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Abstract. The purpose of this article is to survey recent results on
distributional properties of random binary search trees. In particular
we consider the profile and the height.

1 Introduction

Probably the most widely used sorting algorithm is the algorithm
Quicksort which was invented by C. A. R. Hoare [14, 15]. It is the
standard sorting procedure in Unix systems, and the basic idea can
be described as follows:

A list of n (different) real numbers A = (x1, x2, . . . , xn) is
given. Select an element (a pivot) xj from this list. Di-
vide the remaining numbers into sets A≤, A> of numbers
smaller (or equal) and larger than xj . Next apply the
same procedure to each of these two sets if they contain
more than one element. Finally, we end up with a sorted
list of the original numbers.
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This sorting procedure can be encoded with a binary tree with n
(internal) nodes.1 The first selected element xj is put in the root,
whereas recursively A≤ produces a left subtree of xj and A> the
right subtree of xj . (An empty string produces an empty tree which
is usually encoded as an external node.)

These kinds of binary trees are also called binary search trees and
are quite common as a data structure to store data represented by
keys which can be totally ordered (compare with [18, 20]). It is then
easy to search for an item by comparing it with the root and then
proceeding to the left subtree if it is smaller and to the right subtree
if it is larger.

Figure 1: Binary search tree generated by the list (4, 2, 3, 5, 1), where
the pivot element is always the first element.

Notation

Consider a (finite) binary tree t, that is, a rooted tree, where every
node has either 0 or 2 descendents. A node with 2 descendents is
called internal node and a node with 0 descendents external node.
For every node x the distance to the root is denoted by h(x). The
(internal) path length is given by

l = lt =
∑

x internal node of t

h(x).

The number of external nodes at level k is denoted by

uk = #{x : h(x) = k, x external node of t}
1The nodes of a (rooted) binary tree can be divided into internal nodes with

two descendents and external nodes with no descendents.
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and the number of internal nodes at level k by

vk = #{x : h(x) = k, x internal node of t}.

Note that
vk =

∑
j>k

2k−juj

which can easily be proved by induction. The external profile of t
is then given by the sequence (uk)k≥0 and the internal profile by
(vk)k≥0. Observe that the (internal) path length is also given by

lt =
∑
k≥0

kvk.

Finally, the height of t is defined by

h = ht = max
x internal node of t

h(x) = max{k ≥ 0 : vk > 0}

and the fill-up-level by

h = ht = max{k ≥ 0 : vk = 2k}.

Probabilistic Model

When analyzing Quicksort or binary search trees it is standard to
assume that the data x1 = X1, x2 = X2, . . . , xn = Xn are iid real
random variables with a (common) continuous probability distribu-
tion. For example, this implies that their ranks form a random per-
mutation of {1, 2, . . . , n}. Thus, the kind of the distribution of Xj

(1 ≤ j ≤ n) has no influence on the distribution of the parameters
of Quicksort or the corresponding binary search tree. It is therefore
no loss of generality to assume that Xj are uniformly distributed on
[0, 1]. Even the choice of the pivot element (in Quicksort) does not
change the probabilistic structure. It is therefore common to assume
that the pivot element is always the first in the corresponding list.2

In this context it is also natural to consider an infinte sequence
(Xn)n≥1 of iid random variables (uniformly distributed on [0, 1])
which induce a random sequence (Tn)n≥0 of binary search trees. This
means that Tn contains n internal nodes, where the data X1, X1, . . . , Xn

are stored in a way that all (internal) nodes of the left subtree of Xj

2In Unix systems the pivot element is always an element in the middle position.
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have smaller values than Xj and all nodes of the right subtree are
larger than Xj . Furthermore, Tn+1 is generated from Tn by insert-
ing Xn+1 at one of the n + 1 external nodes of Tn in the following
way. One starts at the root and goes to the left subtree if Xn+1 is
smaller than the value of the root and to the right subtree if Xn+1

is larger. This procedure is recursively applied until one reaches an
external node where Xn+1 is inserted. By assumption any of these
n + 1 external nodes (or free places) is replaced by Xn+1 with equal
probability 1/(n+1). Thus, we also have a kind of Markov property:
Tn+1 just depends on Tn (and this in a very simple way).

In what follows we will discuss just parameters in (random) binary
search trees. As explained above there is a direct correspondance to
Quicksort. For example, the number of comparisions in Quicksort
that are needed to sort n data is exactly the internal path length of
the corresponding binary search tree.

2 Profile

We now consider the sequence (Tn)n≥0 of binary search trees gen-
erated by an iid sequence (Xn)n≥1 of random variables which are
uniformly distributed (ud) on [0, 1]. The internal profile will be de-
noted Vk,n (that is, Vk,n equals the number of internal nodes of Tn

at level k) and the external profile by Uk,n. It turns out that Uk,n is
much easier to handle. On the other hand we have

Vk,n =
∑
j>k

2k−jUj,n. (1)

Therefore we will work mainly with Uk,n. Corresponding results for
Vk,n are then immediate corollaries.

2.1 Expected Profile

We introduce the generating functions

Yk(x, u) :=
∑
n≥0

EuUk,n · xn. (2)

Then we have Y0(x, u) = u + x/(1− x) and recursively

∂Yk+1(x, u)
∂x

= Yk(x, u)2,
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with Yk(0, u) = 1. The reason for the appearance of the square
Yk(x, u)2 on the right hand side of this equation is that the two
subtrees of the root of a random binary search tree (with n exter-
nal nodes) can be considered as two independent binary search trees
(with ` resp. n− ` external nodes, where every ` = 0, 1, . . . n appears
with equal probabilty 1/(n+1)). Furthermore, if one wants to count
the number of nodes at level k + 1 then one has to add the number
of nodes at level k of the two subtrees of the root.

There is no known method to solve this kind or recurrence (ex-
plicitly or asymptotically). Nevertheless it can be used to derive the
expected profile. By definition we have

Zk(x) :=
∂Yk(x, 1)

∂u
=

∑
n≥0

EUk,n · xn.

Furthermore, Z0(x) = 1 and by (2)

Z ′
k+1(x) = 2Yk(x, 1)Zk(x) =

2
1− x

Zk(x),

with Zk+1(0) = 0 (for k ≥ 0). Hence,

Zk(x) =
2k

k!

(
1

1− x

)k

and one obtains

EUk,n =
2k

n!
sn,k, (3)

where sn,k are the (absolute) Stirling numbers of the first kind – in
other words the number of permutations σ of n elements such that
the canonical cyclic representation of σ has exactly k cycles. (It seems
that this explicit formula was first observed by Lynch [19], compare
also with [20]). By well known asymptotics for Stirling numbers (see
[21]) we can derive the following asymptotic relations for EUk,n and
EVk,n

Theorem 2.1.1. Set αn,k = k/ log n. Then we have

EUk,n ∼
nαn,k(1−log(αn,k/2))−1

√
2πk

, (4)

uniformly for αn,k = O (1).
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Furthermore, if 1 + ε ≤ αn,k = O (1) (where ε > 0) then

EVk,n ∼
EUk,n

αn,k − 1

∼ nαn,k(1−log(αn,k/2))−1

(αn,k − 1)
√

2πk
,

and for αn,k ≤ 1− ε,
EVk,n ∼ 2k.

Note that for k close to 2 log n these estimates show that

EUk,n =
n√

4π log n
e
− (k−2 log n)2

4 log n +O
(

n

log n

)
and

EVk,n =
n√

4π log n
e
− (k−2 log n)2

4 log n +O
(

n

log n

)
.

This indicates that the mass of a binary search tree Tn is concentrated
around level 2 log n. This fact is also reflected by the well known
asymptotic formula for the expectation of the internal path length
Ln =

∑
k≥0 kVk,n:

ELn = 2(n + 1)
n+1∑
h=1

1
h
− 4(n + 1) + 2

= 2n log n + n(2γ − 4) + 2 log n + 2γ + 1 +O
(

log n

n

)
with γ = 0.57721... being Euler’s constant. Recall that Ln is also the
number of comparision in Quicksort to sort n items.

2.2 Profile Polynomials

Next we consider the so-called random profile polynomials

Wn(z) =
∑
k≥0

Uk,nzk.

By (3)

EWn(z) = (−1)n

(
−2z

n

)
. (5)

The basic property of Wn(z) is that the normalized version is a mar-
tingale (see [16]).
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Lemma 2.2.1. The random (analytic) functions

Mn(z) =
Wn(z)
EWn(z)

constitute a martingale with respect to the natural filtration (Fn)n≥0

associated to the sequence of trees (Tn)n≥0.

Proof. With the help of the above description of how Tn+1 evolves
from Tn one has

E(Uk,n+1|Fn) = (Uk,n + 2)
Uk−1,n

n + 1
+ (Uk,n − 1)

Uk,n

n + 1

+ Uk,n

(
1−

Uk−1,n + Uk,n

n + 1

)
=

2Uk−1,n

n + 1
+

nUk,n

n + 1
.

Hence
E(Wn+1(z)|Fn) =

2z + n

n + 1
Wn(z).

Consequently
E(Mn+1(z)|Fn) = Mn(z),

which completes the proof of the martingale property. �

Hence, for positive values of z, the martingale converges to an
almost sure limit M(z) that has quite interesting properties.

Lemma 2.2.2. ([16]) Let c′ = 0.37 . . . and c = 4.31 . . . be the two
solutions of the equation c log(2e

c ) = 1 and set z−c = c′/2 = 0.186 . . .
and z+

c = c/2 = 2.155 . . .. Then the limiting martingle M(z) is
positive a.s. for positive real z ∈ (z−c , z+

c ) and M(z) = 0 if z 6∈
[z−c , z+

c ].

Interestingly Mn(z) converges, too, for certain complex values of
z.

Lemma 2.2.3. ([1]) For any compact set C ⊆ {z ∈ C : |z − 1| <
1/
√

2} the martingale Mn(z) converges a.s. uniformly to its limit
M(z) (which is again an analytic function).

Furthermore, the distribution of M(z) can be characterized by a
fixed point equation.
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Lemma 2.2.4. ([3]) Suppose that z is positive and real. Then the
distribution of M(z) equals the distribution of

zU2z−1M(z) + z(1− U)2z−1M(z),

where M(z) is a copy of M(z) and U is ud on [0, 1] such that M(z),M(z),
and U are independent.

2.3 Asymptotic Properties of the Profile

The idea behind the following result for the profile Uk,n is that the ra-
tio Uk,n/EUk,n can be estimated by the ratio Mn(z) = Wn(z)/EWn(z),
where z = k/(2 log n). Note that z = k/(2 log n) is exactly the sad-
dle point of the function EWn(z)z−k. In fact, with the help of the
martingale properties of Mn(z) the following results can be derived.

Theorem 2.3.1. ([1, 3]) Suppose that k = k(n) = 2z log n+ o(
√

n)
and z ∈ (z−c , z+

c ). Then

lim
n→∞

Uk,n

EUk,n
= M(z)

in probability.
Furthermore, we have a.s. that

Uk,n

EUk,n
= M

(
k

2 log n

)
+ o(1)

uniformly for 1.2 ≤ k/ log n ≤ 2.8.

The idea behind the proof is the following one. We know that

Wn(z) ∼ M(z) ·EWn(z) a.s. (6)

if z is complex and |z−1| < 1/
√

2. Consequently we can use Cauchy’s
formula to evaluate Uk,n:

Uk,n =
1

2πi

∫
|z|=k/(2 log n)

Wn(z)
zk+1

dz

≈ M

(
k

2 log n

)
· 1
2πi

∫
|z|=k/(2 log n)

EWn(z)
zk+1

dz

= M

(
k

2 log n

)
·EUk,n.
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Of course, there are some missing details, see [1, 3].

In particular it follows that Uk,n/EUk,n has a limiting distribution
M(z) if k = k(n) = 2z log n + o(

√
log n) and n →∞.

Furthermore, by using the fact that W ′
n(1) =

∑
k≥0 kUk,n and

that Ln =
∑

k≥0 kVk,n =
∑

k≥0 kUk,n − 2n it also follows that

M ′
n(1) =

Ln −ELn

n + 1

Thus,
Ln −ELn

n + 1
→ M ′(1) a.s.

Note also that M ′(1) has the same distribution as

U M ′(1) + (1− U)M ′(1) + 2U log U + 2(1− U) log(1− U) + 1,

where M
′(1) is a copy of M ′(1) and U is ud on [0, 1] such that

M ′(1),M ′(1), U are independent, compare with [27]. The distribu-
tion of M ′(1) is also called Quicksort distribution. It is known that
there exists a density ([28]), which is a bounded C∞ function, tail es-
timates are available, and orders of convergence are estimated (com-
pare with [11, 12, 13, 17]). However, no explicit representations for
the limiting distribution are known.

3 Height

The distribution of the height Hn of binary search trees has turned
out to be an interesting (and difficult) problem. We start with some
history.

In 1986 Devroye [4] proved that the expected value EHn satis-
fies the asymptotic relation EHn ∼ c log n (as n → ∞), where c =
4.31107 . . . is the (largest real) solution of the equation c log

(
2e
c

)
= 1.

(Earlier Pittel [22] had shown that Hn/ log n → γ almost surely as
n →∞, where γ ≤ c, compare also with Robson [24]. Later Devroye
[5] provided a first bound for the error term; he proved Hn−c log n =
O(
√

log n log log n) in probability.) Based on numerical data Robson
conjectured that the variance VarHn is bounded. In fact, he could
prove (see [25]) that there is an infinite subsequence for which

E|Hn −EHn| = O(1),
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and that his conjecture is equivalent to the assertion that the expected
value EVHn,n of the number of nodes at level k = Hn is bounded (see
[26] or section 3.2). The best bounds (before 1999) were given using
two completely different methods by Devroye and Reed [6] and later
by Drmota [7]. They (both) proved

EHn = c log n +O(log log n) (7)

and
VarHn = E(Hn −EHn)2 = O((log log n)2).

Eventually, Reed [23] settled Robson’s conjecture:

VarHn = O(1) (n →∞).

Reed’s approach is related to that of [6], moreover he could also show
that

EHn = c log n− 3c

2(c− 1)
log log n +O(1). (8)

A second proof of Robson’s conjecture was given (independently) by
the author [8] (just a few months later than Reed).

Before stating results on the distribution of the height of binary
search trees we want to present a first flavour of this problem. It
is clear that Vk,n > 0 is equivalent to Hn > k. By (1) and (4)
it follows that EVn,k < 1 if k > c log n − c

2(c−1) log log n + O (1),
where c = 4.31107 . . . is the (largest real) solution of the equation
c log

(
2e
c

)
= 1. Hence, one might expect that Hn is concentrated

around cn := c log n− c
2(c−1) log log n. We can be even more precise.

Since
Pr[Hn > k] ≤ Pr[Vk,n > 0] ≤ EUk,n

we get (with the help of (4))

EHn =
∑
k≥0

Pr[Hn > k]

≤ cn +
∑
k≥cn

EVk,n

≤ cn +O (1) .

This estimate would be optimal if EV 2
k,n = O (1) for k > cn. How-

ever, this is not true. And this is really the crux of the matter. As
mentioned above, see (8), the expected height is definitely smaller.
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3.1 Distribution of the Height

Let
yk(x) =

∑
n≥0

Pr[Hh ≤ k] · xn.

Then y0(x) ≡ 1 and
y′k+1(x) = yk(x)2

with initial condition yk+1(0) = 1. Obviously, yk(x) are polynomials
of degree 2k − 1 and have a limit y(x) = 1/(1 − x) (for 0 ≤ x <
1). Thus, there is a singularity for x = 1, and in fact the main
characteristics can be formulated in terms of the (singular) sequence
yk(1).

Theorem 3.1.1. ([9]) There exists a monotonically decreasing func-
tion Ψ(y), y ≥ 0, with Ψ(0) = 1 and limy→∞ Ψ(y) = 0 satisfying the
integral equation

yΨ(y/e1/c) =
∫ y

0
Ψ(z)Ψ(y − z) dz, (9)

such that

Pr[Hn ≤ k] = Ψ(n/yk(1)) + o(1) (n →∞), (10)

with the o(1)-error term being uniform for all k ≥ 0. Furthermore,
there exist constants C, η > 0 such that

Pr[|Hn − hn| ≥ y] ≤ Ce−ηy, (y > 0), (11)

where hn = max{k : yk(1) ≤ n}.

Especially, it follows from Theorem 3.1.1 that the expected value of
the height Hn of binary search trees of size n is given by

EHn = max{k : yk(1) ≤ n}+O(1) (n →∞). (12)

and that all centralized moments are bounded

E|Hn −EHn|r = O (1) (n →∞). (13)

If one combines (8) and (12) one gets

yk(1) = e
k/c+ 3

2(c−1)
log k+O(1)

. (14)
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It would be (very) interesting to find a direct proof of (14) or even
tighter estimates.

Note that (13) solves Robson’s conjecture, however, in a quite
implicit way. Interestingly, Theorem 3.1.1 does not provide any pre-
cise information on the magnitude of yk(1) and thus (via (12)) no
quantitative bound for the expected height EHn. The exact order of
EHn was given by Reed [23] by improving the previous bound (7) by
Devroye and Reed [6] and by the author [7].

We also want to mention that there are similar results for the
height of m-ary search trees and also for the fill-up-level, see [2].

In what follows we present a sketch of the proof of Theorem 3.1.1.
The first step of the proof is to solve the fixed point equation (9).
In particular it can be shown (see [9]) that there exists a unique
solution Ψ(y) provided that Ψ(y) is decreasing and

∫∞
0 Ψ(y) dy = 1.

Furthermore, one has 1 − Ψ(y) ∼ c1y
c−1 log y as y → 0+ for some

constant c1 and Ψ(y) = O
(
e−Cyγ)

as y → ∞ for some C > 0 and
some γ > 1. With the help of the function Ψ(y) we define auxiliary
functions

ỹk(x) :=
∫ ∞

0
Ψ(ye−k/c)e−y(1−x) dy, (15)

where k is an arbitrary real (not necessarily an integral) number.
In some sense these functions simulate the above polynomials yk(x).
They saytisfy

ỹ′k+1(x) = ỹk(x)2

with initial condition

1− ỹk(0) ∼ C1

c
k

(
2
c

)k

(k →∞).

Furthermore, by definition ỹk(1) = ek/c, and ỹk(x) has a power series
expansion ỹk(x) =

∑
n≥0 ankx

n with positive coefficients ank > 0 that
are asymptotically given by

ank = Ψ(ne−k/c) + o(1),

where the o(1) error term is uniform for all integers n ≥ 0 and all
real numbers k ≥ 0. Finally, there is a crucial intersection property.
For every integer k ≥ 0 and for every real number l the difference
yk(x)− ỹl(x) has exactly one zero xk,l on the positive real line. Fur-
thermore, these zeros satisfy xk+1,l+1 > xk,l. (Interestingly the proof
is immediate by induction on k.)
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With the help of these auxiliary functions ỹk(x) we obtain proper
tail estimates of the distribution of Hn.

Lemma 3.1.1. Set ek = c log yk(1). Then ek+1 ≥ ek + 1 and there
exists a constant C < 0 such that

Pr[Hn ≤ k] ≤ Ce−(c log n−ek)/c

and
Pr[Hn > k] ≤ Ce−(ek−c log n)/c.

Proof. Set α = e1/c. By definition ỹek
(1) = yk(1). Thus, ỹek

(x) ≤
yk(x) for 0 ≤ x ≤ 1 and ỹek

(x) ≥ yk(x) for x ≥ 1. In particular
it follows that ỹek+1(x) ≤ yk+1(x) for 0 ≤ x ≤ 1 and consequently
αek+1 ≤ αek+1 which gives ek+1 ≥ ek + 1.

Suppose that x ≥ 1. Then we get (by using the trivial inequality
Pr[Hn ≤ k] ≥ Pr[Hn+1 ≤ k])

ỹek
(x) ≥ yk(x) ≥

n∑
l=0

Pr[Hl ≤ k]xl ≥ Pr[Hn ≤ k]
xn+1 − 1

x− 1
.

Choosing x = 1 + α−ek and using the definition of ỹek
(x) we obtain

the upper bound

Pr[Hn ≤ k] ≤ 1
(1 + α−ek)n+1 − 1

∫ ∞

0
Ψ(z)ez dz (16)

� 1
nα−ek

= α−(c log n−ek).

In the same fashion we have for 0 < x < 1

1
1− x

− ỹek
(x) ≥ 1

1− x
− yk(x)

≥
∞∑

l=n

(1−Pr[Hl ≤ k])xl

≥ (1−Pr[Hn ≤ k])
xn

1− x
.

Finally, setting x = 1− 1/n we directly get

1−Pr[Hn ≤ k] � 1− αek−c log nΦ(αek−c log n), (17)
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where Φ(u) =
∫∞
0 Ψ(z)e−zu du denotes the Laplace transform of

Ψ(z). Since 1−Ψ(y) ∼ c1y
c−1 log y we have

1− uΦ(u) ∼ c2(log u)/uc−1 � 1/u.

Hence
1−Pr[Hn ≤ k] � α−(ek−c log n). �

Obviously, the tail estimate (11) follows from Lemma 3.1.1. In
order to complete the proof of Theorem 3.1.1 we have to refine the
methods a little bit. The idea is to approximate yk(x) by ỹek

(x). (Re-
call that ek was defined such that yk(1) = ỹek

(1).) In order to do this
we use the fact (see [9]) that the sequence yk+1(1)/yk(1) converges
and its limit is given by

lim
k→∞

yk+1(1)
yk(1)

= α = e1/c. (18)

It then follows that

y′k(1) = yk−1(1)2 ∼ yk(1)2α−2 = ỹek−1(1)2 = ỹ′ek
(1),

and inductively, one gets for every fixed l ≥ 0 that y
(l)
k (1) ∼ ỹ

(l)
ek (1)

as k → ∞. Thus, yk(x) can be properly approximated by ỹek
(x) in

a neighbourhood of x = 1 in the complex plane. Together with some
further (technical but easy) estimates (compare with [9]) it follows
via Cauchy’s formula that

Pr[Hn ≤ k] =
1

2πi

∫
|x|=1

yk(x)
xn+1

dx

=
1

2πi

∫
|x|=1

ỹek
(x)

xn+1
dx + o(1)

= Ψ(n/αek) + o(1)
= Ψ(n/yk(1)) + o(1),

which completes the proof of Theorem 3.1.1.

3.2 Nodes of Largest Distance

Let Cn = VHn,n denote the number of internal nodes in a random
binary search tree (of n nodes) at the maximal level Hn. It turns
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out that the expected values ECn is of particular interest. First of
all, it has been shown by Robson [26] that ECn remains bounded (as
n → ∞) if and only if VarHn remains bounded. Since the second
assertion has been verified (see (13)) it thus follows that ECn = O (1)
(as n → ∞). Robson has also conjectured that the sequence ECn

has a limit. At least, numerically it looks convergent. It is increasing
for 7 ≤ n ≤ 100 000.

In what follows we indicate a direct proof of the property ECn =
O (1). Furthermore we observe that ECn is asymptotically (multi-
plicatively) periodic which shows that Robson’s convergence conjec-
ture is only true if a corresponding limiting periodic function C̃(x)
(see (25)) is constant. Interestingly C̃(x) looks constant (numerically)
and it can be shown that the possible oscillation are very small. How-
ever, there are strong indications that C̃(x) is not constant. Thus,
we are confronted here with a new almost constancy phenomenon.
Interestingly this observation seems to be in contrast to Robson’s
numerical experiments.

With the help of the sequence yk(1) and the derivative of the
function Ψ(y) one can introduce the function

C(x) := −1
2

∑
k≥0

x

yk(1)
Ψ′

(
x

yk(1)

)
. (19)

Due to proper tail estimates for Ψ′(y) (that are similar to those of
Ψ(x)) it follows that C(x) is a bounded function for x > 0. Further-
more, the limiting relation (18) implies that C(x) is almost periodic
in the sense that

C(e1/cx) = C(x) + o(1) (x →∞). (20)

With the help of this function we can formulate the following result:

Theorem 3.2.1. ([10]) Let Cn denote the number of internal nodes
in Tn at level Hn. Then the sequence ECn remains bounded for
n →∞. It is asymptotically given by

ECn = C(n) + o(1) (n →∞) (21)

and it is asymptotically periodic in the sense that

ECbe1/cnc = ECn + o(1) (n →∞). (22)
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Furthermore, the sequence ECn is almost constant. There exists n0

such that
max
n≥n0

∣∣∣ECn −
c

2

∣∣∣ ≤ 10−4. (23)

and we have

lim
n→∞

be1/cnc∑
k=n

ECk

k
=

1
2
. (24)

The periodicity behaviour of E Cn can be stated in a little bit
more precise form. Set

C̃(x) := −1
2

∞∑
k=−∞

xe−k/cΨ′
(
xe−k/c

)
. (25)

Then C̃(x) is in fact (multiplicatively) periodic, that is, C̃(e1/cx) =
C̃(x) and we have, as x →∞,

C(x) = C̃

(
x

yh0(x)

)
+ o(1) (x →∞),

where h0(x) is uniquely defined by yh0(x)(1) ≤ x < yh0(x)+1(1). Con-
sequently

ECn = C̃

(
n

yh0(n)

)
+ o(1) (n →∞).

Thus, it follows that the limits limx→∞ C(x) and limit limn→∞ECn

exist if and only if C̃(x) is constant. In fact, C̃(x) equals c
2 up to

at least 4 decimals and there are strong indications that C̃(x) is not
constant.

Interestingly there is a similar theorem for the variance of the
height Hn. Set

V (x) :=
∑
k≥0

(2k + 1)
(

1−Ψ
(

x

yk(1)

))

−

∑
k≥0

(
1−Ψ

(
x

yk(1)

))2

(26)

This function has similar properties as C(x). V (x) is a bounded
function for x > 0 and it is almost periodic in the above sense:

V (e1/cx) = V (x) + o(1) (x →∞). (27)
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Theorem 3.2.2. ([10]) The variance VarHn remains bounded for
n →∞. It is asymptotically given by

VarHn = V (n) + o(1) (n →∞) (28)

and it is asymptotically periodic in the sense that

VarHbe1/cnc = VarHn + o(1) (n →∞). (29)

Furthermore, the sequence VarHn is almost constant. There exists
n1 such that

max
n≥n1

|VarHn − v0| ≤ 10−3, (30)

and we have

lim
n→∞

be1/cnc∑
k=n

VarHk

k
=

v0

c
, (31)

in which

v0 = c

∫ ∞

0
(E(u) + E(ue−1/c))Ψ(u)

du

u
= 2.085687 . . . ,

and
E(u) =

∑
k≥0

(
1−Ψ(ue−k/c)

)
.

First, we note that there is an intimate relation between the se-
quence ECn and the sequence EHn.

Lemma 3.2.1. We have

ECn =
n + 1

2
(EHn+1 −EHn) . (32)

Proof. Let Dn = UHn+1,n denote that number of external nodes at
level Hn + 1, i.e. there are no further (external or internal) nodes at
higher level. Then Dn = 2Cn.

We now use the property that a random binary search trees Tn+1

with n+1 internal nodes is obtained from Tn by replacing (with equal
probability 1/(n + 1) one of the n + 1 external noded of Tn by an
internal one (with two adjacent external ones). Thus

E(Hn+1|Tn) = (Hn + 1)
Dn

n + 1
+ Hn

(
1− Dn

n + 1

)
=

Dn

n + 1
+ Hn
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and consequently

EHn+1 =
EDn

n + 1
+ EHn.

This proves (32). �

Alternatively we have

ECn =
n + 1

2

∑
k≥0

(an,k − an+1,k) , (33)

where an,k := P[Hn ≤ k], and (after applying the recurrence for an,k

hidden in the relation y′k+1(x) = yk(x)2)

ECn =
1
2

+
1
2

∑
k≥0

n−1∑
m=0

am,k(an−m−1,k − an−m,k). (34)

Now observe that due to a0,k = 1 and an+1,k ≤ an,k we have for every
L ≤ n

n−1∑
m=0

am,k(an−m−1,k − an−m,k) ≤
L−1∑
m=0

(an−m−1,k − an−m,k)

+ aL,k

n−1∑
m=L

(an−m−1,k − an−m,k)

= (an−L − an,k) + aL,k(1− an−L,k).

In particular we will work with L = bn
2 c and obtain the upper bound

ECn ≤ 1
2

+
1
2

∑
k≥0

(adn/2e,k − an,k) +
1
2

∑
k≥0

abn/2c,k(1− adn/2e,k)

= 1 + S1 + S2.

Set h0(n) := max{k ≥ 0 : yk(1) ≤ n}. First, by using the tail
estimates from Lemma 3.1.1 we have

adn/2e,k − an,k ≤ adn/2e,k

≤ Ce−(h0(dn/2e)−k)/c

for k ≤ h0(dn/2e) and

adn/2e,k − an,k ≤ 1− an,k

≤ Ce−(k−h0(n))/c
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for k ≥ h0(n). Thus, ∑
k≤dn/2e

+
∑

k≥h0(n)

 (adn/2e,k − an,k) = O (1) .

Since yk+1(1)/yk(1) ≥ e1/c and e3/c > 2 it directly follows that

max{k : yk(1) ≤ n} −max{k : yk(1) ≤ dn/2e} ≤ 3.

Hence, there are at most 2 terms (of magnitude ≤ 1) missing and
consequently S1 = O (1).

In order to estimates the second sum S2 we proceed in a similar
way. For k ≤ h0(bn/2c) we have

abn/2c,k(1− adn/2e,k) ≤ abn/2c,k

≤ Ce−(h0(bn/2c)−k)/c.

Consequently ∑
k≤h0(bn/2c)

abn/2c,k(1− adn/2e,k) = O (1) .

Similarly for k ≥ h0(dn/2e) we get

abn/2c,k(1− adn/2e,k) ≤ 1− adn/2e,k

≤ Ce−(k−h0(dn/2e))/c

and ∑
k≥h0(dn/2e)

abn/2c,k(1− adn/2e,k) = O (1) .

Since h0(dn/2e)− h0(bn/2c) ≤ 1 there is at most one term (of mag-
nitude ≤ 1) missing and we finally have proved that S2 = O (1),
too.

In order to obtain the more precise relation (21) we have to use
Theorem 2.1.1 and (34) (and quite involed calculations, see [10]). We
just want to note that in view of (32) and (33) the representaion (21)
is not unexpected:

ECn ≈ n + 1
2

∑
k≥0

(
Ψ

(
n

yk(1)

)
−Ψ

(
n + 1
yk(1)

))

≈ −1
2

∑
k≥0

n

yk(1)
Ψ′

(
n

yk(1)

)
= C(n).
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Whereas the second approximation step is easy to verify, the first one
cannot be directly checked. Therefore one has to use (34) in order to
prove the above approximation ECn = C(n) + o(1) rigorously.
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