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Abstract. The flexibility of the family of Generalized Lambda Dis-
tributions (GLD) has encouraged researchers to fit GLD distributions
to datasets in many circumstances. The methods that have been used
to obtain GLD fits have also varied. This paper compares, for the
first time, the relative qualities of three GLD fitting methods: the
method of moments, a method based on percentiles, and a method
that uses L-moments.

1 Introduction

The fitting of statistical distributions to data has broad applications
and has been the subject many investigations. A central issue of such
investigations is the choice of distribution or family of distributions
to be fitted to the data. Because of its usefulness and flexibility in
providing a model for data generated from scientific studies, the Gen-
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eralized Lambda Distribution, designated by GLD(λ1, λ2, λ3, λ4),
and its predecessors have been studied by many researchers includ-
ing: Tukey (1960), Ramberg and Schmiser (1972, 1974), Ramberg,
Dudewicz, Tadikamalla and Mykytka (1979), Mykytka and Ramberg
(1979), Dudewicz and Karian (1996, 1999), Öztürk and Dale (1985),
Karian, Dudewicz and McDonald (1996), and Karian and Dudewicz
(1999). The most recent and comprehensive is Karian and Dudewicz
(2000).

The focus of much of the work cited above is on the determina-
tion of the GLD parameters in order to obtain the “best” fit to a
given dataset. Several methods have been used in this effort: Karian,
Dudewicz and McDonald (1996) use the method of moments (applied
to the GLD and EGLD, an extension of the GLD system which cov-
ers all regions of (skewness, kurtosis) space), Mykytka (1976) uses a
mixture of percentiles and moments to estimate the parameters of the
GLD, Karian and Dudewicz (1999) use a percentile-based approach,
Öztürk and Dale (1985) use least squares estimation, and Petersen
(2001) uses a method based on L-moments.

As pointed out by King and MacGillivray (1999), “There ... ap-
pears to be a lack of assessment of any of the fitting methods. Thus,
although the generalized λ distributions appear popular for use in
simulation studies and appear to have considerable potential for fit-
ting data, developing and assessing fitting methods for them is a
challenge.” The present paper addresses assessment quantitatively
over a broad range of (skewness, kurtosis)-space, using methods not
previously exploited for this purpose.

In Section 2 we define the GLD and EGLD and describe how
to fit EGLD distributions to data using moments. Sections 3 and 4
develop methods for fitting GLD distributions using percentiles and
L-moments, respectively. In subsequent sections we compare these
GLD fitting methods by (1) applying these methods to datasets and
comparing the p-values of chisquare goodness-of-fit tests associated
with these fits, (2) examining the reliability of these p-values and (3)
doing detailed comparisons of two of the fitting schemes (methods as-
sociated with moments and percentiles) at distinct (α3, α4) locations
where α3 and α4 are the third and fourth central moments.
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2 Fitting the GLD and EGLD via the method
of moments

The GLD(λ1, λ2, λ3, λ4) family of distributions is defined through
its quantile or inverse distribution function,

Q(y) = F−1(y) = λ1 +
yλ3 − (1− y)λ4

λ2
(1)

where 0 ≤ y ≤ 1. This representation of Q(y) is well-suited for
simulation studies where, generally, random samples need to be gen-
erated. Karian and Dudewicz (2000) provide a complete analysis of
the values of λ1, λ2, λ3, λ4 for which (1) defines a distribution (all
λ1, all λ2 with the same sign that λ3y

λ3−1 + λ4(1− y)λ4−1 has for all
y (0 < y < 1), and some (λ3, λ4) regions are valid). The probability
density function (p.d.f.) for the quantile function given in (1) is

f(x) =
λ2

λ3yλ3−1 + λ4(1− y)λ4−1
, at x = Q(y). (2)

The first two moments, the skewness and the kurtosis, respec-
tively, of the GLD are given by (see Section 2.1 of Karian and Dudewicz
(2000))

α1 = µ = λ1 + A/λ2, (3)
α2 = σ2 = (B −A2)/λ2

2, (4)
α3 = (C − 3AB + 2A3)/(λ3

2σ
3), (5)

α4 = (D − 4AC + 6A2B − 3A4)/(λ4
2σ

4), (6)

where

A = 1/(1 + λ3)− 1/(1 + λ4),
B = 1/(1 + 2λ3) + 1/(1 + 2λ4)− 2β(1 + λ3, 1 + λ4),
C = 1/(1 + 3λ3)− 1/(1 + 3λ4)− 3β(1 + 2λ3, 1 + λ4)

+ 3β(1 + λ3, 1 + 2λ4),
D = 1/(1 + 4λ3) + 1/(1 + 4λ4)− 4β(1 + 3λ3, 1 + λ4)

+ 6β(1 + 2λ3, 1 + 2λ4)− 4β(1 + λ3, 1 + 3λ4)

and β(u, v) is the beta function given by

β(u, v) =
∫ 1

0
xu−1(1− x)v−1 dx for u, v > 0.
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One way of fitting a specific GLD(λ1, λ2, λ3, λ4) to X1, X2, . . . , Xn, a
given dataset, is through the method of moments where we compute
the first four sample moments, equate them to the first four GLD
moments and solve the resulting equations for λ1, λ2, λ3, λ4. The
first two sample moments are defined by

α̂1 = X̄ =
n∑

i=1

Xi/n, (7)

α̂2 = σ̂2 =
n∑

i=1

(Xi − X̄)2/n, (8)

and the sample skewness and kurtosis are defined, respectively, by

α̂3 =
n∑

i=1

(Xi − X̄)3/(nσ̂3), (9)

α̂4 =
n∑

i=1

(Xi − X̄)4/(nσ̂4). (10)

When these are set equal to their GLD counterparts, the complex-
ity of the resulting equations forces us to seek numeric rather than
closed-form solutions for λ1, λ2, λ3, λ4. Several authors have devised
tabulated solutions for λ1, λ2, λ3, λ4 when (α2

3, α4) is within a “fea-
sible” region; the most detailed tabulation of this sort is available in
Appendix B of Karian and Dudewicz (2000).

There are some restrictions on the (α3, α4)-space that is covered
by the GLD. In general, it is possible to have any (α3, α4) point
that satisfies 1 + α2

3 < α4, but the GLD fits are restricted to 1.8 +
1.7α2

3 < α4, making the portion of (α3, α4)-space specified by 1 +
α2

3 < α4 < 1.8+1.7α2
3 unattainable through the method of moments.

For this reason Karian, Dudewicz and McDonald (1996) devised an
Extended GLD system, the EGLD, that uses a generalization of the
beta distribution to cover the points of the region 1 + α2

3 < α4 <
1.8 + 1.7α2

3. This Generalized Beta Distribution (GBD) is obtained
by starting with a beta random variable, X, with p.d.f.

f(x) =
Γ(β3 + β4 + 2)

Γ(β3 + 1)Γ(β4 + 1)
xβ3(1− x)β4 ; (11)

β3, β4 > −1, 0 ≤ x ≤ 1

defining the random variable Y by

Y = β1 + β2X;
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and showing that Y has p.d.f.

f(x) = Cβ
−(β3+β4+1)
2 (x− β1)β3(β1 + β2 − x)β4 ; (12)

β1 ≤ x ≤ β1 + β2

where

C =
Γ(β3 + β4 + 2)

Γ(β3 + 1)Γ(β4 + 1)
. (13)

Moreover, α1, α2, α3, α4 for the random variable Y are given by

α1 = µ = β1 + β2(β3 + 1)/B2, (14)

α2 = σ2 =
β2

2(1 + β3)(1 + β4)
B2

2B3
, (15)

α3 =
2(β4 − β3)

√
B3

B4

√
(β3 + 1)(β4 + 1)

, (16)

α4 =
3B3

(
β3β4B2 + 3β2

3 + 5β3 + 3β2
4 + 5β4 + 4

)
B4B5(β3 + 1)(β4 + 1)

, (17)

where
Bi = β3 + β4 + i for i = 1, . . . , 5.

Since it is reasonably difficult to solve the system of equations α̂i =
αi (i = 1, . . . , 4), Dudewicz and Karian (1996) provide extensive ta-
bles for the numerical solutions of these equations, making it possible
to obtain GBD fits either through these tables or by direct computa-
tion.

3 Fitting the GLD via a method based on
percentiles

For a given dataset, X1, X2, . . . , Xn, let π̃p denote the (100p)th per-
centile of the data. We compute π̃p by first writing (n + 1)p as
r+(a/b), where r is a positive integer and a/b is a fraction in the inter-
val [0, 1). Then π̃p is obtained from the order statistics Y1, Y2, . . . , Yn

of the data by
π̃p = Yr +

a

b
(Yr+1 − Yr)

(this definition of the (100p)th data percentile differs from definitions
that are often used).
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Karian and Dudewicz (1999) use the four sample statistics,
ρ̃1, ρ̃2, ρ̃3, ρ̃4 defined by

ρ̃1 = π̃0.5 (18)
ρ̃2 = π̃0.9 − π̃0.1 (19)

ρ̃3 =
π̃0.5 − π̃0.1

π̃0.9 − π̃0.5
(20)

ρ̃4 =
π̃0.75 − π̃0.25

ρ̃2
(21)

to estimate the parameters of a GLD. The GLD counterparts of
ρ̃1, ρ̃2, ρ̃3, ρ̃4 are

ρ1 = Q(0.5) = λ1 +
0.5λ3 − 0.5λ4

λ2
(22)

ρ2 = Q(0.9)−Q(0.1) =
0.9λ3 − 0.1λ4 + 0.9λ4 − 0.1λ3

λ2
(23)

ρ3 =
Q(0.5)−Q(0.1)
Q(0.9)−Q(0.5)

=
0.9λ4 − 0.1λ3 + 0.5λ3 − 0.5λ4

0.9λ3 − 0.1λ4 + 0.5λ4 − 0.5λ3
(24)

ρ4 =
Q(0.75)−Q(0.25)

ρ2
=

0.75λ3 − 0.25λ4 + 0.75λ4 − 0.25λ3

0.9λ3 − 0.1λ4 + 0.9λ4 − 0.1λ3
.(25)

Since λ1 can be any real value and Q(·) is an inverse distribu-
tion function, it follows from (22) through (25) that ρ1, ρ2, ρ3, ρ4 are
subject to the constraints:

−∞ < ρ1 < ∞, ρ2 ≥ 0, ρ3 ≥ 0, 0 ≤ ρ4 ≤ 1.

To fit a GLD to a given dataset, we need to solve the system of
equations ρ̃i = ρi (i = 1, 2, 3, 4) for λ1, λ2, λ3, λ4.

Again, solutions cannot be attained in closed form and we use
numerical methods. Appendix D of Karian and Dudewicz (2000)
provides tables for estimating λ1, λ2, λ3, λ4 from ρ̃1, ρ̃2, ρ̃3, ρ̃4 in five
distinct regions of (λ3, λ4)-space. It is quite likely that more than 1,
possibly as many as 5, distinct GLD fits may be obtained.
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4 Fitting the GLD via L-moments

Greenwood, Landwehr, Matalas and Wallis (1979) define the proba-
bility weighted moments of a random variable X by

Mk,r,s = E
[
Xk (F (X))r (1− F (X))s

]
where F (X) is the distribution function of X. Let

βj = M1,j,0 = E[X(F (X))j ]. (26)

Then the L-moments of X are defined (see Hosking (1990)) as the
linear combinations

Λ1 = β0, Λi =
i−1∑
j=0

pi,jβj for i = 2, 3, . . . (27)

where

pi,j = (−1)i−1−j

(
i− 1

j

)(
i + j − 1

j

)
=

(−1)i−1−j(i + j − 1)!
(j!)2(i− j − 1)!

. (28)

(Note that in the literature L−moments are usually denoted by
λ1, λ2, λ3, λ4; we have chosen the Λ1, Λ2, Λ3, Λ4 notation here to
avoid confusion with the λ1, λ2, λ3, λ4 of the GLD distribution.)

The first four L-moments, those of interest to us, are:

Λ1 = β0 (29)
Λ2 = 2β1 − β0 (30)
Λ3 = 6β2 − 6β1 + β0 (31)
Λ4 = 20β3 − 30β2 + 12β1 − β0. (32)

For the GLD the quantities Λ1, Λ2, Λ3, Λ4 calculate to

Λ1 = λ1 +
1

λ2(λ3 + 1)
− 1

λ2(λ4 + 1)
(33)

Λ2 =
λ3

λ2(λ3 + 1)(λ3 + 2)
+

λ4

λ2(λ4 + 1)(λ4 + 2)
(34)

Λ3 =
λ3(λ3 − 1)

λ2(λ3 + 1)(λ3 + 2)(λ3 + 3)

− λ4(λ4 − 1)
λ2(λ4 + 1)(λ4 + 2)(λ4 + 3)

(35)
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Λ4 =
λ3(λ3 − 1)(λ3 − 2)

λ2(λ3 + 1)(λ3 + 2)(λ3 + 3)(λ3 + 4)

+
λ4(λ4 − 1)(λ4 − 2)

λ2(λ4 + 1)(λ4 + 2)(λ4 + 3)(λ4 + 4)
. (36)

To define the L-moments of a sample, we first take the order
statistics of the sample: x1 ≤ x2 ≤ · · · ≤ xn and define the sample
L-moments, `1, `2, . . . , `n by

`i =
i−1∑
j=0

pi,jbj

where

bj =
(

1
n

) n∑
i=1

(i− 1)(i− 2) · · · (i− j)
(n− 1)(n− 2) · · · (n− j)

xi, for j = 0, 1, . . . , n− 1.

It is clear from (33) through (36) that the equations τ3 = Λ3/Λ2 =
l3/l2 = t3 and τ4 = Λ4/Λ2 = l4/l2 = t4 will be free of λ1 and λ2, al-
lowing us to solve them for λ3 and λ4. Once these values are obtained,
equations (34) and (33) will yield λ2 and λ1, respectively. As was the
case with percentile-based fits, multiple fits can be obtained through
the use of L-moments.

5 Comparison of p-values

In this section we try to develop some insight into the relative merits
of the three fitting schemes discussed in Sections 2, 3, and 4 by fitting
GLD distributions to datasets through these methods and using the
p-values of chi-square goodness-of-fit tests to determine the quality
of each fit. These 13 datasets are the ones considered in Karian and
Dudewicz (2000). (In Section 6 we look at two of these datasets in
considerably greater detail.) Table 1 summarizes the results associ-
ated with fitting GLD distributions to datasets through the use of
moments, percentiles and L-moments as well as GBD moment fits.
The datasets are identified by the section numbers in Karian and
Dudewicz (2000) in which they are discussed (e.g., one would find a
discussion of the first dataset in Sections 2.5.2 and 3.5.3 of Karian
and Dudewicz (2000)).
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Table 1: p-Values Associated with Data Fits
GLD GLD GLD GBD

Dataset Mom. Perc. L-Mom. Mom.
2.5.2, 3.5.3 .014 .022 .076 .020
2.5.4X .725 .591 (92.5) .737 *
2.5.4Y .313 .600 .375 *
2.5.5X, 3.5.4X, 4.6.4X .000 .180 * .290 (98.0)
2.5.5Y, 3.5.4Y, 4.6.4Y * .062 * .009 (97.1)
2.6, 4.7 .686 .000 (79.2) .755 *
3.5.1 * * * .353
3.5.2 .063 .055 .094 .041
3.5.5X .244 .384 (82.1) .336 (89.9) .219
3.5.5Y .490 .362 (91.1) .476 .477 (94.1)
4.6.1 .000 .590 .335 *
4.6.2 * .104 .0496 *
4.6.3 * * .000 .000 (76.1)

* Fit could not be obtained.

Regardless of the fitting method used, there is no assurance that
the support of an EGLD distribution that has been fitted to X1, X2,
. . . , Xn will cover the span of the data (i.e., the interval [min1≤i≤n(Xi),
max1≤i≤n(Xi)]). Failure to cover this span is designated in parenthe-
ses in Table 1. For example, for Data 3.5.5X, the GLD and GBD
fits via moments covered the span of the data whereas the percentile
and L-moment fits covered, respectively, 82.1% and 89.9% of the
data span. Table 1 gives the p-values associated with the “best” fit
when multiple fits are encountered. (Details of p-value calculation
are given in Section 6.) By best, we mean the fit that covers the
largest proportion of the data span and in case several fits produce
the same proportional coverage, the one with the smallest χ2 value
(i.e., the largest p-value) is chosen. Within Table 1, the best fit for
each dataset, the one with the largest p-value, is designated in bold-
face.

We note that there is at least one case where each of the four
fitting methods is superior to all the others and, in general, the per-
centile and L-moment fits seem to give the best fits most frequently.

6 Comparison of moment and percentile fits

In this section we look, in some detail, at two datasets (3.5.5X and
2.5.4Y of Table 1) from Karian and Dudewicz (2000). Data 3.5.5X
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represents measurements that are diameters of trees (in inches, at
breast height) given by Schreuder and Hafley (1977). The actual
data is:

3.30 5.90 3.80 7.00 5.80 4.40 4.60 8.20 3.30 10.20 11.30
4.80 9.10 4.40 5.60 8.50 8.20 4.70 8.00 8.20 7.70 10.00
4.80 7.10 5.50 12.80 8.90 9.80 7.10 6.10 10.00 8.10 2.20
7.30 10.80 5.60 6.40 4.30 9.50 7.70 7.40 3.60 5.50 6.50
10.30 4.90 5.80 14.80 6.40 4.90 10.00 3.40 6.30 8.90 8.10
10.30 3.00 2.40 4.70 4.10 4.00 4.20 10.70 4.00 2.50 10.20
3.50 9.30 8.60 9.10 8.10 6.90 5.50 5.80 5.50 10.40 4.40
4.70 4.70 4.50 4.90 3.00 10.30 5.30 8.80 7.80 6.50 7.20
7.20

The α1, α2, α3, α4 for this data are:
6.7405, 6.6721, 0.45439, 2.7450

and the moment-based fit, designated by M.O.M in Table 2, is
GLD(λ1, λ2, λ3, λ4)=GLD(L0)=

GLD(4.774, 0.08911, 0.06257, 0.3056).
Using the 9 intervals

(−∞, 3.75], (3.75, 4.55], (4.55, 5.05], (5.05, 6.05], (6.05, 7.05],
(7.05, 8.05], (8.05, 9.05], (9.05, 10.25], (10.25, ∞)

we see that the observed frequencies in these classes are:
10, 10, 10, 11, 8, 10, 11, 10, 9.

The expected frequencies of the chosen intervals above, based on the
fitted GLD(4.774, 0.08911, 0.06257, 0.3056), are:
10.086, 9.1048, 6.5753, 13.596, 12.712, 10.905, 8.7720, 7.7285, 9.5195.
From this we are led to a chisquare goodness-of-fit statistic χ2

0 = 5.452
with a corresponding p-value of p0 = 0.2440 (note that in this case
we are estimating the four parameters λ1, λ2, λ3, λ4, therefore, the
degrees of freedom of the relevant chisquare distribution is taken as
9 − 4 − 1 = 4). In a similar fashion, we obtain χ2

0 and p0-values
associated with percentile (designated by M.O.P in Table 2) and L-
moment (designated by M.O.L. in Table 2) GLD fits. These are given
in the first two rows, in columns 3, and 4 of Table 2.

Data 2.5.4Y is from the Indiana Twin Study and it consists of:1

1This particular data comes from the Ph.D. thesis of Dr. Cynthia Moore,
under the supervision of Dr. Joseph C. Christian, Department of Medical and
Molecular Genetics, Indiana University School of Medicine. The data collection
was supported by the National Institutes of Health Individual Research Fellowship
Grant: “Twin Studies in Human Development.” PHS-5-F32-HD06869, 1987–
1990.
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2.81 3.78 2.93 4.13 3.19 5.38 3.56 3.24 3.16 3.83 3.81
4.60 3.66 4.28 5.00 4.75 6.31 4.31 4.75 4.50 3.66 3.88
4.69 3.40 5.00 5.13 4.15 3.83 4.31 5.38 4.12 4.63 4.56
4.63 4.38 4.44 5.13 4.78 4.22 5.38 6.16 4.94 3.81 5.00
5.75 6.69 4.94 4.75 5.38 5.63 5.81 6.10 6.25 4.69 5.69
6.81 5.69 5.75 5.13 6.75 5.38 4.44 5.48 6.31 6.22 6.18
4.69 4.88 4.97 5.38 5.06 5.63 5.19 5.94 5.56 4.88 5.69
5.88 5.88 5.50 4.81 5.41 5.75 6.31 5.63 5.31 5.19 6.13
5.85 4.44 5.50 5.81 6.10 8.14 5.19 6.05 6.38 6.16 6.53
6.19 6.19 6.38 7.10 5.81 6.13 6.56 6.22 6.19 6.60 7.41
6.06 6.63 5.50 5.72 7.31 8.00 4.58 7.31 7.22 7.25 6.44
7.75 6.31

The α1, α2, α3, α4 for this data are:
5.3666, 1.2033, -0.012189, 2.7665

with moment-based fit
GLD(λ1, λ2, λ3, λ4)=GLD(L0)=

GLD(5.3904, 0.22933, 0.18838, 0.18073).
Using the 8 intervals

(−∞, 4.00], (4.00, 4.65], (4.65, 5.05], (5.05, 5.45],
(5.45, 5.80], (5.89, 6.15], (6.15, 6.50], (6.50, ∞)

we see that the observed frequencies in these classes are:
15, 17, 16, 15, 15, 13, 16, 16.

The expected frequencies of the chosen intervals above, based on the
fitted GLD(5.3904, 0.22933, 0.18838, 0.18073), are:

13.577, 18.617, 15.599, 17.179, 14.813, 13.280, 10.830, 19.106.
From this we are led to a chisquare goodness-of-fit statistic χ2

0 = 3.558
with a corresponding p-value of p0 = 0.3134 (in this case we also are
estimating the four parameters λ1, λ2, λ3, λ4, therefore, the degrees
of freedom of the relevant chisquare distribution is 8−4−1 = 3). In a
similar fashion, we obtain χ2

0 and p0-values associated with percentile
and L-moment GLD fits. These are given in the first two rows, in
columns 6, and 7 of Table 2.

To analyze the reliability of the p0-values associated with a fit,
say the a GLD moment fit for Data 3.5.5X, we generate random
samples, X1, X2, . . . Xk from GLD(L0), find a moment-based fit for
each random sample, and obtain χ2

i , the chisquare statistic for this
sample (using the same intervals that have already been established).
We generate enough samples, k of them, to get 1000 cases where a
fit is available. In Table 2 we see that for the data 3.5.5X moment-
based fit, 1048 samples were required (48 is recorded as the number of
failures to obtain a fit via moments). The row designated by χ2

i > χ2
0
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gives the number of instances (out of 1000) where χ2
i > χ2

0. In the
next two rows, we record the mean and variance, respectively, of
χ2

i , χ
2
2, . . . , χ

2
1000.

When fitting an actual dataset, one does not know the exact dis-
tribution from which it arises so to compare methods, one should
sample from a known distribution. This is done in Section 7.

Table 2: p-Value Estimation

3.5.5X 2.5.4Y
M.O.M M.O.P M.O.L M.O.M M.O.P M.O.L

χ2
0 5.452 4.162 4.556 3.558 1.870 3.113

p0-value .2440 .3845 .3360 .3134 .5998 .3746

Failures 48 334 7 7 22 0

χ2
i > χ2

0 437 577 517 606 844 643

χ2 6.032 5.653 5.237 5.788 4.432 4.542

V (χ2) 69.27 22.20 8.441 741.1 7.741 7.879

7 L2-Norm comparison of moment and per-
centile fits

In this section we use L2-norms to compare the qualities of moment
and percentile fits at different (α3, α4) points. The L2-norm of two
functions g(x) and f(x) measures the discrepancy between g(x) and
f(x) as ∫ ∞

−∞
|g(x)− h(x)|2 dx.

Since GLD p.d.f.s cannot be expressed in closed form, the L2-norm
for two GLD p.d.f.s is evaluated numerically.

To obtain our comparison, we start by specifying 9 (α3, α4) points
and at each point we

1. Obtain a GLD(λ1, λ2, λ3, λ4)=GLD(L0), which has exactly (to
numerical accuracy) (0, 1, α3, α4); these are listed in Table 3,

2. Generate 1000 random samples, X1, . . . , X1000, each of size 1000
from GLD(L0) and for each such sample,
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(a) Compute (α(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 ) and use it to obtain a GLD

moment-based fit GLD(λ1, λ2, λ3, λ4)=GLD(LMi)

(b) Compute (ρ(i)
1 , ρ

(i)
2 , ρ

(i)
3 , ρ

(i)
4 ) and use it to obtain a GLD

percentile-based fit GLD(λ1, λ2, λ3, λ4)=(LPi)

(c) Compute the L2-norm, LM2-Ni, of GLD(L0) and
GLD(LMi)

(d) Compute the L2-norm, LP 2-Ni, of GLD(L0) and
GLD(LPi)

3. Determine the mean, LM2-N , of the LM2-Ni and the mean,
LP 2-N , of the LP 2-Ni.

Table 3: L0 = (λ1, λ2, λ3, λ4) for which GLD(L0) has
(0, 1, α3, α4)

(α3, α4) L0 = (λ1, λ2, λ3, λ4)

A = (0.5, 7) (0.4751,−4.4160,−5.1850,−1.4279)
B = (1, 9) (−0.2148,−0.2355,−0.08436,−0.1249)
C = (1.5, 10.5) (−0.2931, 0.2079, 12.1841, 66.0226)

D = (0.5, 10) (−0.1207, 0.2231, 14.9626, 27.0019)
E = (1, 12) (−0.1600,−0.3375,−0.1198,−0.1598)
F = (1.5, 14) (−0.2595,−0.3099,−0.09815,−0.1591)

G = (0.5, 13) (−0.06499,−0.41156,−0.1543,−0.1730)
H = (1, 15) (−0.1327,−0.4036,−0.1413,−0.1790)
I = (1.5, 17) (−0.2177,−0.3710,−0.1191,−0.1776)

Even with the large sample size (1000) that is used, about 1% to
2% of samples are ones where moment-based fits cannot be obtained
(this occurs in 146 out of the 9000 cases). The means, LM2-N given
in Table 4 below, are the means of those situations where fits were
possible. The reason for the failure to obtain fits on the 146 occasions
is that the random sample produced an (α3, α4) point that was out
of computation range.



184 Karian and Dudewicz

Table 4: L2-Norms of Moment and Percentile Fits

Moment fits Percentile fits

No No
(α3, α4) LM2-N Fits LM2-N Fits

A = (0.5, 7) 0.0307 4 0.0300 0
B = (1, 9) 0.0354 8 0.0308 0
C = (1.5, 10.5) 0.0425 21 0.0322 0

D = (0.5, 10) 0.0383 8 0.0305 0
E = (1, 12) 0.0425 13 0.0309 0
F = (1.5, 14) 0.0476 29 0.0316 0

G = (0.5, 13) 0.0447 11 0.0307 0
H = (1, 15) 0.0477 18 0.0301 0
I = (1.5, 17) 0.0515 34 0.0315 0

The quadratic least-squares fit of LM2-N from the moment-based
fits to the 9 (α3, α4) pairs is

fM (α3, α4) = .00898− .00417α3 + .00381α4 + .00635α2
3

− .0000560α2
4 − .000548α3α4.

The surface fM , together with its percentile counterpart fP , is shown
in Figure 1. The predicted LM2-N values, L̂M2-N , from this least-
squares fit at the 9 points are:

.0305, .0360, .0422, .0382, .0422, .0478, .0450, .0475, .0516

and the square of the correlation coefficient for LM2-N and L̂M2-N
is 0.998. The equation of the regression line is y = 0.0000985+0.998x

where x is LM2-N and y is L̂M2-N .

The quadratic least-squares fit of LP 2-N from the percentile-based
fits to the 9 (α3, α4) pairs is

fP (α3, α4) = .0287− .00235α3 + .000428α4

+ .00263α2
3 − .0000141α2

4 − .000120α3α4.

The predicted LP 2-N values, L̂P 2-N , from this least-squares fit at
the 9 points are:

.0301, .0306, .0322, .0305, .0307, .0318, .0306, .0305, .0313
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α3

α4

←− fM

←− fP

Figure 1. Approximations of L2 norms assocated with
moment (fM ) and percentile (fP ) fits.

and the square of the correlation coefficient for LP 2-N and L̂P 2-N is
0.918. The equation of the regression line is 0.00254 + 0.918x where
x is LP 2-N and y is L̂P 2-N .

From a comparison of the surfaces fM (α3 α4) and fP (α3 α4) in
Figure 1 we conclude what Table 2 hinted at: M.O.P. is superior
to M.O.M. over a broad range of (α3, α4)-space for fitting GLDs to
samples of size 1000. The superiority is larger for larger α4. In future
studies we plan to extend these results to the “area between” norm
given by

∫∞
−∞ |g(x) − f(x)| dx, as well as to other methods, regions,

and sample sizes.
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