
JIRSS (2004)

Vol. 3, No. 2, pp 297-308

Probability Generating Functions for Sattolo’s
Algorithm

Mark C. Wilson

Department of Computer Science, University of Auckland, Private Bag
92019 Auckland, New Zealand. (mcw@cs.auckland.ac.nz)

Abstract. In 1986 S. Sattolo introduced a simple algorithm for
uniform random generation of cyclic permutations on a fixed number
of symbols. Recently, H. Prodinger analysed two important random
variables associated with the algorithm, and found their mean and
variance. H. Mahmoud extended Prodinger’s analysis by finding limit
laws for the same two random variables.

The present article, starting from the definition of the algorithm,
is completely self-contained. After giving a simple new proof of cor-
rectness, we generalize the abovementioned probabilistic results by
determining the “grand” probability generating functions of the ran-
dom variables.

The focus throughout is on using standard methods that give a
unified approach, and open the door to further study.

1 Sattolo’s algorithm

For each n ≥ 1, we denote by Sn the symmetric group on the set
[n] := {1, . . . , n}. The action of π ∈ Sn on i ∈ [n] is denoted by i · π.

Received: November 2003, Revised: March 2004
Key words and phrases: Grand PGF, random cycle generation.

298 Wilson

Let Cn be the set of n-cycles of Sn (recall that an element of Sn is
an n-cycle if and only if its action on [n] has a single orbit). When
n = 1, our convention is Cn = Sn.

Sattolo [5] introduced the following algorithm for uniform random
generation of an element of Cn. Start with the arrangement 1, . . . , n
(corresponding to the identity permutation). There are n − 1 steps.
At the ith step, an element is chosen uniformly at random from posi-
tions 1, . . . , n− i and swapped with the element at position n− i+1.
Some examples: the cycle that maps 1 → 2, 2 → 3, . . . , n − 1 →
n, n → 1 is generated by the steps 1 ↔ n, 1 ↔ n−1, . . . , 1 ↔ 2, while
the cycle mapping 1 → n, 2 → 1, 3 → 2, . . . , n → n − 1 arises via
n− 1 ↔ n, n− 2 ↔ n− 1, . . . , 1 ↔ 2.

We first establish correctness of the algorithm. Of course this
is not difficult, and this issue has already been discussed in [5], [1].
The authors of those articles prove that at the ith step, the current
permutation has precisely n− i cycles. We take a different approach
here, deriving a recursion that is more useful for future work.

To simplify the presentation, we introduce a little more notation.
Suppose that n ≥ 2. For an element π of Sn−1, let π∗ be its extension
to Sn, by definition the element of Sn that fixes n and agrees with
π on [n − 1]. The map ∗ is 1–1 on each Sn. Dually, for an element
ρ ∈ Sn that fixes n, ρ∗ is the restriction of ρ to Sn−1. The map ∗ is
onto each Sn−1 and ∗ followed by ∗ is the identity on Sn−1. Finally,
define q : Cn → [n− 1] by q(σ) = σ−1(n).

Proposition 1.1. For n ≥ 2, the maps ↑ : Cn−1 × [n − 1] → Cn

and ↓ × q : Cn → Cn−1 × [n − 1] defined below are mutually inverse
bijections:

(σ, q)↑ = σ∗τ where τ is the transposition n ↔ σ(q) in Sn;
σ↓ = (τσ)∗ where τ is the transposition n ↔ q(σ) in Sn.

Proof. Note that ↑ is into Cn: letting ρ = (σ, q)↑ we see that n · ρi =
q · σi for 1 ≤ i < n, and n · ρn = n, so the orbit of n under ρ has size
n. Now note that for each ρ ∈ Cn, ρ↓ is well-defined since τρ fixes n.
We also have ρ↓ ∈ Cn−1 because the orbit of q(ρ) under ρ↓ has size
n− 1.

It is readily seen that ↑ and ↓ are indeed mutually inverse.

Corollary 1.2. Sattolo’s algorithm is correct.

PGFs for Sattolo’s Algorithm 299

Proof. By Proposition 1.1, there is a bijection [1]×[2]×· · ·×[n−1] →
Cn and the uniform measure on Cn corresponds to the product of the
uniform measures on [1], . . . , [n].

Note that given an output σ ∈ Cn, we can uniquely determine
the sequence of steps carried out by the algorithm in producing that
output, and σ has a unique representation as a product of n − 1
transpositions τ1 · · · τn−1, where τi exchanges n + 1 − i and some
smaller number.

2 Analysis of the algorithm

The number of swaps is always n − 1. Prodinger [3] analysed two
more interesting parameters, namely Mnp, the number of times p is
moved, and Dnp, the total distance moved by p. He gave (with rather
brief discussion) recurrences for the probability generating functions
of these quantities, and used these to compute the mean and variance.
Mahmoud [2], starting with Prodinger’s recurrences, derived the lim-
iting distributions of Mnp and Dnp/n, in addition to explicit formulae
for the PGFs. Mahmoud’s method relies on appropriate changes of
variables to simplify the recurrences, which are then solved by itera-
tion.

The main purpose of this note is to derive in a systematic and
rigorous way the “grand” PGFs for the above random variables, using
a standard generating function approach avoiding recurrences. It will
be clear that the approach should generalize, and the computation
in each case considered here is very similar — special tricks are not
required.

The grand PGFs contain all information about the distributions
of the random variables Mnp and Dnp, for all n and p. In addition,
they open the door to the study of variants of the algorithm, such as
where n is itself randomly chosen, or where generation is not uniform.

In any case, the results here serve as an independent check on
previous work.

We let C (respectively S) denote the disjoint union of all the Cn

(respectively Sn). For a given π ∈ S, we use n(π) to denote the
unique element of the union to which it belongs.

300 Wilson

We consider normalized counting generating functions of the form

F (u, t, x) :=
∑

σ∈C,p∈[n(σ)]

uχ(σ,p)tp
xn(σ)

|Cn(σ)|

=
∑
n≥1

xn

(n− 1)!

∑
1≤p≤n

tp
∑
σ∈Cn

uχ(σ,p).

An auxiliary “diagonal” GF will also be useful:

G(u, x) :=
∑
σ∈C

uχ(σ,n(σ)) xn(σ)

|Cn(σ)|
=
∑
n≥1

xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n).

Here χ is a given parameter of interest such as number of moves,
etc. Of course F and G can be interpreted probabilistically as “grand”
PGFs. For example, if χ(σ, p) is the number of moves made by p in
obtaining σ via Sattolo’s algorithm, and Mnp the random variable
obtained by evaluating χ at an element of Cn chosen uniformly at
random, then letting φnp(u) =

∑
l≥0 P(Mnp = l)ul denote the PGF

of Mnp, we have

F (u, t, x) =
∑
n≥1

xn
n∑

p=1

tpφnp(u).

A similar interpretation occurs for the random variable Dnp (with
PGF ξnp) that corresponds to the total distance moved by symbol p
in the algorithm.

We shall derive functional equations for these GFs from the re-
cursion inherent in the algorithm. We aim for analytic solutions with
simple formulae; however the special functions arising are not elemen-
tary and we do not pursue this to its full extent. The first derivatives
of the GFs with respect to x do turn out to have explicit formulae in
terms of elementary functions. Asymptotic methods may be used to
analyse the coefficients, though we do not pursue this here.

In any case we may use standard coefficient extraction techniques
to determine φnp(u) and ξnp(u) explicitly. Only a few basic facts are
needed in this article. They are that − log(1 − x) is the (ordinary)
GF for the sequence an = 1/n, and that if h(x) is a univariate GF
that generates bn, then h(ux) generates unbn, h(x)/(1−ux) generates∑

i≤n un−ibi, and h(ux)/(1 − x) generates
∑

i≤n uibi; furthermore if
h(0) = 0 then x2(h(x)/x)′ generates (n− 1)bn.

PGFs for Sattolo’s Algorithm 301

2.1 Number of moves

Using the decomposition of Proposition 1.1, it is straightforward to
obtain the recursion

χ(σ, p) =

χ(σ↓, p) if p 6= n(σ), p 6= q(σ);
1 + χ(σ↓, q(σ)) if p = n(σ), p 6= q(σ);
1 if p 6= n(σ), p = q(σ);
0 if p = n(σ), p = q(σ).

(2.1)

We partition the index set I = {(σ, p) | σ ∈ C, 1 ≤ p ≤ n(σ)} into
4 disjoint subsets I1, . . . , I4 according to the cases just listed. Denote
by Σk(u, t, x) the part of the sum defining F corresponding to index
set Ik, so that F = Σ1 + Σ2 + Σ3 + Σ4.

Note that I4 contains a single element because the last case, where
σ has a fixed point, occurs only when n(σ) = 1, in which case p = 1.
Therefore Σ4(u, t, x) = tx.

The set I2 contains no elements with n(σ) = 1 and is in bijection
with the set {σ | n(σ) = 2} since the defining condition on p is always
satisfied if n(σ) ≥ 2. Thus

Σ2(u, t, x) =
∑
n≥2

tn
xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n) = G(u, tx)− tx.

In the sum Σ1, indices p satisfying the conditions p 6= n, p 6= q(σ)
occur if and only if n(σ) ≥ 3. The set I1 is in bijection with the set

{(σ, q, p) | n(σ) ≥ 2, 1 ≤ p ≤ n(σ)− 1, 1 ≤ q ≤ n(σ)− 1, p 6= q}.

302 Wilson

So using the recursion above we obtain

Σ1(u, t, x) =
∑
n≥3

xn

(n− 1)!

∑
σ∈Cn

∑
1≤p<n,p6=q(σ)

tpuχ(σ,p)

=
∑
n≥3

xn

(n− 1)!

∑
σ∈Cn−1

∑
1≤q≤n−1

∑
1≤p≤n−1,p6=q

uχ(σ,p)tp

= x
∑
n≥2

xn

n!

∑
1≤p≤n

tp
∑
σ∈Cn

uχ(σ,p)
∑

1≤q≤n,q 6=p

1

= x
∑
n≥2

n− 1
n

xn

(n− 1)!

∑
1≤p≤n

tp
∑
σ∈Cn

uχ(σ,p)

= x

(
F (u, t, x)− tx−

(∫ x

F (u, t, y)/y dy − tx

))
= xF (u, t, x)− x

(∫ x

F (u, t, y)/y dy

)
.

It is convenient to introduce the auxiliary functions

f(u, t, x) = F (u, t, x)/x, g(u, x) = G(u, x)/x, s(u, t, x) = Σ3(u, t, x)/x.

Let A(u, t, x) be an antiderivative for f(u, t, x) with respect to x.
Then we obtain, for the correct choice of A,

(1− x)f(u, t, x) = tg(u, tx) + s(u, t, x)−A(u, t, x).

Differentiating this equation with respect to x, and rearranging,
we obtain

(1− x)f ′(u, t, x) = t2g′(u, tx) + s′(u, t, x). (2.2)

Here the prime ′ indicates differentiation with respect to x.

Note that (2.2) holds for any parameter χ satisfying the formulae
in the first and last cases of the recurrence (2.1).

We now determine Σ3(u, t, x). The set I3 is in bijection with

PGFs for Sattolo’s Algorithm 303

{σ ∈ C | n(σ) ≥ 2}. Thus

Σ3(u, t, x) =
∑
n≥2

xn

(n− 1)!

∑
σ∈Cn

tq(σ)u1

=
∑
n≥2

xn

(n− 1)!

∑
σ↓∈Cn−1

n−1∑
q=1

tqu

= x
∑
n≥1

xn

n!

∑
σ∈Cn

n∑
q=1

tqu

= ux
∑
n≥1

xn

n

n∑
q=1

tq

=
utx

1− t

∑
n≥1

xn(1− tn)
n

=
utx

1− t
[log(1− tx)− log(1− x)].

Taking the limit as t → 1, or repeating the above derivation with
t = 1, quickly yields

s′(u, 1, x) =
u

(1− x)2
.

We note in passing that if we extract the coefficient of xntp from
(2.2), we immediately obtain Prodinger’s first recurrence

(n− 1)φnp(u) = (p− 1)φpp(u) + (n− p)u for 1 ≤ p ≤ n. (2.3)

We now consider G. We have from the definition and the decom-
position of Proposition 1.1

G(u, x) =
∑
n≥1

xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n)

= x +
∑
n≥2

xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n)

= x +
∑

(σ↓,q)

u1+χ(σ↓,q)
xn(σ↓)+1

n(σ↓)!

= x + ux
∑
(σ,q)

uχ(σ,q) xn(σ)

(n(σ)− 1)!n(σ)

= x + uxA(u, 1, x).

304 Wilson

Differentiating, we obtain

g′(u, x) = uf(u, 1, x); g(u, 0) = 1. (2.4)

Again we note in passing that Prodinger’s second recurrence fol-
lows immediately by coefficient extraction:

φnn(u) =
u

n− 1

∑
1≤p≤n−1

φn−1,p(u) for n ≥ 2.

We proceed to determine g(u, x) and to this end we first determine
f(u, 1, x). Substituting t = 1 in (2.2) and using (2.4) to eliminate g′,
we obtain the differential equation

(1− x)f ′(u, 1, x)− uf(u, 1, x) = u(1− x)−2; f(u, 1, 0) = 1.

This first order linear equation has integrating factor (1 − x)u−1

and solution

f(u, 1, x) =
u

2− u
(1− x)−2 +

2(1− u)
2− u

(1− x)−u.

A further integration gives

g(u, x) = 1 +
u2

2− u
(1− x)−1 − 2u

2− u
(1− x)1−u.

We would like to determine f(u, t, x) analytically by integrating
(2.2), but this involves finding an antiderivative of (1−tx)−u(1−x)−1.
We shall content ourselves here with recording the defining equation,
and leave detailed analysis for another time:

(1− x)f ′(u, t, x) = ut2
u

2− u

1
(1− tx)2

+
2(1− u)
2− u

(1− tx)−u

+
ut

1− t

(
1

1− x
− t

1− tx

)
.

Nevertheless, we may routinely extract coefficients to find that φ11 =
1 and

φnn(u) = [xn−1]g(u, x)

=
u2

2− u
+

2
(n− 1)!

u(1− u)
2− u

n−3∏
i=0

(u + i) if n ≥ 2.

PGFs for Sattolo’s Algorithm 305

This is consistent with the result in [2].
Hence by recurrence (2.3),

φnp(u) =
p− 1
n− 1

u2

2− u

(
1− 2

Γ(u + p− 2)
uΓ(u− 1)Γ(p)

)
+ u

n− p

n− 1

for n ≥ 2.
As a check, note that when p = 1, n > 1, the number of moves is

1 since any symbol that moves forward does not move subsequently,
and 1 cannot move backward. This is consistent with the above
formula: φn1(u) = u.

From the PGF, all information on moments can be readily ex-
tracted in the usual way. The computations are straightforward
but tedious and are simplified by use of a computer algebra system
(though perhaps not as trivial as implied in [3]). An advantage of
dealing with the grand PGF is that it is usually easier to differentiate
F with respect to u, set u = 1, and then extract the coefficient of
xntp, rather than first extracting the coefficient. For example,

E[Mnp] = φ′np(1) = [tpxn−2]
∂2f

∂x∂u
(1, x)

=

0 if p = n = 1;
1 if p = 1 or n = 1, but not both;
n+2p−5

n−1 otherwise.

The variance can be similarly obtained; it is already given in [3]
so we omit it here.

2.2 Distance moved by an element

In this case we have

χ(σ, p) =

χ(σ↓, p) if p 6= n(σ), p 6= q(σ);
n(σ)− q(σ) + χ(σ↓, q(σ)) if p = n(σ), p 6= q(σ);
n(σ)− q(σ) if p 6= n(σ), p = q(σ);
0 if p = n(σ), p = q(σ).

The analysis is similar to the previous case. As above we obtain
that Σ4(u, t, x) = tx, Σ2(u, t, x) = G(u, tx)−tx, and the same expres-
sion for Σ1. Thus, since the initial condition is again F (u, t, 0) = tx,

306 Wilson

we once more obtain equation (2.2). The calculation for Σ3(u, t, x) is
also very similar. We have

Σ3(u, t, x) =
∑
n≥2

xn

(n− 1)!

∑
σ∈Cn

un−q(σ)tq(σ)

=
utx

u− t
[log(1− tx)− log(1− ux)].

We have shortened the calculation by observing that Σ3(u, t, x)
for this case is equal to the previous Σ3 evaluated at (u, tu−1, ux).

Considering G, this time we obtain

G(u, x) =
∑
n≥1

xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n) = x +
∑
n≥2

xn

(n− 1)!

∑
σ∈Cn

uχ(σ,n)

= x + ux
∑
(σ,q)

uχ(σ,q)+n(σ)−q xn(σ)

n(σ)!
= x + uxA(u, u−1, ux).

Hence we obtain

(1− x)f ′(u, t, x) = t2g′(u, tx) + s′(u, t, x); f(u, t, 0) = t (2.5)

g′(u, x) = u2f(u, u−1, ux); g(u, 0) = 1. (2.6)

Note that coefficient extraction directly gives the recurrences

(n− 1)ξnp(u) = (p− 1)ξpp(u) +
n−p∑
j=1

uj

(n− 1)ξnn(u) =
n−1∑
p=1

un−pξn−1,p(u).

The second of these matches that given in [3], but the first is
different: it is a consequence of iterating Prodinger’s first recurrence
(n− 1)ξnp(u) = un−p + (n− 2)ξn−1,p(u).

We again determine g′(u, x) by first determining f(u, u−1, ux).
Set t = u−1 in (2.5) and use (2.6) to eliminate g′. The resulting
differential equation is

(1− x)f ′(u, u−1, x) = f(u, u−1, x) + s′(u, u−1, x);
f(u, u−1, 0) = u−1.

This equation is already exact and the solution is

PGFs for Sattolo’s Algorithm 307

f(u, u−1, x) =
s(u, u−1, x)

1− x
+

u−1

1− x
.

Thus

g′(u, x) = u2f(u, u−1, ux) = u2 s(u, u−1, ux)
1− ux

+
u

1− ux

=
u3

1− u2

log(1− u2x)− log(1− x)
1− ux

+
u

1− ux
.

A further integration yields g and f , but as this involves the
indefinite integral of log(1 − u2x)/(1 − ux) we again defer precise
analysis. We again record the defining equation for f :

(1− x)f ′(u, t, x) = t2u2

(
u3

1− u2

log(1− u2tx)− log(1− tx)
1− utx

+
u

1− utx

)
+

ut

u− t

(
u

1− ux
− t

1− tx

)
.

We can extract coefficients directly to obtain ξ11 = 1 and for
n ≥ 2,

ξnn(u) =
1

n− 1

(
un−1 +

un+1

1− u2

n−2∑
i=1

u−i − ui

i

)
,

matching the result in [2].
Thus for n ≥ 2 we have

ξnp(u) =
u

n− 1
1− un−p

1− u
+

1− δp1

n− 1

(
up−1 +

up+1

1− u2

p−2∑
i=1

u−i − ui

i

)
.

As a check we see that ξn1(u) = (u + u2 + · · ·+ un−1)/(n− 1) for
n ≥ 2, which is correct: the number of moves of symbol 1 is uniformly
distributed on 2, . . . , n.

Again, moments can be computed via coefficient extraction. The
formulae involved are rather lengthy, and we omit them here. Note
that the formulae given in [3] contain a typographical error. A cor-
rection can be found on the author’s website [4].

308 Wilson

References

[1] Gries, D. and Xue, J. Y. (1988), Generating a random cyclic
permutation. BIT, 28, 569–572.

[2] Mahmoud, H. M. (2003), Mixed distributions in Sattolo’s algo-
rithm for cyclic permutations via randomization and derandom-
ization. J. Appl. Prob., 40, 790–796.

[3] Prodinger, H. (2002), On the analysis of an algorithm to generate
a random cyclic permutation. Ars Combin., 65, 75–78.

[4] Prodinger, H., Online document at
http://www.wits.ac.za/helmut/abstract/abs 161.htm.

[5] Sattolo, S. (1986), An algorithm to generate a random cyclic
permutation. Inform. Process. Lett., 22, 315–317.

