

)
(
1
2
)n.

Then
|b(k + 1, n)− b(k, n)| ≤ 32/n.

The proof is given in [8].
Now we can calculate

s(Sn) = sup
k
|P (Sn = k)− P (Sn = k + 1)|

= sup
k
|P (Zn +

Mn∑
m=1

L∗m = k)− P (Zn +
Mn∑
m=1

L∗m = k + 1)|

≤ sup
k

(
n∑

m=0

P (Mn = m)|P (Zn +
m∑

j=1

L∗j = k|Mn = m)

−P (Zn +
m∑

j=1

L∗j = k + 1|Mn = m)|)

≤
n∑

m=0

P (Mn = m)
64

m + 1

= 64E

[
1

Mn + 1

]
.

since 32/n ≤ 64/(n + 1).
Now, EMn = Qn so it isn’t hard to show the above is is of order

1/Qn. Hence Qn ·s(Sn) is bounded so if we assume lim supn→∞ b2
n/Qn

< ∞ as in Theorem 3.1 it follows that lim supn→∞ b2
n · s(Sn) < ∞

and by Lemma 3.1 this proves Theorem 3.1.
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4 Summary and future work

We have gone back to the beginning in a sense using the Bernoulli
Part and the flatness of the Binomial to derive the local limit theorem
from the CLT. There are other recent results on local limit theorems
[4, 10] but to date there is no satisfactory theory when Sn is the
sum of dependent random variables in spite of an attempt like [2].
Moreover proving flatness over a distance bn isn’t of much use for
heavy tailed distributions but there are some results in this direction
[1].

It is interesting to consider a Markov chain on the integers with
a transition kernel Kij defined by

j i− 1 i i + 1
Kij 1/3 1/3 1/3

if i is even

and

j i− 1 i i + 1
Kij 3/8 1/4 3/8

if i is odd.

Starting from 0, the state Sn at time n clearly satisfies the central
limit theorem with mean zero and standard deviation bn. Define the
function α(i) = 18/17 if i is even and α(i) = 16/17 if i is odd. It is
easy to see α is an invariant measure for K; i.e. αK = α. Moreover
the average mass per integer is one. The ratio limit theorem implies
that P (Sn = i)/α(i) is fairly flat. Roughly speaking the walk spends
a fraction 9/17 on the even integers and 8/17 on the odd integers.
Consequently it is not unreasonable that there exist a local limit
theorem

|bnP (Sn = k)− α(k)φ(en(k))| → 0

uniformly in k as n →∞.
To date there don’t exist any published local limit theorems with

nonhomogeneous local character as above. This is clearly another
avenue for future work.
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