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Abstract. Suffix trees are the most frequently used data structures
in algorithms on words. In this paper, we consider the depth of a
compact suffix tree, also known as the PAT tree, under some simple
probabilistic assumptions. For a biased memoryless source, we prove
that the limiting distribution for the depth in a PAT tree is the same
as the limiting distribution for the depth in a PATRICIA trie, even
though the PATRICIA trie is constructed from statistically indepen-
dent strings. As a result, we show that the limiting distribution for
the depth in a PAT tree built over n suffixes is normal.

1 Introduction

Suffix trees have found a wide variety of applications in algorithms
on words including: the longest repeated substring [22], squares or
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repetitions in strings [1], string statistics [1], string matching [9,
5], approximate string matching [5], string comparison, compression
schemes [11, 12, 23, 24, 25, 26], fast IP addressing schemes [13, 17],
biologically significant motif patterns in DNA [5], sequence assembly
[9, 5], and so forth (cf. [9, 20, 21]). It is fair to say that suffix trees
are the most widely used data structure in algorithms on sequences.
Its typical behavior plays a prime role in designing fast and practi-
cal algorithms on words. A clear example illustrating the benefits
from a probabilistic analysis is given in Chang and Lawler [5], who
used some elementary property of a typical behavior of suffix trees
to design a superfast algorithm for the approximate string matching
problem.

We start with a brief definition of a compact suffix tree, also
known as a PAT tree. We begin with a string X = x1x2x3 . . . where
xi is a symbol from the finite alphabet Σ = {ω1, ω2, . . . , ωV }. We
assume that X is generated by a biased memoryless source, that is,
Pr{xj = ωi} = pi for any j,

∑V
i=1 pi = 1, and there is at least one

i such that pi 6= 1/V . Such a probabilistic model is also known as
the asymmetric Bernoulli model. The i-th suffix of X is the string
given by Xi = xixi+1xi+2 . . .. In a suffix tree, each suffix is stored in
a leaf of the tree. The tree is built recursively, splitting into subtrees
at the k-th step as determined by the k-th symbol of each suffix (cf.
[8, 9, 20]). An example of a suffix tree for the string X = 10010011 . . .
appears in Figure 1. The PAT tree, as its name implies, is similar
to the PATRICIA trie in that all consecutive, non-branching nodes
of the suffix tree are collapsed into a single node. The corresponding
PAT tree also appears in Figure 1.

Recent resurgence of interest in suffix trees has led to a better un-
derstanding of their behavior under probabilistic models. However,
most of the probabilistic results concern noncompact suffix trees con-
structed over a string whose symbols occur independently of each
other and/or deal with convergence in probability or almost sure
(a.s.) convergence. The probabilistic analysis of noncompact suf-
fix trees was initiated by Apostolico and Szpankowski [2], but the
first complete probabilistic analysis of the height was presented by
Devroye, Szpankowski and Rais [6] and Szpankowski [19]. The lim-
iting distribution of the depth in a noncompact suffix tree was ana-
lyzed by Jacquet and Szpankowski [10]. In [19] Szpankowski obtained
some results involving (a.s.) convergence for the depth, height, and
the shortest path length for mixing sources. Also, the external path
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Figure 1: Suffix tree and PAT tree of X = 10010011 . . . for n = 5.

length of the noncompact suffix tree was analyzed by Shields [16]
and the average size of a suffix tree was established in [10] (cf. [4]).
Wyner [24] analyzed the depth for Markov sources. Finally a survey
of results for digital trees is given in a book by Gonnet and Baeza-
Yates [8] and [20]. It is important to note that previously there were
very few known results for the compact suffix tree with the exception
of [19] where almost sure convergence of the height was established.
In this paper, we analyze the limiting distribution for the depth in a
compact suffix tree.

2 Main Results

In this section we present the statement of our main results and its
implications. Our results hold under the model in which the string
X is an infinite string of symbols from an independent, asymmetric
alphabet of V symbols. Let DPAT

n be the depth of the PAT tree
constructed over the first n suffixes of X. The typical depth is defined
to be the depth of a randomly chosen suffix stored in the tree. Thus

Pr{DPAT
n ≥ k} =

1
n

n∑
i=1

Pr{DPAT
n (Xi) ≥ k}, (1)

where DPAT
n (Xi) is the depth of the suffix Xi in a PAT tree with n

suffixes.
In the next section we prove our main result that is stated below.
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Theorem 2.1. Consider the PAT tree built over the first n suffixes
of a string X generated by a biased memoryless source over a finite
alphabet of size V .

(i) For large n the average depth E[DPAT
n ] attains asymptotically

E[DPAT
n ] =

1
h

(
log n + γ +

h2

2h

)
+ P1(log n) + O

(
n−ε) , (2)

and the variance Var[DPAT
n ] of the depth is

Var[DPAT
n ] =

h2 − h2

h3
log n + A + P2(log n) + O

(
n−ε) , (3)

where h = −
∑V

i=1 pi log pi is the entropy rate, h2 =
∑V

i=1 pi log2 pi,
γ = 0.577 is Euler’s constant, P1(x) and P2(x) are fluctuating, pe-
riodic functions of small amplitudes, and A is an explicit constant
found in [18].

(ii) The random variable
(

DPAT
n −E[DPAT

n ]√
Var[DPAT

n ]

)
is asymptotically normal

with mean zero and variance one, that is,

lim
n→∞

Pr{DPAT
n ≤ E[DPAT

n ] + x
√

Var[DPAT
n ]} =

1√
2π

∫ x

−∞
e−t2/2dt,

(4)
for any fixed x.

Remarks and Observations
(i) Comparison of the depth in PATRICIA tries and PAT trees. It ap-
pears that the similarities of the trie and the suffix tree carry through
into the compact versions of each tree. That is, the PATRICIA trie
and the PAT tree have a similar limiting distribution. Again this is
somewhat remarkable considering the nature of the data being used.
The high dependency among suffixes does not alter the typical shape
of the tree too much when compared to a PATRICIA trie. Because
of this, we can argue, in much the same way as in [15] for the PATRI-
CIA trie, that the PAT tree is, with high probability, well-balanced.

(ii) Unbiased memoryless source. Unfortunately, we are unable to
extend our results for the depth in a PATRICIA trie to the PAT
tree for the unbiased memoryless source in which pi = 1/V for all
1 ≤ i ≤ V . For the trie, Pittel [14] proved that

lim
n→∞

sup
x
|Pr{Dn ≤ x} − e−nV −x | = 0
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uniformly in x, where Dn is the depth in a trie. This same result
is obtained by Jacquet and Szpankowski in [10] for suffix trees. Al-
though the proof as described in [14] for the trie is quite simple, the
proof for the PATRICIA tree for unbiased memoryless sources is quite
complicated, as shown in [15], and we do not know how to extend it
to the PAT tree.

(iii) Markov sources. We believe one can combine the proof presented
in the next section and results of Wyner [24] to extend Theorem 1 to
Markov sources.

3 Analysis

In analyzing the depth of the PAT tree, we will make use of the
result obtained by Rais, Jacquet and Szpankowski [15] for the depth
in a PATRICIA trie, and the result of Jacquet and Szpankowski [10]
regarding the limiting distribution for the depth in a (noncompact)
suffix tree.

The proof of our theorem will be completed in the steps listed
below:

(i) First we will show that DPAT
n ≤stD

S
n stochastically; that is, for

any x, we have Pr{DPAT
n ≥ x} ≤ Pr{DS

n ≥ x}, where DS
n is the

depth of a noncompact suffix tree with n strings. This will provide
an upper bound for DPAT

n ; the limiting distribution of DS
n proved in

[10] is normal with mean E[DS
n ] and Var[DS

n ] as expressed by (2) and
(3), respectively.

(ii) Second, we will construct a compact tree over a particular subset
of size m < n of suffixes of the given string X. Then denoting the
depth of this new special tree as DPAT

m , we show that DPAT
m ≤stD

PAT
n

stochastically. This will be used to establish the corresponding lower
bound.

(iii) Third, we show that DPAT
m and the depth of a PATRICIA trie

over m independent strings DP
m converge to the same distribution as

m →∞. In other words, there exists εm > 0, such that for all k,

|Pr{DPAT
m > k} − Pr{DP

m > k}| < εm → 0 .

(iv) Finally, we show for our choice of m that DP
m and DP

n , the depth
of PATRICIA tries with m and n independent strings, respectively,
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converge to the same distribution. In [15] we have that DP
n is asymp-

totically normally distributed with mean E[DS
n ] and Var[DS

n ] given
in (2) and (3), respectively.

When we have completed these steps, DPAT
n will be bounded by

DS
n and DP

n which have the same limiting distribution. This will
show that the limiting distribution of DPAT

n is normally distributed.
The first step is easy. Clearly, DPAT

n ≤stD
S
n since the depth of any

string in a compact suffix tree is at most equal to the depth of that
same string in the corresponding suffix tree and, in fact, may be less.

Next, we construct a compact ”suffix” tree over a particular set
of m suffixes. The m suffixes are chosen in much the same way as
in [19] for the computation of the lower bound for the height of a
suffix tree. Let M = b2C log nc where 2C log n is the leading term in
the asymptotic height of the suffix tree computed in [6, 19] (in fact,
C = −1/log(p2

1 + . . . + p2
V ) for memoryless sources). Then, we choose

Yi = XM(i−1)+1 for i = 1, . . . ,m where m = bn/Mc = O( n
log n). That

is, we use every Mth suffix to build a new suffix tree. By choosing
the Yi’s in this way, we observe that with high probability the suffixes
do not overlap one another for the first M symbols, and thus, they
are nearly independent. This will make computing the distribution of
the depth in this tree much easier than in the PAT tree containing all
n suffixes. (Intuitively, the tree can be considered to be a PATRICIA
trie rather than a PAT tree, but this will be rigorously proved shortly.)
We now prove that DPAT

m ≤stD
PAT
n where DPAT

m is the depth of the
new tree built over Y1, Y2, . . . , Ym.

Unfortunately, it is not necessarily true that the typical depth of
a tree increases when an additional suffix is added to the tree. This
is caused by the fact that the typical depth of a tree is defined to be
the depth of a randomly chosen suffix as illustrated in (1). However,
we can say that the depth of insertion for the Yi suffix, DPAT

m (Yi), is
stochastically nonincreasing, that is, DPAT

m (Yi)≤stD
PAT
n (Yi) (m ≤ n)

for i = 1, . . . ,m since each Yi in the tree with m strings is also in the
tree with n strings at a depth at least as great as in the tree with m
strings. But this also says that for all k ≥ 0

Pr{DPAT
m (Yi) ≥ k} ≤ Pr{DPAT

n (Yi) ≥ k}, (5)

which leads to the following sequence of steps:

Pr{DPAT
n ≥ k} ≥ 1

n

M∑
j=1

m∑
i=1

Pr{DPAT
n (XM(i−1)+j) ≥ k},M ≤ n/m
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(5)

≥ m

n

M∑
j=1

1
m

m∑
i=1

Pr{DPAT
m (Yi) ≥ k}

=
m

n

M∑
j=1

Pr{DPAT
m ≥ k}

≥ Pr{DPAT
m ≥ k}+ O

(
log n

n

)
.

Thus, DPAT
m is (almost) a lower bound for DPAT

n .
We now present a proof that our PAT tree on the specially chosen

m suffixes of X is comparable to a PATRICIA trie on m independent
strings. To do this, we construct a second tree whose m strings,
Y P

i for i = 1, . . . ,m, are given as follows. The string Y P
i agrees

with the string Yi on the first M symbols and the remaining symbols
are chosen arbitrarily. Obviously, this new tree is a PATRICIA trie
since the strings are independent. Thus the limiting distribution DP

m

for the depth of this PATRICIA tree with m independent strings is
normal and is given in [15].

Finally, by our choice of M , we know that the Pr{Hn > M} =
O(n−ε) → 0 for ε > 0 as n → ∞ (cf. [6, 19]), where Hn is the
height of a suffix tree on n strings. This implies that our compact
”suffix” tree on m strings and the PATRICIA tree constructed above
are identical with probability tending to 1 (cf. [7]). Thus, the limiting
distributions DP

m and DPAT
m are the same.

Our proof is not yet complete because we cannot equate the lim-
iting distribution of DP

m with DS
n . The problem is that, although DP

m

and DS
n are both normal, DP

m has mean and variance of O(log m)
and DS

n has mean and variance of O(log n). However, when k →∞,
(DP

k − (1/h) log k)/
√

c2 log k, where c2 = (h2 − h2)/h3, converges
to the standard normal distribution. Since m = bn/b2C log ncc the
mean 1/h log m = 1/h log n + o(

√
log n), and the variance c2 log m =

c2 log n−O(log log n). These facts together with the normal conver-
gence easily lead to the convergence in distribution of DP

m and DP
n .

Putting all the above steps together, we have that for large n,

DP
n

d=DP
m

d=DPAT
m ≤stD

PAT
n ≤stD

S
n ,

where d= denotes asymptotic equality in distribution. But DP
n and DS

n

have the same limiting distribution. Therefore, DPAT
n also has the

same limiting distribution which is given explicitly in our theorem.
To justify the left-most equality we can use the the multiplicative and
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additive theorems1 in the spirit of Slutsky (cf. [3]). For this we just
observe that

Dm − c1 log n√
c2 log n

=
Dm − c1 log m− c1 log log n√

c2 log m

(
1−O

(
log log n

log n

))
d→ N(0, 1)

where c1 = 1/h. Our proof is now complete.
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