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Abstract. Small area estimation has received a lot of attention in
recent years due to growing demand for reliable small area statistics.
Traditional area-specific estimators may not provide adequate preci-
sion because sample sizes in small areas are seldom large enough. This
makes it necessary to employ indirect estimators based on linking
models. Basic area level and unit level models have been extensively
studied in the literature to derive empirical best linear unbiased pre-
diction (EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB)
small area estimators and associated measures of variability. In this
paper, I will cover several important new developments related to
model-based small area estimation.

1 Introduction

Due to cost and other considerations, sample surveys are typically
designed to provide area-specific (or direct) estimators with small
sampling coefficient of variation (CV) for large areas (or domains).
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In fact, survey practitioners often stress that nonsampling errors,
including measurement and coverage errors, contribute much more
than sampling errors to total mean squared error (MSE) which is
often used as a measure of quality of estimators. However, sampling
errors play a dominant role in small area estimation because sample
sizes in small areas are seldom large enough to provide direct esti-
mators with acceptable quality in terms of sampling MSE (or CV).
In fact, sample sizes can be zero in many small areas of interest. For
example, data from the Current Population Survey (CPS) are used
to estimate county (and school district) counts of poor school age
children in the United States, but the CPS sample sizes are zero in
many of the counties (National Research Council, 2000).

Due to difficulties with direct estimators, it is often necessary to
employ indirect estimates that borrow information from related ar-
eas through explicit (or implicit) linking models, using census and
administrative data associated with the small areas. Indirect esti-
mators based on explicit linking models have received a lot of at-
tention in recent years because of the following advantages over the
traditional indirect estimators based on implicit models: (i) Ex-
plicit model-based methods make specific allowance for local varia-
tion through complex error structures in the model that link the small
areas. (ii) Models can be validated from the sample data. (iii) Meth-
ods can handle complex cases such as cross-sectional and time series
data, binary or count data, spatially-correlated data and multivariate
data. (iv) Area-specific measures of variability associated with the
estimates may be obtained, unlike overall measures commonly used
with the traditional indirect estimators.

Basic area level and unit level models have been extensively stud-
ied in the literature to derive empirical best linear unbiased prediction
(EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB) small
area estimators of totals (or means) and associated measures of vari-
ability. The EBLUP method is applicable for linear mixed models
that cover the basic area level and unit level models. On the other
hand, EB and HB methods are more generally applicable, covering
generalized linear mixed models that are used to handle categorical
(e.g., binary) and count data. MSE is used as a measure of variability
under the EBLUP and EB approaches, while the HB approach uses
the posterior variance as a measure of variability, assuming a prior
distribution on the model parameters. We refer the reader to Rao
(2003) for an extensive account of EBLUP, EB and HB methods for
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small area estimation. Recent review papers on small area estimation
include Ghosh and Rao (1994), Rao (1999) and Pfeffermann (2002).

In this paper, I will cover several important new developments
related to model-based small area estimation, including unmatched
sampling and linking area level models, use of sampling weights in
unit level models, jackknife methods for MSE estimation, and MSE
estimation for area level models when the sampling variances are
estimated. Section 2 gives the basic small area models and some
extensions. Results for the basic area level model under EBLUP
(or EB) estimation are presented in Section 3. Jackknife estimation
of MSE of EB estimators that can handle generalized linear mixed
models is studied in Section 4. A pseudo-EBLUP method for the
basic unit level model that takes account of survey weights is given
in Section 5. HB estimation under unmatched sampling and linking
models is studied in Section 6, as well as “matching” priors that
lead to well-calibrated inferences. Section 7 presents some recent
applications of EBLUP, EB and HB methods. Finally, some practical
issues are discussed in Section 8.

2 Small area models

Two types of basic small area models have been studied in the lit-
erature. In the first type, called the basic area level model, only
area-specific auxiliary data zi = (z1i, . . . , zpi)T , related to some suit-
able functions θi = g(Yi) of the small area total Yi (i = 1, . . . ,m),
are used to develop a linking model of the form θi = zT

i β + vi with
vi

iid∼ N(0, σ2
v), where σ2

v is the model variance. The linking model
is combined with the matching sampling model θ̂i = θi + ei, where
θ̂i = g(Ŷi) is a direct estimator of θi and ei|θi

ind∼ N(0, ψi) with known
sampling variance ψi. The combined model, θ̂i = zT

i β + vi + ei, is a
special case of the linear mixed model.

The basic area level model has at least two limitations. First, the
assumption of known sampling variances, ψi, is restrictive, although
methods based on generalized variance functions (GVF) have been
proposed to produce smoothed estimates of the ψi’s. Secondly, the
assumption E(ei|θi) = 0 may not be tenable if the small area sample
size, ni, is small and θi is a nonlinear function of the total Yi, even if
the director estimator Ŷi is design-unbiased for Yi. It is more realistic
to use the sampling model Ŷi = Yi + fi with E(fi|Yi) = 0, which sim-
ply says that Ŷi is design-unbiased for Yi. Further, we assume that
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V (fi|Yi) = σ2
i , where the sampling variance may depend on Yi; for

example, σ2
i = Y 2

i c
2
i , where ci is the known coefficient of variation

of Ŷi ascertained from fitting GVF’s. The sampling model is now
unmatched with the linking model in the sense that they cannot be
combined directly to produce a linear mixed model. Various exten-
sions of the basic area level (also called Fay-Herriot model) have been
proposed to handle correlated sampling errors, spatial dependence of
the model errors vi and time-series and cross-sectional data (see Rao,
2003, Chapter 8).

In the second type, called basic unit level model, unit level aux-
iliary variables xij = (x1ij , . . . , xpij)T are related to the unit y-values
yij through a nested error linear regression model yij = xT

ijβ+vi+eij ,

where vi
iid∼ N(0, σ2

v) and independent of eij
iid∼ N(0, σ2

e). Various
extensions of the basic unit-level model have been proposed to han-
dle binary responses, two-stage sampling within areas, multivariate
responses and others (see Rao, 2003, Chapters 8, 9 and 10). For ex-
ample, for binary responses yij , we may assume that yij

ind∼ Bernoulli
(pij) and that the pij ’s are linked by assuming a logistic regression

model log{pij/(1− pij)} = xT
ijβ + vi, where vi

iid∼ N(0, σ2). This is a
special case of generalized linear mixed models. Malec et al. (1999)
used a two-level logistic regression model on the pij ’s with random
slopes βi.

3 Basic area level model: EB

3.1 Estimation of θi

Under the basic area level model, the best estimator of θi in the
sense of minimum MSE is given by E(θi|θ̂i,β, σ

2
v) which depends

on the model parameters β and σ2
v . Replacing (β, σ2

v) by suitable
estimators (β̂, σ̂2

v) obtained from the marginal distribution of θ̂is,
namely θ̂i

ind∼ N(zT
i β, σ2

v + ψi), we obtain the empirical Bayes or
empirical best (EB) estimator:

θ̂EB
i = γ̂iθ̂i + (1− γ̂i)zT

i β̂, (3.1)

where γ̂i = σ̂2
v/(σ̂

2
v +ψi). The form (3.1) shows that the EB estimator

of θi is a weighted average of the direct estimator θ̂i and the regression
synthetic estimator zT

i β̂ with weights γ̂i and 1− γ̂i respectively. The
weight γ̂i is a measure of between area variability relative to total
variability associated with area i. The estimator θ̂EB

i is unbiased for
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θi under the combined model, i.e., E(θ̂EB
i − θi) = 0, but the resulting

estimator g−1(θ̂EB
i ) of Yi is biased. Note that g−1(θ̂EB

i ) is not equal
to the EB estimator Ŷ EB

i obtained by evaluating E[g−1(θi)|θ̂i,β, σ
2
v ]

at β̂ and σ̂2
v .

The EB estimator θ̂EB
i is design-consistent as the sampling vari-

ance ψi goes to zero, provided the direct estimator is design-consistent.
This follows by noting that θ̂EB

i → θ̂i as ψi → 0.
Under normality assumption, maximum likelihood (ML) or resid-

ual maximum likelihood (REML) method may be used to estimate
β and σ2

v from the marginal distribution θ̂i
ind∼ N(zT

i β, σ2
v + ψi). Al-

ternatively, σ2
v may be estimated by a simple method of moments

(Prasad and Rao, 1990) or by solving the following moment equation
iteratively for σ2

v (Fay and Herriot, 1979):

a(σ2
v) =

m∑
i=1

(θ̂i − zT
i β̃(σ2

v))
2/(σ2

v + ψi) = m− p, (3.2)

where β̃(σ2
v) is the weighted least squares estimator of β for given

σ2
v . The resulting estimators σ̂2

v and β̂ = β̃(σ̂2
v) lead to the EBLUP

estimator of θi from (3.1). The EBLUP estimator does not depend
on normality.

3.2 MSE estimation

Methods of estimating MSE(θ̂EB
i ) that account for the variability

of β̂ and σ̂2
v have been studied extensively in the literature, where

MSE(θ̂EB
i ) = E(θ̂EB

i − θi)2 and the expectation is with respect to the
combined model (see Rao, 2003, Chapter 7). An accurate approxi-
mation to MSE(θ̂EB

i ) under normality is given by

MSE(θ̂EB
i ) ≈ g1i(σ2

v) + g2i(σ2
v) + g3i(σ2

v) (3.3)

where the leading term g1i(σ2
v) = γiψi with γi = σ2

v/(σ
2
v + ψi) is the

contribution to MSE assuming β and σ2
v are known,

g2i(σ2
v) = (1− γi)2zT

i

[
m∑

i=1

zizT
i /(σ

2
v + ψi)

]−1

zi (3.4)

accounts for the variability of β̂ and the term

g3i(σ2
v) =

[
ψ2

i /(σ
2
v + ψi)4

]
E(θ̂i − zT

i β)2h(σ2
v) (3.5)

=
[
ψ2

i /(σ
2
v + ψi)3

]
h(σ2

v) (3.6)
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accounts for the variability of σ̂2
v , where h(σ2

v) is the asymptotic vari-
ance of σ̂2

v for large m. Neglected terms in the approximation (3.3)
are of lower order than m−1, and the approximation is valid for the
Prasad-Rao (PR), Fay-Herriot (FH), ML and REML methods of es-
timating σ2

v . Datta, Rao and Smith (2002) showed that

hML(σ2
v) = hREML(σ2

v) ≤ hFH(σ2
v) ≤ hPR(σ2

v). (3.7)

It follows from (3.6) and (3.7) that ML (or REML) leads to the
smallest MSE approximation followed by FH and PR.

Comparing the leading term γiψi of (3.3) with ψi, the MSE of
the direct estimator θ̂i, it is clear that the EB estimator θ̂EB

i leads to
large gain in efficiency when γi is small, i.e., when σ2

v , the variability
of the model errors vi, is small relative to the total variability, σ2

v +ψi.
Note that ψi is the design variance of θ̂i.

Turning to MSE estimation, an estimator correct to the same
order approximation as (3.3) is given by

mse(θ̂EB
i ) ≈ g1i(σ̂2

v) + g2i(σ̂2
v) + 2g3i(σ̂2

v). (3.8)

The estimator (3.8) is approximately unbiased for MSE(θ̂EB
i ) in the

sense that its bias is of lower order than m−1, provided σ̂2
v is based on

REML or PR. For ML and FH methods of estimating σ2
v , an extra

term g0i(σ̂2
v) is added to (3.8). This extra term for ML is positive

(Datta and Lahiri, 2000). Therefore, ignoring this term and using
(3.8) with ML estimator σ̂2

v would lead to underestimation of MSE.
On the other hand, the extra term for FH is negative (Datta, Rao
and Smith, 2002). Therefore, ignoring this term and using (3.8) with
FH estimator σ̂2

v would lead to overestimation of MSE.
Lahiri and Rao (1995) showed that the MSE estimator (3.8) using

the PR estimator of σ2
v is robust to nonnormality of the random effects

in the sense that approximate unbiasedness remains valid, provided
the normality of the sampling errors, ei, holds. The latter assumption
is less restrictive than the normality of the vi’s because of the central
limit theorem effect on the direct estimators θ̂i. It is not known if the
robustness property is also valid under REML, ML and FH methods.

A criticism of the MSE estimator (3.8) and its modification for
ML and FH is that it is not area-specific in the sense that it does not
explicitly depend on θ̂i although the area-specific auxiliary data zi is
involved in the g2i(σ̂2

v)–term. Rao (2000) used the expression (3.5)
for g3i(σ2

v) to get an alternative area-specific estimator of g3i(σ2
v):

g̃3i(σ̂2
v , θ̂i) = [ψ2

i /(σ
2
v + ψi)4](θ̂i − zT

i β̂)2h(σ̂2
v). (3.9)
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Using (3.9), we get two different area-specific MSE estimators for
REML or PR:

mse1(θ̂EB
i ) ≈ g1i(θ̂2

v) + g2i(σ̂2
v) + g3i(σ̂2

v) + g̃3i(σ̂2
v , θ̂i) (3.10)

and

mse2(θ̂EB
i ) ≈ g1i(θ̂2

v) + g2i(σ̂2
v) + 2g̃3i(σ̂2

v , θ̂i). (3.11)

The term g̃3i(σ̂2
v , θ̂i) is less stable than g3i(σ̂2

v) but it is of lower order
than the leading term g1i(σ̂2

v) in (3.10) and (3.11). As a result, the
coefficient of variation (CV) of mse1(θ̂EB

i ) should be comparable to
the CV of mse(θ̂EB

i ), at least for moderate to large m. Fuller (1989)
estimated the conditional MSE of θ̂EB

i given the i-th area direct es-
timator θ̂i. His area-specific MSE estimator is closely related to the
unconditional MSE estimator (3.10). Butar and Lahiri (1997) ob-
tained an area-specific MSE estimator by correcting the bias of Laird
and Louis’ (1987) estimator of variability based on the parametric
bootstrap method. This bias-corrected MSE estimator is identical
to (3.10) which is obtained in a straightforward manner from the
formula (3.5) for g3i(σ2

v).
Datta, Rao and Smith (2002) conducted a simulation study of the

relative bias (i.e., bias/MSE) and CV of MSE estimators based on
PR, ML, REML and FH. They used a simple linking model θi = µ+vi

with µ = 0 and three different distributions for vi : N(0, 1), double
exponential (0, 1) and location exponential (−1, 1), each distribution
with mean zero and variance 1. The sampling errors ei were generated
from N(0, ψi) for specified ψi–patterns to reflect moderate to large
variation in the ψi’s. They generated 10,000 samples for each pattern
of ψi’s and m = 15, 30. For the pattern with moderate ψ–variation,
all the MSE estimators are comparable in terms of relative bias, while
FH outperformed for the pattern with large ψi–variation. In the latter
case, the other methods lead to considerable over-estimation for the
areas with small ψi. The FH method also performed well in terms
of CV of the MSE estimator, particularly for the areas with small
ψi when the ψi–variation is large. These empirical results strongly
suggest that the FH-based MSE estimator is robust over ψi–patterns,
while the FH-based estimator, θ̂EB

i , maintains good efficiency.
It is more appealing to survey practitioners to consider the esti-

mation of sampling MSE of θ̂EB
i , i.e., MSEp(θ̂EB

i ) = Ep(θ̂EB
i − θi)2,

where the expectation Ep is with respect to the sampling design p(·),
i.e., the distribution of sampling errors given the θi’s. Rivest and
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Belmonte (2000) derived a design-unbiased estimator of MSEp(θ̂EB
i )

using the PR estimator of σ2
v . The leading term of this MSE estima-

tor is area-specific, i.e., depends on θ̂i, unlike the leading term g1i(σ̂2
v)

of the model-based MSE estimator, mse(θ̂EB
i ). However, it is highly

unstable relative to mse(θ̂EB
i ) unless more weight is attached to the

direct estimator θ̂i, i.e., 1− γ̂i is small.

3.3 Unknown sampling variances ψi

In sections 4.1 and 4.2 we assumed that the sampling variances, ψi,
are known, but this is a restrictive assumption. Wang (2000) and
Rivest and Vandal (2002) studied the effect of estimating ψi on the
MSE of the EB estimator (3.1) with γ̂i replaced by σ̂2

v/(σ̂
2
v+ψ̂i), where

ψ̂i is an estimator of ψi. For example, suppose that we have a random
sample yij

iid∼ N(θi, σ
2), j = 1, . . . , ni(≥ 2) from the i-th area and θ̂i =

ȳi, the sample mean. In this case ψ̂i = s2i /ni is design-unbiased for ψi,
where s2i is the sample variance. Further, ȳi and ψ̂i are independently
distributed with ψ̂i ≈ N [ψi, δi = 2ψ2

i /(ni − 1)]. Under this set-up,
Rivest and Vandal (2002) obtained an appropriate MSE estimator by
adding the term 2δ̂iσ̂4

v/(ψ̂i+σ̂2
v)

3 to (3.8) to account for the estimation
of ψi, where δ̂i = 2ψ̂2

i /(ni − 1). If the sample sizes ni are small, then
(3.8) can underestimate the MSE quite severely, unlike the Rivest-
Vandal MSE estimator. If ψ̂i is a smoothed estimator of ψi based
on GVF model fitting, the contribution from the extra term is of the
same order, O(m−1), as the g3i–term.

4 Jackkife estimation of MSE

Jiang, Lahiri and Wan (2002) proposed a jackknife method of esti-
mating MSE of EB estimators that is applicable to generalized linear
mixed models with block diagonal covariance structures, where the
blocks correspond to small areas. This method also leads to approx-
imately unbiased estimators of MSE of EB estimators. For example,
consider the case of binary responses yij

iid∼ Bernoulli(pi), j = 1, . . . , ni

and log{pi/(1 − pi)} = zT
i β + vi, i = 1, . . . ,m, where zi is the vec-

tor of area-specific covariates, vi
iid∼ N(0, σ2

v) and pi is the i-th area
proportion. The minimum MSE (or Bayes) estimator of pi is given
by p̂B

i = E(pi|yi.,β, σ
2
v) =: k(yi.,β, σ

2
v), where yi. = Σjyij . The EB

estimator of pi is p̂EB
i = k(yi., β̂, σ̂

2
v), where β̂ and σ̂2

v are suitable
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estimators of β and σ2
v obtained from the marginal distribution of

yi’s.
The jackknife method makes use of the following orthogonal de-

composition of MSE(p̂EB
i ):

MSE(p̂EB
i ) = E(p̂B

i − pi)2 + E(p̂EB
i − p̂B

i )2. (4.1)

Based on the decomposition (4.1), Jiang et al. (2002) proposed the
following jackknife steps to estimate MSE(θ̂EB

i ):

(1) Calculate β̂(`) and σ̂2(`) deleting the `-th area data (yi.,xi).
Let p̂EB

i (`) = k{yi., β̂(`),σ̂2(`)} be the EB estimator of pi based
on β̂(`) and σ2(`). Note that yi. remains unchanged.

(2) Calculate the jackknife estimator of the last term in (4.1) as

M̂2i =
m− 1
m

m∑
`=1

[
p̂EB

i (`)− p̂EB
i

]2
. (4.2)

(3) The first term E
(
p̂B

i − pi

)2
may be written as E[g̃1i(yi.,β, σ

2
v ] =:

g1i(β, σ2
v), where g̃1i(yi.,β, σ

2
v) = V (pi|yi.,β, σ

2
v) is the posterior

variance of pi given yi. and (β, σ2
v). Adjust the bias of g1i(β̂, σ̂2

v)
(as an estimator of g1i(β, σ2

v)) using the jackknife bias reduction
method. The bias-adjusted estimator is given by

M̂1i = g1i(β̂, σ̂2
v)−

m− 1
m

m∑
`=1

[
g1i(β̂(`), σ̂2

v(`))− g1i(β̂, σ̂2
v)

]
. (4.3)

Note that the leading term g1i(β̂, σ̂2
v) is not area-specific in the

sense of not depending on yi..

(4) Calculate the jackknife estimator of MSE as

mseJ(p̂EB
i ) = M̂1i + M̂2i. (4.4)

Booth and Hobert (1998) argued that for non-normal responses
the MSE estimator should be area-specific because the posterior vari-
ance of pi given (β, σ2

v) depends on yi., unlike the case of linear mixed
models. They proposed the conditional MSE, given the i-th area
data (yi, zi), as the relevant measure of variability, and estimated the
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conditional MSE. Rao (2003, Chapter 9) addressed this criticism by
simply modifying the bias-adjusted estimator M̂1i. Instead of eval-
uating the expectation of g̃1i(yi.,β, σ

2
v) with respect to the marginal

distribution of yi. (using numerical integration), he proposed to ad-
just the bias of g̃1i(yi., β̂, σ̂

2
v) as an estimator of g1i(yi.,β, σ

2
v). This

leads to

M̃1i(yi.) = g̃1i(yi., β̂, σ̂
2
v)−

m−1
m

m∑
`=1

[
g̃1i(yi., β̂(`), σ̂2

v(`))− g̃1i(yi., β̂, σ̂
2
v)

]
(4.5)

which is area-specific including the leading term g̃1i(yi., β̂, σ̂
2
v). The

modified jackknife estimator of MSE is given by

mse∗J(p̂EB
i ) = M̃1i(yi.) + M̂2i. (4.6)

Note that (4.6) is not only area-specific but also computationally
simpler than (4.4) because it avoids the evaluation of the expecta-
tion of g̃1i(yi.,β, σ

2
v) with respect to the marginal distribution of yi..

Properties of the modified jackknife MSE estimator (4.6) are under
investigation (jointly with Sharon Lohr). For the case of a linear
mixed model, M̃1i(yi.) = M̂1i and hence (4.6) is identical to (4.4).

5 Basic unit level model: PSEUDO-EB

We now turn to the basic unit level model, yij = xT
ijβ + vi + eij , and

assume that the model holds for the sample, i.e., no sample selection
bias within areas. If the areas are also sampled, then we assume the
absence of selection bias for sampled areas as well. The mean for
the i-th area, Ȳi, may be approximated as µi = X̄T

i β + vi, assuming
that the number of population units in the i-th area, Ni, is large,
where X̄i. is the population mean of x for the i-th area. Assuming
vi

iid∼ N(0, σ2
v) and independent of eij

iid∼ N(0, σ2) and estimating the
model parameters β and σ2

v from the marginal distribution of the
sampled yij ’s, we get the EB estimator of µi as

µ̂EB
i = γ̂i

[
ȳi + (X̄i − x̄i)T β̂

]
+ (1− γ̂i)X̄T

i β̂, (5.1)

where γ̂i = σ̂2
v/(σ̂

2
v + σ̂2

e/ni), (ȳi, x̄i) are the i-th area sample means
and (β̂, σ̂2

v) are the estimators of (β, σ2
v); see Battese, Harter and

Fuller (1988). This estimator is also the EBLUP estimator without
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normality assumption, provided β and σ2
v are estimated by a moments

method such as the method of fitting-of-constants. As ni → ∞, the
EB estimator converges to the “survey regression” estimator ȳi +
(X̄i−x̄i)T β̂, while it converges to the “synthetic regression” estimator
X̄T

i β̂ as ni decreases. We refer to Rao (2003), Chapter 7 for a detailed
discussion of EBLUP estimation and MSE estimation.

A drawback of (5.1) is that it is purely model-based and does not
take account of the survey weights wij . As a result, it is not design-
consistent as ni increases, unless the sampling design is self-weighting
within areas, i.e., wij = wi. On the other hand, the EBLUP estima-
tor under the area level model is design-consistent. It is desirable to
ensure design-consistency for the unit level models as well because ni

could be moderately large for some of the areas under consideration.
Also, it is desirable to ensure that the estimators of area totals au-
tomatically add up to the direct survey regression estimator of the
large area total. You and Rao (2002a) developed a pseudo-EBLUP
estimator of µi that satisfies both the desirable properties. We give
a brief account of their approach.

We first obtain a survey-weighted area level model from the unit
level model by taking a weighted average using normalized weights
w̃ij = wij/wi., where wi. = Σjwij :

ȳiw = Σjw̃ijyij = x̄T
iwβ + vi + ēiw, (5.2)

where ēiw = Σjw̃ijeij with E(ēiw) = 0 and V (ēiw) = σ2
vΣjw̃

2
ij =:

σ2
eδiw, and x̄iw = Σjw̃ijxij . Then the BLUP estimator of µi from the

aggregated model (5.2) is obtained as

µ̃iw(β, σ2
v , σ

2
v) = X̄T

i β + γiw(ȳiw − x̄T
iwβ), (5.3)

= X̄T
i β + ṽiw(β, σ2

e , σ
2
v) (5.4)

where γiw = σ2
v/(σ

2
v + σ2

eδiw) and ṽiw(β, σ2
e , σ

2
v) = γiw(ȳiw − x̄T

iwβ)
is the BLUP of vi from the aggregated model (5.2). This estimator
depends on the model parameters β and σ2

v .
We estimate β, given σ2

e and σ2
v , using the following weighted

estimating equations based on the unit level deviations yij − xT
ijβ −

ṽiw(β, σ2
e , σ

2
v):

m∑
i=1

ni∑
j=1

wijxij

[
yij − xT

ijβ − ṽiw(β, σ2
e , σ

2
v)

]
= 0. (5.5)

Denote the solution of (5.5) as β̃w(σ2
e , σ

2
v). Now we replace σ2

v and
σ2

e by suitable estimators σ̂2
v and σ̂2

e from the unit level model to get
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β̂w = β̃w(σ̂2
e , σ

2
v). This leads to a pseudo-EBLUP estimator of µi as

µ̂P
iw = µ̃iw(β̂w, σ̂

2
e , σ̂

2
v) = X̄T

i β̂w + γ̂iw(ȳiw − x̄T
iwβ̂w), (5.6)

where γ̂iw = σ̂2
v/(σ̂

2
v+σ̂2

eδiw). It is also possible to use design-weighted
estimators of σ2

e and σ2
v (Korn and Granbard, 2003). You and Rao

(2002) showed that the estimated area totals, Niµ̂
P
iw, add up to the

direct survey regression estimator of the total ΣiNiµi:

ΣiNiµ̂
P
iw = Ŷw + (X− X̂w)T β̂w, (5.7)

where Ŷw = ΣiΣjwijyij , X̂w = ΣiΣjwijxij . Thus, the pseudo-
EBLUP estimators µ̂P

iw satisfy the benchmarking property automat-
ically without any post-adjustment, unlike in the case of EBLUP
estimators µ̂EB

i . In the latter case, Battese et al. (1988) proposed
an efficient post-adjustment of the EBLUP estimators µ̂EB

i to ensure
agreement with the direct estimator of the total ΣiNiµi.

We have assumed that the random small area effects vi are nor-
mally distributed in the basic unit level model yij = xT

ijβ + vi + eij .
The MSE estimator of the purely model-based estimator µ̂EB

i de-
rived under normality of the vi’s is not robust to deviations from
normality, unlike the case of basic area level model studied in Sec-
tion 3.2. It would be worthwhile to study EB inference under semi-
nonparametric (SNP) representations of the density of vi. Zhang and
Davidian (2001) approximated the density of vi by a SNP represen-
tation which includes normality as a special case, and it provides
flexibility in capturing nonnormality through a user-chosen tuning
parameter. Maiti (2001) used a finite mixture of normal distributions
for the distribution of vi, and developed hierarchical Bayes (HB) es-
timates of small area means, assuming a prior distribution on the
model parameters. EB estimation of small area means and associ-
ated MSE estimation under broad classes of densities of vi, such as
the above, would be practically useful.

6 Hierarchical Bayes (HB) approach

We illustrate the HB approach using the basic area level model of Sec-
tion 2. Under this approach, a prior distribution on the model param-
eters δ = (βT , σ2

v)
T is specified, and inferences are then based on the

posterior distribution, f(θi|θ̂), of θi given the data θ̂ = (θ̂1, . . . , θ̂m)T .
In particular, θi is estimated by its posterior mean E(θi|θ̂), called
the HB estimator θ̂HB

i . The variability of θ̂HB
i is measured by the
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posterior variance V (θi|θ̂). The calculation of θ̂HB
i and V (θi|θ̂) in-

volves integrations with respect to the posterior distribution of β, σ2
v ,

f(β, σ2
v |θ̂). However, Monte Carlo Markov chain (MCMC) meth-

ods can be used to generate J simulated samples {θ(j)
1 , . . . , θ

(j)
m ; j =

1, . . . , J} directly from the joint posterior f(θ|θ̂), where J is suffi-
ciently large and θ = (θ1, . . . , θm)T . Using the simulated samples,
we approximate θ̂HB

i by the mean θ
(·)
i = J−1Σjθ

(j)
i and V (θi|θ̂) by

the variance J−1Σj(θ
(j)
i − θ

(·)
i )2 of the simulated samples θ(j)

i . The
HB estimator of the total Yi is approximated by the mean Y

(·)
i =

J−1ΣjY
(j)
i and the posterior variance of Yi, V (Yi|θ̂) by the variance

J−1Σj(Y
(j)
i − Y

(·)
i )2, where Y (j)

i = g−1(θ(j)
i ).

An advantage of the HB approach is that it is straightforward, the
inferences are “exact” unlike the EB (or EBLUP) approach, and it
can handle complex small area models using MCMC methods, but it
requires the specification of a prior f(β, σ2

v) on the model parameters.
It would be desirable to select a “matching” prior f(β, σ2

v) ∝ f(σ2
v)

that leads to well-calibrated inferences. In particular, the poste-
rior variance should be approximately unbiased for MSE(θ̂HB

i ), i.e.,
E[V (θi|θ̂)]−MSE(θ̂HB

i ) = o(m−1); asymptotically, θ̂HB
i ≈ θ̂EB

i . This
will provide a frequentist justification for the posterior variance as a
measure of variability Data, Rao and Smith (2002) showed that the
matching prior is given by

fi(σ2
v) ∝ (σ2

v + ψi)2
m∑

`=1

(σ2
v + ψ`)−2. (6.1)

This prior depends collectively on the sampling variances, ψ`, for all
the areas ` as well as on the area-specific sampling variance ψi. For
the balances case, ψi = ψ, the matching prior reduces to the “flat”
prior f(σ2

v) ∝ 1. Note that the prior (6.1) on the common parameter
σ2

v is designed for inference on the i-th area so that its dependence
on ψi may not be problematic.

A disadvantage of the EB estimator θ̂EB
i is that the weight γ̂i at-

tached to the direct estimator takes zero value when σ̂2
v = 0, in which

case it reduces to the regression synthetic estimators zT
i β̂. Thus, all

the direct estimator θ̂i receive zero weight even when the sample sizes
in some areas are not small. This difficulty was encountered in using
a state model to produce EB state estimates of poor school-age chil-
dren in the United States (National Research Council, 2000). The
HB approach avoids this difficulty by producing positive weights in
all cases. Bell (1999) applied the HB approach to the state model
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using the prior f(β, σ2
v) = f(β)f(σ2

v) with f(β) ∝ 1 and f(σ2
v) ∝ 1,

and obtained positive weights in all cases. But it is not clear if his
method leads to well-calibrated inferences since the matching prior
(6.1) is different from the flat prior, especially when the ψi-values vary
significantly, as in the case of Bell (1999) with max(ψi)/min(ψi) as
large as 20.

You and Rao (2002b) used the HB approach to handle the case
of unmatched sampling and linking area level models (Section 2) and
applied it to Canadian census undercount estimation. In this applica-
tion, Ci = census count, Yi = number missing and Ŷi is a post-census
survey estimator of Yi with known sampling variance σ2

i for the i-th
province in Canada (i = 1, . . . ,m = 10). The σ2

i ’s were estimated
by fitting a GVF model of the form V (Ŷi) ∝ Cγ

i and then treating

as if known in the sampling model Ŷi|Yi
ind∼ N(Yi, σ

2
i ). The linking

model is given by θi = log{Yi/(Yi + Ci)} = β0 + β1 logCi + vi with
vi

iid∼ N(0, σ2
v). HB estimates of undercounts, Yi, and undercoverage

rates, Ui = Yi/(Yi+Ci), and associated coefficients of variation (based
on the posterior variance) were calculated, using MCMC methods.

Singh, Folsom and Vaish (2003) studied the basic unit level model,
yij = xT

ijβ + vi + eij with vi
iid∼ N(0, σ2

v) independent of eij
iid∼

N(0, σ2
e), for the population, and allowed sample selection bias within

small areas. They used methods based on survey-weighted estimat-
ing functions (EF) to account for the sample selection bias. They
also extended the method to generalized linear mixed model such as
the logistic mixed model yij |pij

ind∼ Bernoulli(pij) and logit(pij) =
log{pij/(1−pij)} = xT

ijβ +vi; see Rao (2003, pp. 253–254) for a brief
account of the EF method. In situations where a sample of areas
is selected, the random effects vi are assumed to be free of sample
selection bias.

The HB approach is powerful and attractive, but caution should
be exercised when using MCMC methods. For example, MCMC al-
gorithms could lead to seemingly reasonable inferences about a non-
existent posterior distribution. This happens when the posterior dis-
tribution is improper and yet all the Gibbs conditional distributions,
used in generating the MCMC simulated samples, are proper (Hobert
and Casella, 1996). Another difficulty with MCMC is that the con-
vergence diagnostic tools can fail to detect the sort of convergence
failures they were designed to identify (Cowles and Carlin, 1996).
We refer the reader to Rao (2003), Section 10.2.4 for a discussion of
practical issues associated with MCMC.
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MCMC methods are also extensively used for model determina-
tion which plays a vital role in developing model-based small area
estimates. In particular, methods based on Bayes factors, posterior
predictive densities and cross-validation predictive densities are em-
ployed for model determination; see Rao (2003), Section 10.2.6. The
criterion of posterior predictive probability is often used to check the
overall fit of a proposed model. Sinharay and Stern (2003) conducted
a simulation study to investigate the effectiveness of this criterion for
model checking, using the basic area level model with no covariates.
Their study indicates that it is difficult to detect nonnormality of the
random effects vi using this criterion, unless the extent of violation
is huge.

7 Some recent applications

We now give a brief account of some major applications of EB(EBLUP)
and HB methods for model-based small area estimation. We refer the
reader to Rao (2003), Chapters 7–10 for further details.

(i) Basic area level model

The basic area level model, θ̂i = θi + ei and θi = zT
i β + vi with θi =

log Yi, has been used recently to produce EBLUP estimates of poor
school-age children, Yi, for each county in the United States (National
Research Council, 2000). Using these counts, the U.S. Department
of Commerce allocates annually over $7 billion of funds to counties,
and then states distribute these funds among school districts. Data
from the Current Population Survey (CPS) are used to calculate the
direct estimates θ̂i, and the area level covariates are based on census
and administrative data.

(ii) Basic unit level model

Battese, Harter and Fuller (1988) used the basic unit level model,
yij = xT

ijβ+vi+eij , to produce EBLUP estimates of county crop areas
in Iowa using LANDSAT satellite data as the unit level covariates
xij . They also calculated standard errors of EBLUP estimates and
validated the normality assumption on the error terms vi and eij .
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(iii) Time series and cross-sectional area level models

Datta, Lahiri and Maiti (2002) applied time series and cross-sectional
area level models to obtain EBLUP estimates of median income of
four-person families for the fifty American states and the District of
Columbia. They used the CPS estimates for nine years (1981–89) as
direct estimates, and census data as covariates. They also calculated
the coefficient of variation of the EBLUP estimates and demonstrated
their superiority over the direct CPS estimates. They also conducted
an external evaluation by comparing the 1989 EBLUP estimates to
1990 census estimates for 1989. Datta, Lahiri, Maiti and Lu (1999)
applied time series and cross-sectional area level models to obtain HB
estimates of monthly unemployment rates for forty-nine U.S. states
and the district of Columbia (m = 30), and associated standard er-
rors based on the posterior variance. They used the CPS estimates
of unemployment rates as direct estimated θ̂it, and Unemployment
Insurance (UI) claims rate as covariates zit for the period January
1985–December 1988 (t = 1, . . . , T = 48) to calculate HB estimates,
θ̂HB
iT , for the current period T . The linking model used by Datta et

al. (1999) accounted for seasonal variation in monthly unemployment
rates.

You, Rao and Gambino (2003) applied time series and cross-
sectional area level models to data from the Canadian Labour Force
Survey to obtain HB estimates and associated standard errors of
monthly unemployment rates for Census Metropolitan Areas and
Census Agglomerations. Unlike Datta et al. (1999), they used short
time series data (T = 6 months) and employed simpler models with-
out seasonal parameters.

(iv) Disease mapping area level models

Area level models have also been used in mapping of small area
mortality (or incidence) rates of diseases such as cancer. A simple
model assumes that the observed small area disease counts yi|λi

ind∼
Poisson(niλi) and θi = log λi

iid∼ N(µ, σ2), where θi is the true inci-
dence rate and ni is the number exposed in area i (see e.g., Maiti,
1998). Spatial dependence models for θi’s have also been studied,
using conditional autoregression (CAR) that relates each θi to a set
of neighbourhood areas of area i. Modelling of age-group specific
counts, yij , have also been studied. For example, Nandram, Se-

dransk and Pickle (1999) assumed that yij
ind∼ Poisson(nijλij) and
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log λij = xT
j β + vi with vi

iid∼ N(0, σ2), where nij is the number ex-
posed in age group j and area i, θij is the area/age-specific mortality
and xj is a vector of covariates for age group j. Random slopes, βi,
instead of fixed β, for the linking model have also been considered.

Maiti (1998) used the simple model above to obtain HB estimates
of lip-cancer incidence rates for Scottish counties. He also studied HB
estimation for the lip-cancer data under the spatial dependence model
for the βi’s. Estimates of θi’s were very similar for both the models
but standard errors for the spatial linking model were smaller than
those under the simpler model of spatial independence. Nandram et
al. (1999) used the age-group specific models to obtain age-specific
HB estimates of mortality rates for Health Service Areas in the United
States for the disease category “all cancers for white males”.

(v) Logistic linear mixed models

Malec et al. (1997) studied HB estimation of small area proportions
associated with binary responses, using logistic linear mixed models
with random slopes. They obtained HB estimates of health-related
proportions, from the U.S. National Health Interview Survey, for the
50 states and the District of Columbia and for specified subpopula-
tions within the 51 areas. Malec, Davis and Cao (1999) studied simi-
lar models to estimate overweight prevalence for subgroups (small ar-
eas) using the U.S. National Health and Nutrition Examination Sur-
vey data. Again, HB methods were used but survey weights were in-
corporated using a pseudo-likelihood. Folsom, Shah and Vaish (1999)
studied generalized linear mixed models with age-specific correlated
random effects. They produced estimates of prevalence rates for U.S.
states and age groups for up to 20 drug use related binary outcomes,
using data from the pooled U.S. National Household Survey on Drug
Abuse. The population model was assumed to hold for the sample
(i.e., the absence of sample selection bias), but survey weights were
introduced to obtain pseudo-HB estimates and pseudo-HB standard
errors.

8 Some Practical issues

In this section, we provide brief remarks on practical issues related
to small area estimation.
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(i) Design issues

It is important to consider design issues that have an impact on small
area estimation. A proper resolution of design issues could lead to en-
hancement in the reliability of direct as well as indirect estimates for
both planned and unplanned domains (areas). The following mea-
sures at the design stage might be useful in minimizing the need
for indirect estimators, at least for some planned domains: Use of list
frames to replace clusters wherever possible, use of many small strata
from which samples are drawn, compromise sample allocations to sat-
isfy reliability requirements at a small area level as well as large area
level, integration of surveys through harmonizing questions across
surveys of the same population, use of multiple frame surveys, use
of “rolling samples” as a method of cumulating data over time. We
refer the reader to Rao (2003), Chapter 2, Singh et al. (1994) and
Marker (2001) for further details.

Despite the above preventive measures at the design stage, indi-
rect estimates will be needed in practice because it is not possible to
anticipate and plan for all possible areas (or domains) and uses of
survey data: “the client will always require more than is specified at
the design stage” (Fuller, 1999, p. 344).

(ii) Model selection and validation

Methodological developments and applications of model-based esti-
mation are impressive, but caution should be exercised because of the
model assumptions.

Good auxiliary information related to the variables of interest
plays a vital role in determining suitable linking models. Therefore,
more attention should be given to the compilation of auxiliary vari-
ables that are good predictors of study variables.

Subject matter specialists or end users should have influence on
the choice of models, particularly on the choice of auxiliary variables.
However, model diagnostics should be used to find suitable model(s)
that fit the data well. Such model diagnostics include residual anal-
ysis to detect departures from assumed models, selection of auxiliary
variables and case-deletion diagnostics to detect influential observa-
tions. We refer the reader to Rao (2003), Chapter 6 for some methods
of model validation in the frequentist framework.

Hierarchical Bayes (HB) approach has become very popular in re-
cent years due to its ability to handle complex models using MCMC
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methods. However, caution should be exercised in the choice of im-
proper priors on model parameters, as noted in Section 6. Limitations
of MCMC methods, such as shortcomings of available convergence
diagnostics, should also be noted. Carlin and Louis (2000) made an
important observation on the dangers of “plug and play” implementa-
tion via MCMC: “Worse, the sheer power of MCMC methods has led
to the temptation to fit models larger than the data can readily sup-
port without a strongly informative prior structure – now something
of a rarity in applied Bayesian work”.

HB methods for model validation via MCMC have been exten-
sively developed, but the effectiveness of some criteria for model
checking is questionable as noted in Section 6. Further work on ef-
fective methods for model checking is needed.

(iii) Area level vs. unit level models

Area level models have wider scope than unit level models because
area level auxiliary information is more readily available than unit
level auxiliary data. Also, design weights are incorporated by mod-
elling design-weighted direct estimators, and the resulting EB or HB
estimators are design consistent. But the assumption of known sam-
pling variances, ψi, is quite restrictive. Smoothed estimates of ψi’s
based on GVF model fitting can also cause difficulties in MSE esti-
mation, as noted in Section 3.3. We need more work on obtaining
good approximations to the sampling variances as well as methods
that incorporate the variability associated with estimated sampling
variances in MSE estimation. This task becomes more difficult when
using multivariate or time series area level models because sampling
covariances are also needed.

Recent work on incorporating survey weights into model-based
estimation, via pseudo-EB or pseudo-HB, is promising; in particular,
the self-benchmarking property noted in Section 5. But the assump-
tion that the sample selection bias is absent may not be true for some
applications. The estimating functions (EF) approach of Singh, Fol-
som and Vaish (2003), mentioned in Section 6, allows sample selection
bias within sampled areas but it assumes that the random effects vi

are free from sample selection bias in situations where a sample of
areas is selected. Methods for handling the latter case are needed.
Moreover, their method assumes known sampling variances, as in the
area level model, and this assumption may be restrictive (see Rao,
2003, Section 10.5.4).
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(iv) “Triple-goal” estimation

We focussed on model-based estimation of small area totals or means,
but such estimates may not be suitable if the main objective is to
produce an ensemble of parameter estimates whose distribution is in
some sense close enough to the distribution of area-specific param-
eters. For example, we may be interested in ranking areas or iden-
tifying areas that fall below or above some prespecified level. Shen
and Louis (1998) proposed “triple-goal” estimators that can produce
good ranks, a good histogram and good area-specific estimators, as-
suming simple linking models. It would be useful to extend their
methods to handle more complex models that are suitable for small
area estimation.

(v) Nonsampling errors

We have assumed the absence of measurement errors in the responses
and/or the covariates as well as nonresponse. But nonsampling errors
can have a substantial effect on small area estimation, and it would
be useful to develop suitable designs as well as methods of estimation
that can account for nonsampling errors. Nandram and Choi (2002)
used HB nonresponse models for binary data, and applied the the-
ory to data from the U.S. National Crime Survey to estimate small
area proportions. Measurement errors in the responses, even under
an additivity assumption, can lead to biased estimators of quantiles
and histograms. In the context of direct estimation, Fuller (1995)
proposed methods at the design stage that can lead to bias-adjusted
estimators of quantiles and histograms.

(vi) How to handle when explicit data pooling is pro-
hibited

Indirect estimators, studied in previous sections, borrow strength
by explicitly pooling data across small areas. Reiter (2000) stud-
ied cases where external constraints prohibit explicit data pooling.
He proposed methods that may be acceptable under such external
constraints and yet yield estimators that are more accurate than the
area-specific direct estimators. In particular, he proposed to use the
pooled data parameter estimates to specify the model in each area,
but estimate the model parameters separately for each area. The
proposed methods look interesting and further work would be useful.
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Series B, 61, 145–165.

Nandram, B. and Choi, J. W. (2002), Hierarchical Bayesian non-
response models for binary data from small areas with uncer-
tainty about ignorability. Journal of the American Statistical
Association, 97, 381–388.

National Research Council (2000), Small-Area Estimates of School-
Age Children in Poverty: Evaluation of Current Methodology.
C.F. Citro and G. Kalton (Eds.), Committee on National Statis-
tics, Washington, D.C.: National Academy Press.

Pfeffermann, D. (2002), Small area estimation – new developments
and directions. International Statistical Review, 70, 125–143.

Prasad, N. G. N. and Rao, J. N. K. (1990), The estimation of the
mean squared error of small-area estimators. Journal of the
American Statistical Association, 85, 163–171.



168 Rao

Rao, J. N. K. (1999), Some recent advances in model-based small
area estimation. Survey Methodology, 25, 175–186.

Rao, J. N. K. (2001), EB and EBLUP in small area estimation. in S.
E. Ahmed and N. Reid (Eds.); Empirical Bayes and Likelihood
Inference, Lecture Notes in Statistics 148, New York: Springer,
33–43.

Rao, J. N. K. (2003), Small Area Estimation. New York: Wiley.

Rivest, L-P. and Belmonte, E. (2000), A conditional mean squared
error of small area estimators. Survey Methodology, 26, 67–78.

Rivest, L-P. and Vandal, N. (2003), Mean squared error estimation
for small areas when the small area variances are estimated.
In Proceedings of the International Conference on Recent Ad-
vances in Survey Sampling, Laboratory for Research in Statis-
tics and Probability, Carleton University, Ottawa, Canada (in
press).

Reiter, J. P. (2000), Borrowing strength when explicit data pooling
is prohibited. Journal of Official Statistics, 16, 295–319.

Singh, M. P., Gambino, J., Mantel, H. J. (1994), Issues and strate-
gies for small area data. Survey Methodology, 20, 3-22.

Singh, A. C., Folsom, Jr., R. E. and Vaish, A. K. (2003), Estimat-
ing function based approach to hierarchical Bayes small area
estimation for survey data. In Proceedings of the International
Conference on Recent Advances in Survey Sampling, Labora-
tory for Research in Statistics and Probability, Carleton Uni-
versity, Ottawa, Canada (in press).

Shen, W. and Louis, T. A. (1998), Triple-goal estimates in two-stage
hierarchical models. Journal of the Royal Statistical Society,
Series B, 60, 455–471.

Sinharay, S. and Stern, H. S. (2003), Posterior predictive model
checking in hierarchical models. Journal of Statistical Planning
and Inference, 111, 209–221.

You, Y. and Rao, J. N. K. (2002a), A pseudo-empirical best linear
unbiased prediction approach to small area estimation using
survey weights. Canadian Journal of Statistics, 30, 431–439.



Some New Developments in Small Area Estimation 169

You, Y. and Rao, J. N. K. (2002b), Small area estimation using
unmatched sampling and linking models. Canadian Journal of
Statistics, 30, 3–15.

You, Y. and Rao, J. N. K. and Gambino, J. (2003), Model-based
unemployment rate estimation for the Canadian Labour Force
Survey: a hierarchical Bayes approach. Survey Methodology,
29, 25–32.

Wang, J. (2000), Topics in Small Area Estimation with Applications
to the National Resources Inventory. Unpublished Ph.D. thesis,
Iowa State University, Ames, Iowa.

Zhang, D. and Davidian, M. (2001), Linear mixed models with flex-
ible distributions of random effects for longitudinal data. Bio-
metrics, 57, 795–802.


