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Abstract. We present new links between some remarkable martin-
gales found in the study of the Binary Search Tree or of the bisection
problem, looking at them on the probability space of a continuous
time binary branching process.

1 Introduction

This paper is a kind of game with martingales around the Binary
Search Tree (BST) model (see Mahmoud [26]). The BST process,
under the random permutation model is an increasing (in size) se-
quence of binary trees (Tn)n≥0 storing data, in such a way that for
every integer n, Tn has n + 1 leaves; the growing from time n to
time n+1 occurs by choosing uniformly a leaf and replacing it by an
internal node with two leaves. In the BST we are interested in the
profile, i.e. the number of leaves in each generation. A polynomial
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that codes the profile (called the level polynomial) allows us to define
a family of martingales (MBST

n (z), n ≥ 0) where z is a positive real
parameter (see Jabbour [19]). It is defined in Section 2.3.

There are (at least) two ways of connecting the BST model to
branching random walks, and to take advantage of related proba-
bilistic methods and results.

The first one consists in embedding the BST process into a conti-
nuous time process. It is a good way to create independence between
disjoint subtrees. The Yule process (see Athreya and Ney [2]) is a
continuous time binary branching process in which an ancestor has an
exponential 1 distributed lifetime and at his death, gives rise to two
children with independent exponential 1 lifetimes and so on. Define
the position of an individual as its generation number, and let Zt be
the sum of Dirac masses of positions of the population living at time
t. The process (Zt, t ≥ 0) is a continuous time branching random
walk; let us call it the Yule-time process. When keeping track of the
genealogical structure, call TTt the tree at time t and call (TTt, t ≥ 0)
a Yule-tree process.

By embedding, the BST is a Yule-tree process stopped at τn, the
first time when n+1 individuals exist (Pittel [29], Biggins [7], Devroye
[13]). A continuous time family of martingales (M(t, z), t ≥ 0) is at-
tached to this model; it is defined in Section 2.2. In a recent paper
(Chauvin & al. [12]) where several models are embedded in the proba-
bility space of the Yule-tree process, the martingale (MBST

n (z), n ≥ 0)
appears as a projection of the martingale (M(t, z), t ≥ 0).

In addition, consider the Yule tree and, on each branch, the suc-
cessive birthdates of descendants of the ancestor. They are sums of
independent exponentially distributed random variables with mean 1,
so that it is natural to exchange time and space and to look at these
birthdates as successive positions in a random walk. Combined with
the independence between subtrees, it gives a discrete time branching
random walk; call it the Yule-generation process.

The second way consists in “approaching” the BST by the so-
called bisection model (Devroye [13], Drmota [16]). It is also known
as Kolmogorov’s rock model. An object (rock) is initially of mass
one. At time 1 it is broken into two rocks with uniform size. At
time n each rock (there are 2n) is broken independently from the
other ones into two rocks with uniform size. The mass of each rock
results from the product of independent uniform random variables.
Taking logarithms gives a discrete time branching random walk; call
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it the Bisection process. In [12], it was observed in the Yule-tree
environment.

For these reasons, it is worth considering all these models on the
same probability space. As explained in Section 2, there are three
branching random walks: Yule-time, Yule-generation and Bisection,
each one with its family of additive martingales.

In Section 3, thanks to a convenient adjustment of parameters
of these four families (the three previous ones and the BST), we
establish strong links between these martingales and their limits as
n (or t) tends to infinity. In Theorems 3.1 and 3.3, we claim that
there are actually only two different limits (a.s.) in the domain of
L1 convergence. On the boundary of this domain, we identify in
Theorem 3.4 limits of martingales obtained by taking derivatives with
respect to the parameter.

To prove these identifications, we need uniqueness arguments
which are explained in Section 4. We write the (stochastic) equations
satisfied by the limits of martingales. The solutions of these equations
have distributions which are fixed points of so-called smoothing trans-
formations, as defined in Holley and Liggett [18] or in Durrett and
Liggett [17]. Owing to known results on uniqueness of their Laplace
transforms (Liu [24], [25], Kyprianou [21], Biggins and Kyprianou [8])
we get equalities in law (Proposition 4.1).

Section 5 is devoted to proofs of theorems of Section 3. In par-
ticular, we show that equalities in law are (a.s.) equalities between
random variables.

In Section 6, we explain some relations between the above func-
tional equations satisfied by Laplace transforms and equations stud-
ied by Drmota in recent papers on the height of the BST ([14, 15]).
This allows to get explicit limiting distributions in the case z = 1/4.

Let us now fix some notation. In the whole paper we are concerned
with binary trees whose nodes (also called individuals) are labelled
by the elements of

U := {∅} ∪
⋃
n≥1

{0, 1}n ,

the set of finite words on the alphabet {0, 1} (with ∅ as an empty
word). For u and v in U, denote by uv the concatenation of the word
u with the word v (by convention we set, for any u ∈ U, ∅u = u). If
v 6= ∅, we say that uv is a descendant of u and u is an ancestor of uv,
in particular v is the father of v0 and v1. We note u � v to say that
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v is an ancestor of u. A complete binary tree T is a finite subset of
U such that 

∅ ∈ T
if uv ∈ T then u ∈ T ,
u1 ∈ T ⇔ u0 ∈ T .

The elements of T are called nodes , and ∅ is called the root ; |u|,
the number of letters in u, is the depth of u (with |∅| = 0). Write
BinTree for the set of complete binary trees.

A tree T ∈ BinTree can be described by giving the set ∂T of its
leaves, that is, the nodes that are in T but with no descendants in T .
The nodes of T\∂T are called internal nodes.

2 The four martingales

2.1 Branching random walks

A discrete time supercritical branching random walk (in IR) is recur-
sively defined as follows: the initial ancestor is at the origin and the
positions of his children form a point process Z. The distribution of
this point process Z is a probability on M , the set of locally finite
sums of Dirac measures. Each child of the ancestor reproduces in the
same way and each individual also does: the positions of each sibling
relative to its parent are an independent copy of Z. Let Zn be the
point process in IR formed by the n-th generation. The intensity of
Z is the Radon measure µ defined for every nonnegative bounded
function f by ∫

IR
f(x)µ(dx) = E(

∫
IR
f(x)Z(dx)) .

and the intensity of Zn is µ∗n. We assume 1 < µ(IR) ≤ +∞ (super-
criticality).

We define for θ ∈ IR

Λ(θ) = log E
∫

IR
eθxZ(dx) .

The (positive) martingale associated with this process is

Mn(θ) =
∫

IR
eθx−nΛ(θ)Zn(dx) .

Let M∞(θ) be the a.s. limit. Under a “k log k” type condition, we
have (Biggins’ convergence theorem, for instance in [5, 6])
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- if θΛ′(θ)−Λ(θ) < 0, the convergence is also in L1 and EM∞(θ) =
1,

- if θΛ′(θ)− Λ(θ) ≥ 0, then M∞(θ) = 0 a.s.
By analogy with the Galton-Watson process, we call “supercriti-

cal” the values of θ in the first region, and “critical” (resp. “subcri-
tical”) if they correspond to equality (resp. strict inequality) in the
second region.

In a continuous time branching random walk (in IR), the starting
point is the same as above. Each individual has an independent
exponential lifetime (of parameter β), does not move during its life,
and at its death is replaced by children according to a copy of a point
process Z exactly as in the discrete-time scheme. The role of Λ is
now played by

L(θ) = β(E
∫

IR
eθxZ(dx)− 1) .

If Zt denotes the random measure of positions of individuals alive at
time t, the (positive) martingale associated to this process is

M(t, θ) =
∫

IR
eθx−tL(θ)Zt(dx) .

Its behavior as t → ∞ is similar to the above, with L instead of Λ
(Biggins [6], Uchiyama [30]). We denote by M(∞, θ) its limit.

At critical values of θ, the limit martingale vanishes. It is then
classical, since Neveu [27], to study the family of derivatives ∂

∂θMn(θ)
(or ∂

∂θM(t, θ)). These are martingales of expectation 0, which con-
verge a.s. to a random variable of constant sign, of infinite expecta-
tion, under appropriate conditions (Kyprianou [21], Liu [25], Biggins-
Kyprianou [8] and Bertoin-Rouault [4]). The details are given below.

2.2 Examples

Bisection martingale
Passing to logarithms in the bisection problem, we get a discrete

time branching random walk whose reproduction measure is ZBIS =
δ− log U + δ− log(1−U), where U ∼ U([0, 1])1. We have

Λ(θ) = log E[U−θ + (1− U)−θ] = log
2

1− θ
.

1U([0, 1]) is the uniform distribution on [0, 1], E(λ) is the exponential distri-

bution of parameter λ, ∼ means “is distributed as” and
law
= means equality in

distribution.



94 Chauvin and Rouault

Let us make a change of parameter, setting z = 1−θ
2 , so that Λ(θ) =

− log z. The corresponding martingale is

MBIS
n (z) :=

∑
|u|=n

e(1−2z)Xuzn , (1)

where Xu denotes the position of individual u. It is easy to see that
the range of L1 convergence is z ∈ (z−c , z

+
c ), where z−c < z+

c are the
two (positive) solutions of

2z log z − 2z + 1 = 0 ,

(i.e. c′ and c in Drmota’s notation, see [15])

z−c =
c′

2
= 0.186 . . . , z+

c =
c

2
= 2.155 . . .

For z = z−c (resp. z+
c ), applying Theorem 2.5 of Liu [25], we see

that the derivative (MBIS
n )′(z) converges a.s. to a limit denoted by

M ′BIS
∞ (z) which is positive (resp. negative) and has infinite expecta-

tion.

Yule-time martingale
The Yule-time process is a continuous time branching random

walk, its reproduction measure is Z = 2δ− log 2, and the parameter β
of the exponential lifetimes is equal to 1. We have L(θ) = 21−θ − 1.
The position of individual u at time t is Xu(t) = −|u| log 2. In-
troducing the parameter z = 2−θ we have L(θ) = 2z − 1 and the
corresponding martingale becomes

M(t, z) =
∑
u∈Zt

z|u|et(1−2z)

where Zt denotes the set of individuals alive at time t, of cardinality
Nt. This can be considered as a generalization of the classical Yule
martingale (e−tNt, t ≥ 0) which is known to converge a.s. to a random
variable ξ ∼ E(1). The behavior of this family follows the same rule
as above. Moreover, it was proved in Bertoin-Rouault [4] (see also
[12]) that for z = z±c , the derivative M ′(t, z) converges a.s. to a limit
denoted by M ′(∞, z), of constant sign and infinite expectation.

Yule-generation martingale
The Yule-generation process is a discrete time branching random

walk and its reproduction measure is Z = 2δε where ε law= E(1) and
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the factor 2 means that the two brothers appear at the same time.
Since ε law= − logU , the intensity µ is the same as in the bisection
case, and then we have Λ(θ) = log 2

1−θ again. With the same change
of parameter, we have a martingale

MGEN
n (z) =

∑
|u|=n

e(1−2z)Xuzn , (2)

which has the same form as MBIS
n (z), and has the same range of L1

convergence. However the martingales MBIS
n (z) and MGEN

n (z) do
not have the same distribution since the dependence between the po-
sitions Xu, |u| = n, is different in the two models (although the struc-
ture of random variables along a given branch is the same). Again,
from Liu [25], we have for z = z±c convergence a.s. of (MGEN

n )′(z) to
a limit M ′GEN

∞ (z), of constant sign and infinite expectation.

2.3 The BST martingale

A binary search tree (BST) process (for a detailed description, see
Mahmoud [26]) is a sequence (Tn, n ≥ 0) of complete binary trees,
where Tn has n internal nodes, which grows by successive insertions of
data, under the so-called random permutation model. Let us describe
the dynamics of the sequence of trees. Tree T1 is reduced to the root
and has two leaves. Tree Tn+1 is obtained from Tn by replacing one
of its n + 1 leaves by an internal node and thus creating two new
leaves. The insertion is done uniformly on the leaves, which means
with probability 1/(n+ 1).

To study the shape of these trees, it is usual to define the profile
of tree Tn by the collection of

Uk(n) := #{u ∈ ∂Tn, |u| = k} , k ≥ 1 ,

counting the number of leaves of Tn at each level. The profile is coded
by the level polynomial

∑
k Uk(n)zk, for z ∈ [0,∞) and can be stud-

ied by martingale methods (Jabbour [19], Chauvin et al. [11, 12]).
Because of the dynamics of the tree process, this polynomial, renor-
malized by its expectation, is a F(n)-martingale, where F(n) is the
σ-field generated by all the events {u ∈ Tj}j≤n,u∈U. More precisely,
we define the BST martingale

MBST
n (z) =

∑
u∈∂Tn

z|u|

Cn(z)
=

∑
k

Uk(n)
Cn(z)

zk
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where C0(z) = 1 and

Cn(z) =
n−1∏
k=0

k + 2z
k + 1

= (−1)n

(
−2z
n

)
, n ≥ 1 .

In the supercritical range z ∈ (z−c , z
+
c ), this martingale converges

in L1 to a nondegenerate limit MBST
∞ (z) and converges a.s. to 0

elsewhere, in particular for the critical values z−c and z+
c . For these

critical values, the derivative (MBST
n )′(z) is a martingale of expec-

tation 0, which converges a.s. to a random variable M ′BST
∞ (z) of

constant sign, of infinite expectation.

3 Connections between these martingales

We now set all these martingales on the same probability space and we
define below the continuous time tree valued Yule process. Roughly
speaking,

- in the BST we keep track of profile,
- in the Bisection, we keep track of the balance between right

subtrees and left subtrees,
- in the Yule-generation, we keep track of time of appearance of

the different nodes.
This set-up provides nice connections which are precised in Theo-

rems 3.1, 3.3 and 3.4.

Let (υt)t≥0 be a Poisson point process taking values in U with
intensity measure νU, the counting measure on U. Let (TTt)t≥0 be a
BinTree valued process starting from TT0 = {∅} and jumping only
when (υt)t≥0 jumps. Let t be a jump time for υ·; TTt is obtained from
TTt− in the following way:

if υt /∈ ∂TTt− keep TTt = TTt− and if υt ∈ ∂TTt− take TTt =
TTt− ∪ {υt0, υt1}.
The counting process (Nt)t≥0 defined by

Nt := #∂TTt

is the classical Yule (or binary fission) process (Athreya-Ney [2]). In
the following, we refer to the continuous-time tree process (TTt)t≥0 as
the Yule tree process.

We note 0 = τ0 < τ1 < τ2 < . . . the successive jump times (of
TT.),

τn = inf{t : Nt = n+ 1} .



Connecting Tree Models via Martingales 97

t

τ5

τ4

τ3
τ2

τ1

0

Figure 1: Continuous time binary branching process.

We define recursively the time of appearance (or time of satura-
tion) of nodes by

S∅ = 0, Su1..un = inf{s > Su1..un−1 : υs = u1..un}

(the definition of υt is given above). Actually Su1..un is the sum of
n i.i.d. E(1) random variables. This yields TTt = {u : Su ≤ t}.
The natural filtration is (Ft, t ≥ 0) where Ft is generated by all the
random variables υs, s ≤ t. Another useful one is (Fn, n ≥ 1) where
Fn is generated by the variables Sv for all |v| ≤ n. Finally we will
use (F(n), n ≥ 1), where F(n) is generated by TTτ1 , . . . ,TTτn .

This Yule-time process can also be seen as a fragmentation pro-
cess. We may encode dyadic open subintervals of [0, 1] with elements
of U: we set I∅ = (0, 1) and for u = u1u2 . . . uk ∈ U,

Iu =
( k∑

j=1

uj2−j , 2−k +
k∑

j=1

uj2−j
)
.

With this coding, the evolution corresponding to the Yule-time pro-
cess is a very simple example of fragmentation process. This idea
goes back to Aldous and Shields ([1] Section 7f and 7g). In other
words, for t ≥ 0, F (t) is a finite family of intervals. At time 0, we
have F (0) = (0, 1). Identically independent exponential E(1) random
variables are associated with intervals of F (t). Each interval in F (t)
splits into two parts (with same size) independently of each other
after an exponential time E(1).

Hence, one has F (0) = (0, 1), F (τ1) = ((0, 1/2), (1/2, 1)) where
τ1 ∼ E(1), etc... One can interpret the two fragments Iu0 and Iu1
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issued from Iu as the two children of Iu, one being the left (resp.
right) fragment Iu0 (resp. Iu1), obtaining thus a binary tree structure.
An interval with length 2−k corresponds to a leaf at depth k in the
corresponding tree structure.

t

τ5

τ4

τ3
τ2

τ1

0
0 1

Figure 2: Fragmentation and its tree representation.

3.1 Connection Yule-time → BST

In [12], it is proved that

(TTτn , n ≥ 1) law= (Tn, n ≥ 1) .

We can now consider the BST process as the Yule process ob-
served at the (random) splitting times τn. It turns out that MBST

n (z)
is the projection of M(τn, z) on F(n). It yields nice limit martingale
connections

M(∞, z) =
ξ2z−1

Γ(2z)
MBST
∞ (z) for z ∈ (z−c , z

+
c ) , a.s. (3)

M ′(∞, z) =
ξ2z−1

Γ(2z)
M ′BST
∞ (z) for z = z±c , a.s. . (4)

where ξ ∼ E(1).

3.2 Connection BST → Bisection

For v ∈ U, let n(v)
t be the number of individuals alive at time t in the

subtree beginning at node v. In [12] Section 2.5, it is shown that the
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random variables

U (v) := lim
t

n
(v)
t

n
(father of v)
t

(5)

are U([0, 1]) distributed, independent along a branch and that U (v0)+
U (v1) = 1 for every v.

It is then clear that we may construct a Bisection branching ran-
dom walk with these variables. Let us call MBIS

n (z) the associated
martingale:

MBIS
n (z) :=

∑
|u|=n

(
∏
u�v

U (v))2z−1zn . (6)

Notice that with the notation of Section 2.2, Xu =
∑

v≺u− logU (v).

Theorem 3.1. For z ∈ (z−c , z
+
c ), and n ≥ 1, a.s.

E[MBST
∞ (z) | FBIS

n ] = MBIS
n (z) , (7)

and
MBIS
∞ (z) = MBST

∞ (z) . (8)

Theorem 3.2. For z = z±c , we have

M
′BST
∞ (z) law= M

′BIS
∞ (z) .

It is of course tempting to conjecture equality of the above random
variables.

3.3 Connection Yule-time → Yule-generation

Let Ln := {u : |u| = n} be the set of the nodes in the n-th gen-
eration of the Yule tree process. For u ∈ U, by definition of the
Yule-generation process, position Xu can be also seen as the time Su

of appearance of node u, i.e. the sum of the i.i.d. E(1) lifetimes along
the branch from the root to u. So

MGEN
n (z) :=

∑
u∈Ln

e(1−2z)Su
zn . (9)

The following theorem is analogous to Theorem 3.1, it is valid in the
supercritical case. Theorem 3.4 concerns the critical case.
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Theorem 3.3. For z ∈ (z−c , z
+
c ), a.s.

E[M(∞, z)|Fn] = MGEN
n (z) , (10)

and consequently

MGEN
∞ (z) = M(∞, z) . (11)

Theorem 3.4. For z = z±c , a.s.

M ′GEN
∞ (z) = M ′(∞, z) . (12)

Remark 3.5.
A set L of nodes is usually said to have the line property if no node
of L is an ancestor of another node of L. In other words, the subtrees
starting from nodes of L are disjoint trees. Theorems 3.3 and 3.4
could appear as a consequence, for the particular lines Zt and Ln,
of a more general theorem which would be: additive martingales
associated to a sequence of “lines” tending to infinity have the same
limit, independently of the choice of this sequence. This theorem
holds without any serious difficulty as soon as the notion of “line”
is precisely defined, which is necessary since several notions exist2;
“optional lines” in Jagers [20] require measurability of the stopping
rule with respect to the process until the line. More restrictively,
“stopping lines” in Chauvin [10] and Kyprianou [22, 23] or frosts (in
the fragmentation frame, cf Bertoin [3]) require measurability of the
stopping rule with respect to the branch from the root to some node
of the line. The above mentioned general theorem holds for stopping
lines and not for optional lines in the Jagers’ sense. Of course Zt and
Ln are stopping lines, but the stopping time τn (the first time when
n intervals exist in the fragmentation) defines an optional but not
stopping line.

In other words, in view of equalities MBST
∞ (z) = MBIS

∞ (z) and
M(∞, z) = MGEN

∞ (z) and in view of connections (3) it is clear that
(for z 6= 1/2) M(∞, z) is different from MBST

∞ (z). This is consistent
with the fact that τn does not define a stopping line.

4 Smoothing transformations and limit dis-
tributions

Before proving almost sure equalities announced in the theorems of
Section 3, we first look at equalities in distribution. The random

2let us also mention the close notion of “cutset” in Peres [28]
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limits mentioned in Section 2 satisfy “duplication” relations, which
come from the binary branching structure of the underlying processes.
These relations may be viewed as equalities between random vari-
ables or as functional equations on their Laplace transforms. The
corresponding distributions are fixed points of so-called smoothing
transformations (Holley and Liggett [18], Durrett and Liggett [17]).

4.1 Duplication relations

1) Let us first consider M(∞, z). After conditioning on the first
splitting time τ1 of the Yule-tree process (recall that τ1 ∼ E(1)), we
get ([12] Section 3.1), for z ∈ (z−c , z

+
c )

M(∞, z) = ze(1−2z)τ1 (M0(∞, z) +M1(∞, z)) a.s., (13)

where the random variablesM0(∞, z) andM1(∞, z) are independent,
distributed asM(∞, z) and independent of τ1. Moreover P(M(∞, z) >
0) = 1. Iterating (13) we get

M(∞, z) = zn
∑
|u|=n

e(1−2z)Su
Mu(∞, z) a.s. (14)

For z = z±c , M(∞, z) = 0 a.s. and the relation satisfied by M ′(∞, z)
is the same as (13) (mutatis mutandis). Moreover P(M ′(∞, z−c ) >
0) = P((M ′(∞, z+

c ) < 0) = 1.

2) By definition of the Yule-generation process (9), we have, con-
ditioning upon the first generation,

MGEN
∞ (z) = ze(1−2z)τ1

(
MGEN

0,∞ (z) +MGEN
1,∞ (z)

)
a.s., (15)

which is exactly the same equation as (13). The same result holds
for derivatives at z = z±c .

3) Let us see now what happens for the BST martingale limit. By
embedding, it is shown in [12] Section 3.1 that

MBST
∞ (z) = z

(
U2z−1MBST

∞,(0)(z) + (1− U)2z−1MBST
∞,(1)(z)

)
a.s., (16)

where U ∼ U([0, 1]) is nothing but U (0) as defined in (5), where
MBST
∞,(0)(z),M

BST
∞,(1)(z) are independent (and independent of U) and

distributed as MBST
∞ (z). For z = z±c the relation is the same with

M ′BST
∞ (z) instead of MBST

∞ (z).
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Iterating (16), we get

MBST
∞ (z) = zn

∑
|u|=n

(
∏
v≺u

U (v))2z−1MBST
∞,u (z) a.s. (17)

4) By definition of the bisection (6)

MBIS
n (z) =

∑
|u|=n

(
∏
v≺u

U (v))2z−1zn a.s.

We have, conditioning upon the first generation of this process,

MBIS
∞ (z) = z

(
U2z−1MBIS

∞,(0)(z) + (1− U)2z−1MBIS
∞,(1)(z)

)
a.s. (18)

which is exactly the same equation as (16).
At this stage, we see two packages (M(∞, z),MGEN

∞ (z)) and
(MBST

∞ (z),MBIS
∞ (z)), which are consistent with the results of Theo-

rems 3.1 and 3.3, but which do not yet give equality in law, owing to
lack of uniqueness.

4.2 Functional equations and equalities in law

The relations between random variables in the previous subsection
imply distributional equations which can be viewed as functional
equations on their Laplace transforms.

Set

j(z, x) := E exp−xM(∞, z) , for z ∈ (z−c , z
+
c ) ,

j(z, x) := E exp−x|M ′(∞, z)| , for z = z±c ,

jGEN (z, x) := E exp−xMGEN
∞ (z) , for z ∈ (z−c , z

+
c ) ,

jGEN (z, x) := E exp−x|M ′GEN
∞ (z)| , for z = z±c ,

jBST (z, x) := E exp−xMBST
∞ (z) , for z ∈ (z−c , z

+
c ) ,

jBIS(z, x) := E exp−xMBIS
∞ (z) , for z ∈ (z−c , z

+
c ) .

Let us summarize some results on fixed points of smoothing trans-
formations that are needed for our study. There is a broad literature
on this topic. One of the more recent contributions is in Biggins and
Kyprianou [8]. We choose to give these results under the assumptions
of Liu [24], [25] (see also Kyprianou [21]), which are fulfilled in our
examples.
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Let us consider a branching random walk as in Section 2.1 with
Z =

∑N
i=1 δxi and P (N = 0) = 0. We defined the martingale

Mn(θ) =
∫

IR
eθx−nΛ(θ)Zn(dx) ,

and the derivative

M′
n(θ) =

∫
IR

(x− nΛ′(θ))eθx−nΛ(θ)Zn(dx) .

Let us assume EN1+δ <∞ and E[M1(θ)]1+δ <∞, for some δ > 0.
In the supercritical range, i.e. if θΛ′(θ) − Λ(θ) < 0, the Laplace

transform J(s) = Ee−sM∞(θ) satisfies

J(s) = E
N∏

i=1

J(seθxi−Λ(θ)) (19)

(branching property at the first splitting time) and

lim
x→0+

1− J(x)
x

= 1 (20)

(L1 convergence of the martingale).
Moreover for every K > 0 there is only one solution of (19) in the

class of Laplace transforms of nonnegative (non degenerate) random
variables satisfying

lim
x→0+

1− J(x)
x

= K . (21)

For critical values, i.e. for θ such that θΛ′(θ)−Λ(θ) = 0, the a.s.
limit M′

∞(θ) is positive if θ < 0 and negative if θ > 0. Its Laplace
transform J(s) = E e−s|M′

∞(θ)| satisfies

J(s) = E
N∏

i=1

J(seθxi−Λ(θ)) , (22)

and

lim
x→0+

1− J(x)
x| log x|

= |θ|−1 , (23)

(see Theorem 2.5 a) of Liu [24] with a slight change of notation).
Moreover for every K > 0 there is only one solution of (22) in the
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class of Laplace transforms of nonnegative (non degenerate) random
variables satisfying

lim
x→0+

1− J(x)
x| log x|

= K . (24)

In our setting, this yields the following identities.

Proposition 4.1.

a) For z ∈ (z−c , z
+
c ), we have j(z, ·) = jGEN (z, ·) or equivalently

M(∞, z) law= MGEN
∞ (z) . (25)

b) For z ∈ (z−c , z
+
c ), we have jBST (z, ·) = jBIS(z, ·) or equiva-

lently,

MBST
∞ (z) law= MBIS

∞ (z) . (26)

c) For critical z we have

lim
x↓0

1− jGEN (z+
c , x)

x| log x|
= lim

x↓0

1− jBIS(z+
c , x)

x| log x|
=

2
2z+

c − 1
, (27)

lim
x↓0

1− jGEN (z−c , x)
x| log x|

= lim
x↓0

1− jBIS(z−c , x)
x| log x|

=
2

1− 2z−c
. (28)

Proof: Recall (see end of Section 2.2) that the branching random
walks BIS and GEN are different but have the same Λ(θ), giving then
two versions of (22). They share the same critical points (recall the
correspondence θ = 1− 2z).

a) From (13) and (15) it is clear that for z ∈ [z−c , z
+
c ], the functions

j(z, ·) and jGEN (z, ·) are non-constant solutions of

J(x) =
∫ 1

0
J(zxu2z−1)2du , (29)

J(0) = 1 . (30)

Moreover, since EM(∞, z) = EMGEN
∞ (z) = 1 for z supercritical, it

turns out that they satisfy (20) and then they are equal.
b) From (16) and (18) it is now clear that for z ∈ [z−c , z

+
c ], the

functions jBST (z, ·) and jBIS(z, ·) are non-constant solutions of

J(x) =
∫ 1

0
J

(
xzu2z−1

)
J

(
xz(1− u)2z−1

)
du ,
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J(0) = 1 . (31)

With the same remark as above, we have uniqueness.
c) We see that (23) yields (27) and (28).

To end this section let us notice that for the Yule-tree and the
BST, the limit martingale connection (3) gives an important relation
between the Laplace transforms:

j(z, x) =
∫ ∞

0
jBST

(
z, x

η2z−1

Γ(2z)

)
e−ηdη . (32)

5 Proof of theorems

5.1 Proof of Theorem 3.1

The relation (7) follows from (17), (6), independence of MBST
∞,u (z)

with respect to (U (v), v ≺ u) and the fact that EMBST
∞,u (z) = 1 for

every u ∈ U

.

To prove (8) we first pass to the limit in n to get a.s.

E[MBST
∞ (z)|FBIS

∞ ] = MBIS
∞ (z) . (33)

Set for a while, X := MBST
∞ (z), Y := MBIS

∞ (z) and A := FBIS
∞ .

Summarizing (33) and (26), we have

E[X|A] = Y and X
law= Y .

From Exercise 1.11 in [9] this implies X = Y a.s.

5.2 Proof of Theorem 3.3

It is exactly the same line of argument as in the above subsection,
using (25) instead of (26) and (14) instead of (17).

5.3 Proof of Theorem 3.4

Since we work with fixed z, we omit it each time there is no possible
confusion.

The idea is to take advantage of the L1 convergence of a mul-
tiplicative martingale and then come back taking logarithms. The
proof can be given both in supercritical and in critical cases and we
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choose to present it for both cases, because it is not more compli-
cated. Thus it will give an alternative proof of (11) and the proof of
(12).

• First step: multiplicative martingales. Notice that it could be more
or less directly imported from theorem 3 in Kyprianou [22] but ne-
vertheless we give details to make the proof self-contained.

Multiplicative martingales have appeared many times in the lite-
rature, for instance in Neveu [27], in Chauvin [10] in the branching
Brownian motion framework, in Biggins and Kyprianou [8] for dis-
crete branching random walks and in Kyprianou [22] for branching
Lévy processes. They are studied in their own right in relation with
functional equations or smoothing transformations and also, like here,
to help find information about additive martingales. Recall that here

MGEN
n (z) =

∑
u∈Ln

zne(1−2z)Su
,

M(t, z) =
∑
u∈Zt

z|u|et(1−2z) .

Let for any real y,

Pn(y) =
∏
|u|=n

j(yzne(1−2z)Su
) ,

where j(x) = jGEN (z, x) (it is a solution of equation (29) with initial
condition (30)), and let

P(t)(y) =
∏

u∈Zt

j(yz|u|e(1−2z)t) .

To prove that P(t)(y) (resp. Pn(y)) is a Ft (resp. Fn)-martingale,
decompose the set Zt (resp. Ln) with respect to a preceding line
Zs (resp. Ln−1), apply the branching property and get the property
of constant expectation: decompose E(P(t)(y)) (resp. E(Pn(y))) ac-
cording to the first splitting time τ1 and use the fact that j is a
solution of equation (29).

Since 0 ≤ j ≤ 1, the martingale (P(t)(y), t ≥ 0) converges when
t goes to infinity a.s. and in L1 to a limit P(∞)(y); the martingale
(Pn(y), n ≥ 0) converges when n goes to infinity a.s. and in L1 to a
limit P∞(y).

Let us now see why these two limits are equal: divide the set of
individuals alive at time t into those whose generation number is less
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than n and those whose generation number is greater or equal to n.
This gives a decomposition of P(t)(y); condition with respect to Fn

and apply the branching property; fix n and let t tend to infinity to
get

Pn(y) = E(P(∞)(y)|Fn) a.s. ,

and finally, since P(∞)(y) is F∞ := ∨nFn measurable

P∞(y) = P(∞)(y) a.s. (34)

• Second step: back to the additive martingale, taking logarithms.

Let, (tn)n≥0 be a sequence going to infinity when n→∞. We use
the behavior of j(z, .) near 0.

Recall that for z fixed, when x ↓ 0, lim j(z, x) = 1, so that
− log j(z, x) ∼ 1 − j(z, x). Moreover from (20) and (27) we have
the sharp estimates

lim
x→0

1− j(z, x)
x

= 1 for z ∈ (z−c , z
+
c ) ,

lim
x→0

1− j(z, x)
x| log x|

= K0 for z = z±c ,

where K0 = 2/|2z − 1|. The quantity

mn(z) := max{z|u|etn(1−2z) ; u ∈ Ztn}

satisfies mn(z) ≤ M(tn, z). If z = z±c , taking into account that
limnM(tn, z±c ) = 0, we have limnmn(z±c ) = 0 a.s. Now, for z super-
critical we check easily that

mn(z) ≤ mn(z+
c )log z/ log z+

c if 1 < z < z+
c ,

mn(z) ≤ mn(z−c )log z/ log z−c if z−c ≤ z < 1 ,

and then limnmn(z) = 0 a.s. Everything holds in the same way for
the n-th generation and for MGEN

n (z) instead of M(tn, z).
We deduce that for every ε > 0 there is some n0 such that for

every n ≥ n0 and u ∈ Ztn (resp. Ln)

y(1− ε)z|u|etn(1−2z) ≤ − log j(z, yz|u|e(1−2z)tn) ≤ y(1 + ε)z|u|etn(1−2z)

in the supercritical case and

(1− ε)y(|u| log z + tn(1− 2z)) z|u|etn(1−2z)

+ K0(1− ε)y log yz|u|etn(1−2z)

≤ − log j(z, yz|u|e(1−2z)tn)
≤ (1 + ε)y(|u| log z + tn(1− 2z))z|u|etn(1−2z)

+ K0(1 + ε)y log yz|u|etn(1−2z)
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in the critical case (resp. the same with Su instead of tn). Adding
up in u we get respectively

yM(tn, z)(1− ε) ≤ − logP(tn, y) ≤ yM(tn, z)(1 + ε)

and

yM ′(tn, z)(1− ε) + K0(y log y)M(tn, z)(1 + ε)
≤ − logP(tn, y)
≤ yM ′(tn, z)(1 + ε) +K0(y log y)M(tn, z)

(resp. the same – mutatis mutandis – for the GEN). Taking limits in
n, this implies a.s.

− logP(∞, y) = yM(∞, z) ,
− logP∞(y) = yMGEN

∞ (z) ,

for z supercritical and, for z critical, the following

− logP(∞, y) = yM ′(∞, z) ,
− logP∞(y) = yM

′GEN
∞ (z) .

With (34), we now may conclude the proof.

5.4 Proof of Theorem 3.2

Let us consider only z = z+
c to simplify. We know that jBST (z, ·)

and jBIS(z, ·) satisfy the same equation (31). Since we know by (27)
that jBIS(z, ·) satisfies

lim
x→0+

1− J(x)
x| log x|

=
2

2z+
c − 1

, (35)

it is enough to prove that jBST (z, ·) satisfy also (35) (uniqueness
mentioned in Section 4.2). By Theorem 3.4 and (27) again, j(z, ·)
satisfies also (35). Now jBST (z, ·) is connected to j(z, ·) by (32).
From some elementary calculations and known properties of Laplace
transforms we conclude that jBST (z, ·) satisfies also (35).

6 Links with Drmota’s equations

In this section, we make precise some probabilistic counterparts of
solutions of equations introduced by M. Drmota in [15, 16, 14] as an
analytical tool for a sharp study of the height of BST.
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6.1 General case

We need some changes of parameter, variables and functions. For
z ∈ [z−c , z

+
c ] with z 6= 1/2, set

α(z) = z
1

2z−1 .

For z−c ≤ z < 1/2, (i.e. c′ ≤ 2z < 1) the function α increases from
αc′ = e1/c′ to +∞, and when 1/2 < z ≤ z+

c (i.e. 1 < 2z ≤ c) it
increases from 0 to αc = e1/c. We often write α instead of α(z) to
simplify.

For 2z 6= 1 let ϕ(z, x) = x−1j(z, x1−2z). Equation (29) is trans-
lated into

ϕ(z, x) = α−2

∫ ∞

x
ϕ(z, y/α)2dy . (36)

Moreover, equation (30) becomes:

lim
x→∞

xϕ(z, x) = 1 , if 2z > 1 , (37)

lim
x→0

xϕ(z, x) = 1 , if 2z < 1 . (38)

and equation (20) becomes:

lim
x→∞

1− xϕ(z, x)
x1−2z

= 1 , if 1 < 2z < c , (39)

lim
x→0

1− xϕ(z, x)
x1−2z

= 1 , if c′ < 2z < 1 . (40)

Drmota used the solution of the retarded differential equation

Φ′(x) = − 1
α2

Φ(x/α)2 , (41)

Φ(0) = 1 , (42)

and also the solution of the (retarded) convolution equation

yΨ(y/α) =
∫ y

0
Ψ(w)Ψ(y − w)dw . (43)

If ϕ satisfies (41), then ϕκ defined by ϕκ(x) = κϕ(κx) satisfies the
same equation. Similarly, if ψ satisfies (43), then ψκ defined by
ψκ(u) = ψ(u/κ) satisfies the same equation. Drmota (Lemmas 18,
19 and 23 of [15] and Prop. 5.1 of [14]) proved that for 1 < α ≤ αc ,
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there is a unique entire solution ϕα of (41), and that ϕα is a Laplace
transform:

ϕα(x) =
∫ ∞

0
ψα(y)e−xydy , (44)

where ψα is solution of (43). Moreover, these functions have the
following behavior:

lim
x→∞

1− xϕα(x)
x1−2z

= K1 , if 1 < α < αc , (45)

lim
x→∞

1− xϕα(x)
x1−2z log x

= K2 , if α = αc . (46)

where K1 and K2 ∈ (0,∞)). This implies in particular that ϕα

satisfies (36). But, if ϕ satisfies (41), then ϕκ defined by ϕκ(x) =
κϕ(κx) satisfies the same equation, so that the role of the initial
condition (42) is to fix the constant κ. Conversely, we may choose
κ(z) such that ϕκ(z)

α(z) satisfies (45) (resp. (46)) with limit 1 instead of
K1 (resp. K2). Comparing with (39), we have (at least for 1 < z <

z+
c ) that ϕκ(z)

α(z) = ϕ(z, ·).
For 1 < z < z+

c , we know from (25) and Theorem 3.3 that the
Yule-time limit martingale M(∞, z) and the Yule-generation limit
martingale MGEN

∞ (z) have the same Laplace transform. We see now
that

j(z, x) = jGEN (z, x) = x
1

1−2z κϕα(κx
1

1−2z ) , (47)

or equivalently

Ee−x1−2zM(∞,z) = Ee−x1−2zMGEN
∞ (z) = κxϕα(κx) . (48)

for some constant κ > 0.
In the critical case, z = z+

c , we use the derivative martingales.
From Theorem 3.4 and Section 4.2 we see that (47) holds again or,
in other words,

Ee−x1−2z+
c |M ′(∞,z+

c )| = Ee−x1−2z+
c |M ′GEN

∞ (z+
c )| = κxϕαc(κx) . (49)

for some κ.
Now let us consider ψα as defined in (43) or (44). The relation

(32) together with (44) and (47) gives easily

ψα(y/κ) = jBST

(
z,
y2z−1

Γ(2z)

)
.
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The BST limit martingale MBST
∞ (z) and the Bisection limit martin-

gale MBIS
∞ (z) (which are equal in the supercritical case) have the

same Laplace transform and

Ee−
y2z−1

Γ(2z)
MBST
∞ (z) = Ee−

y2z−1

Γ(2z)
MBIS
∞ (z) = ψα(y/κ) .

In the critical case, z = z+
c , we have (recall Theorem 3.2)

Ee
− y2z+

c −1

Γ(2z+
c )

|M ′BST
∞ (z+

c )|
= Ee

− y2z+
c −1

Γ(2z+
c )

|M ′BIS
∞ (z+

c )|
= ψαc(y/κ) .

6.2 Particular cases

1) For z = 1/2, we have M(t, 1/2) ≡ 1 and j(1/2, x) = e−x. In this
case α is not defined.

2) For z = 1, as previously mentioned, we have M(t, 1) = e−tNt

whose limit is ξ ∼ E(1), of Laplace transform j(1, x) = 1
1+x . This

yields ϕ(1, x) = 1
1+x , which corresponds of course to ϕα(x) with

α = α(1) = 1.
3) The function Φ(x) = e−x/4 is solution of (41) and (42) for

α = 2, but it does not correspond to the limit of a martingale from
our families. In fact, there is no real z ∈ (0,∞) such that α(z) = 2.

4) Drmota [15] in his Lemma 11 noticed that, for α = 16

ϕ̄(x) =
1 + x1/4

x
e−x1/4

satisfies equation (41) and the initial condition (38).
In (0,∞) the equation α(z) = 16 has two solutions: z = 1/8 and

z = 1/4. Since 1/8 < z−c , the corresponding martingale M(t, 1/8)
goes to 0 a.s. and then ϕ(1/8, x) ≡ 1. Besides, we have z−c <
1/4 < 1/2, so that j(1/4, x) is not constant and satisfies (29), (30),
(20). Again, for every constant κ, the function ϕ̄κ satisfies the same
system. The constraint (40) leads to κ = 4. Taking into account the
uniqueness, we see that

E exp−xM(∞, 1/4) = (1 +
√

2x)e−
√

2x ,

which allows identification of the law ofM(∞, 1/4). As it is noticed in
another context in Yor [31] pp. 110–111, this is the Laplace transform
of the density

G(t) =
1√
2πt5

e−1/2t , t ≥ 0 ,
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of (2γ3/2)−1, where we use the notation γα for a variable with distri-
bution gamma with parameter α, i.e.

P(γα ∈ dy) =
1

Γ(α)
yα−1e−ydy y > 0 .

In other words

M(∞, 1/4)
(law)
= (2γ3/2)

−1 . (50)

Let us now look for the law of MBST
∞ (1/4). It is easier to work with

A := (MBST
∞ (1/4))−2. The limit connection (3) yields

(2γ3/2)
2 (law)

= πγ1 ·A ,

where A is independent of γ1 (which is our ξ). Introducing the Mellin
transform we have

E(2γ3/2)
2s = πsE(γ1)sE(As) . (51)

Recall that E(γa)s = Γ(s+a)
Γ(a) for <s > −a, so that, for <s > −3/4,

E(As) =
22sΓ(2s+ 3

2)
Γ(3

2)
1

πsΓ(s+ 1)
. (52)

With the duplication formula

Γ(2y) = (2π)−1/222y− 1
2 Γ(y)Γ(y +

1
2
) (53)

taken at y = s+ 3
4 and y = 3

4 , the identity (52) becomes

E(As) =
(

16
π

)s Γ(s+ 3
4)

Γ(3
4)Γ(s+ 1)

Γ(s+ 5
4)

Γ(5
4)

. (54)

Now, for a, b > 0, a beta random variable βa,b with density

P(βa,b ∈ dy) =
Γ(a+ b)
Γ(a)Γ(b)

ya−1(1− y)b−1 , y ∈ (0, 1) ,

has Mellin transform:

E(βa,b)s =
Γ(a+ s)Γ(a+ b)
Γ(a)Γ(a+ b+ s)

, <s > −a ,
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which allows to transform (54) into

E(As) =
(

16
π

)s

E(β3/4,1/4)
s E(γ5/4)

s , <s > −3/4 ,

and then A
(law)
= 16

π β3/4,1/4 · γ5/4 or , coming back to MBST

MBST
∞ (1/4)

(law)
=

√
π

4
(β3/4,1/4)

−1/2 · (γ5/4)
−1/2 , (55)

where the two variables in the right-hand side are independent.

Remark 6.1.

The limit martingale connection (3) rewritten with (50) and (55)
gives

(γ3/2)
2 (law)

= 4β3/4,1/4.γ1.γ5/4 . (56)

This identity can be viewed as a consequence of the two following
identities in law that can be found in Chaumont-Yor [9]. The first
one is, for any parameter a

(γa)
2 (law)

= 4γa
2
.γa+1

2
, (57)

which is the stochastic version of (53), and the second one (coming
from the classical beta-gamma algebra) is

γa
2

(law)
= βa

2
,1−a

2
.γ1 , (58)

holding for a < 2. Both give

(γa)
2 (law)

= 4βa
2
,1−a

2
.γ1.γa+1

2
. (59)

Identity (56) is obtained taking a = 3/2.
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