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Abstract. This paper establishes the first four moment expansions

to the order o(a−1) of S′ta/
√

ta, where S′n =
∑n

i=1 Yi is a simple

random walk with E(Yi) = 0, and ta is a stopping time given by

ta = inf {n ≥ 1 : n + Sn + ζn > a}

where Sn =
∑n

i=1 Xi is another simple random walk with E(Xi) = 0,

and {ζn, n ≥ 1} is a sequence of random variables satifying certain

assumptions. These moment expansions complement the classical

central limit theorem for a random number of i.i.d. random vari-

ables when the random number has the form ta, which arises from
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many sequential statistical procedures. They can be used to correct

higher order bias and/or skewness in S′ta/
√

ta to make asymptotic

approximation more accurate for small and moderate sample sizes.

1 Introduction

Let {Yi, i ≥ 1} be a sequence of i.i.d. random variables with zero

mean and unit variance, and denote S′n =
∑n

i=1 Yi and Ȳn = S′n/n.

It is well known (see e.g. Anscombe, 1952 and Renyi, 1957) that
√

tȲt has an asymptotic normal distribution when t is a random vari-

able and satisfies certain assumptions. However asymptotic normal-

ity alone is often not accurate enough for many applications, see e.g.

Ghosh, Mukhopadhyay and Sen (1997), pp336. In this paper we de-

rive rigorously the first four moment expansions of
√

tȲt when t is a

stopping time given by

t = ta = inf {n ≥ 1 : n + Sn + ζn > a} , (1)

where Sn =
∑n

i=1 Xi with {Xi, i ≥ 1} being i.i.d. zero-mean random

variables, and {ζn, n ≥ 1} is a sequence of random variables such

that ζn is independent of {(Xn+k, Yn+k), k ≥ 1} for each n. Stopping

time ta arises from many sequential statistical procedures, see for

example, Lai and Siegmund (1977, 1979), Woodroofe (1977, 1982),

and Ghosh, Mukhopadhyay and Sen (1997). The moment expansions

of
√

tȲt to the order o(a−1) given here can be used directly to correct

higher order bias and/or skewness in
√

tȲt and therefore make large

sample approximation more accurate for small or moderate sample

sizes; see e.g. Liu, Wang and Wang (2002) and Liu (2002). Aras and

Woodroofe (1993) give the first four moment expansions of
√

aȲta .

In establishing the expansions, one important result used is the

nonlinear renewal theorem (see e.g. Lai and Siegmund, 1977) which

states that, under some suitable conditions, the overshoot at the
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crossing time ta, ta + Sta + ζta − a, has the same limit distribution as

the overshoot τa + Sτa − a at stopping time

τa = inf {n ≥ 1 : n + Sn > a}

as a →∞. This limit distribution has the form

H(dx) =
1

E(τ0 + Sτ0)
P{τ0 + Sτ0 > x}dx,

where τ0 = inf{n ≥ 1 : n + Sn > 0} is the first ladder epoch. The

conditions imposed on {ζn, n ≥ 1} are “slowly changing”. As stated

in Woodroofe (1982), they are

(i) n−1 max{|ζ1| , |ζ2| , · · · , |ζ2|} → 0 in probability,

(ii) there is a θ > 0 such that P{max0≤k≤θn |ζn+k − ζn| > ε} < ε for

all n ≥ 1, given a ε > 0.

Certain uniform integrabilities are also necessary in proving the mo-

ment expansions. Although these uniform integrabilities can be de-

duced from the general results of Zhang (1988) as in Aras and Woodro-

ofe (1993), we establish the required uniform integrabilities directly.

The reason for this is that Zhang’s, 1988 discussion is for the more

general “curved boundary” situation, where the upper boundary ‘a’

in (1) is replaced by ‘A(n, a)’. So the conditions for uniform inte-

grabilities deduced from Zhang’s results seem unnecessarily complex.

By tackling stopping time (1) directly, we can establish the uniform

integrabilities under relatively simpler conditions. As all the four mo-

ment expansions are of order o(a−1), Wald’s lemmas of high order,

which are not readily available in the literature, are required. They

are provided in this paper.

The layout of the paper is as follows. Section 2 deals with the

uniform integrabilities. Section 3 establishes the moment expansions.

The required higher order Wald’s lemmas are provided in the Ap-

pendix.
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2 Uniform integrabilities in nonlinear renewal

theory

Let (Xn, Yn), n ≥ 1 be i.i.d. zero-mean random vectors on a probabil-

ity space {Ω,F , P} and ζn, n ≥ 1 be random variables on {Ω,F , P}
such that ζn is independent of {(Xn+k, Yn+k), k ≥ 1} for each n. Let

{Fn, n ≥ 1} be the natural σ-algebras associated with {(Xn, Yn, ζn), n

≥ 1}, i.e. Fn = σ(X1, Y1, ζ1, · · · , Xn, Yn, ζn). It is clear that (Xn, Yn)

is independent of Fn−1 for all n ≥ 2, and {ta, a > 0} is a family of

increasing stopping times with respect to {Fn, n ≥ 1}. The overshoot

at time ta will be denoted as Rta = Sta + ζta + ta − a.

In this section we establish the uniform integrabilities for {(ta −
a)/

√
a, a ≥ 1} and {Rta − ζta , a > 0}. The following four conditions

are required:

(C1) E
∣∣Xp+1

∣∣ exists for some p ≥ 1;

(C2) apP{ta ≤ δa} → 0 as a →∞, for some positive δ < 1;

(C3)
∑∞

n=1 np−1P{ζn ≤ −nε} < ∞ for some 0 < ε < 1;

(C4) {max1≤j≤n | ζn+j |p, n ≥ 1} is uniformly integrable.

Baum-Katz Inequality (Baum and Katz, 1965) and a lemma from

Chow and Yu (1981) are important in this discussion, so we state

them here for easy reference.

Baum-Katz Inequality asserts that, for constants s > 1 and r > 1

such that 1/2 < r/s ≤ 1, the following three statements are equiva-

lent:

(a) E | X1 |s< ∞;

(b)
∑∞

n=1 nr−2P{| Sn |> nr/sε} < ∞ for all ε > 0;

(c)
∑∞

n=1 nr−2P{supk≥n | Sk/kr/s |> ε} < ∞ for all ε > 0.

Lemma 3.2 of Chow and Yu (1981) states that if, for some s ≥ 2,

E | X1 |s< ∞ and, for some Fn-stopping time family {ηd, d ∈ Λ},
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{(ηd/d)s/2, d ∈ Λ} is uniformly integrable, then {| Sηd
/
√

d |s, d ∈ Λ}
is uniformly integrable. Here Λ ⊂ (0,∞).

Another useful fact is that, for any Fn-stopping time η satisfying

P{η < ∞} = 1 (called proper), Xη+n, n ≥ 1 are still i.i.d. random

variables and each has the same distribution as that of X1. See, for

example, Chow and Teicher (1988), pp138.

The following lemma is an extension of Theorem 4.4 of Woodroofe

(1982).

Lemma 2.1. Under (C1) and (C3), we have E(tpa) < ∞ for

any given a > 0. Moreover, lima→∞
∫
ta>ha tpadP = 0 for any h >

(1− ε)−1, and consequently {(a−1ta)p, a ≥ 1} is uniformly integrable.

Proof. Let ε1 > 0 and ε1 +ε < 1, where ε is as given in (C3). Denote

Ka = [a/(1−ε1−ε)]+1. Then, for n > Ka, one has a−n < −n(ε1+ε)

and

np−1P{ta > n} ≤ np−1P{Sn + ζn ≤ a− n}

≤ np−1P{Sn ≤ −nε1}+ np−1P{ζn ≤ −nε}.

Summing up over n, we get

∞∑
n=Ka

np−1P{ta > n} <

∞∑
n=Ka

np−1P{Sn ≤ −nε1}+
∞∑

n=Ka

np−1P{ζn ≤ −nε}

and hence, by Baum-Katz Inequality, (C1) and (C3), E(tpa) < ∞ for

any fixed a > 0. By the same arguments, we also have

∞∑
n=Ka

np−1P (ta > n) → 0 as a →∞,

and this implies (Ka)pP (ta > Ka) → 0. Combining this result with

the following integral by parts formula∫
ta>y

tpadP =
∫ ∞

y
pxp−1P (ta > x)dx + (y)pP (ta > y),



120 Wang and Liu

we obtain lima→∞
∫
ta>Ka

tpadP = 0. Noting that ε1 > 0 is arbitrarily

fixed as long as ε1+ε < 1, so we conclude that lima→∞
∫
ta>ha tpadP = 0

for any h > 1/(1− ε). The uniform integrability of {(a−1ta)p, a ≥ 1}
follows from the above result and the fact that ta is monotone in a.

�

Lemma 2.2. Suppose {Ta, a > 0} be a family of positive and

increasing random variables satisfying lima→∞
∫
Ta>ha T r

a dP = 0 for

some h > 1, r > 0, and Ba be an event in F such that arP (Bc
a) → 0

as a →∞. Then {(TaIBc
a
)r, a > 0} is uniformly integrable.

The proof is trival, thus omitted.

For h > (1− ε)−1, define

νn =

{
ζn when n ≤ ha

0 when n > ha,

t̃a = inf{n ≥ δa : n + Sn + νn > a}, a ≥ 1,

and

τa = inf{n ≥ δa : n + Sn > a}, a ≥ 1.

Observe that P{νn ≤ −nε} ≤ P{ζn ≤ −nε}. So it is not difficult to

verify that Lemma 2.1 holds for t̃a. Lemma 2.1 holds also for both

t+a and t−a defined below in the proof of Lemma 2.3.

Lemma 2.3. Under (C1)-(C4),
{∣∣t̃a − τa

∣∣p , a > 0
}

is uniformly

integrable.

Proof. From the definition of νn, we have

max
δa≤n<∞

|νn| = max
δa≤n≤ha

|νn|

which is uniformly integrable (about a ∈ (0,∞)) to the power p by

(C4). Let

t+a = inf{n ≥ δa : n + Sn + ν+
n > a}

t−a = inf{n ≥ δa : n + Sn − ν−n > a}
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where ν+
n = max{0, νn}, ν−n = −min{0, νn}. It is apparent that t+a ≤

τa ≤ t−a and t+a ≤ t̃a ≤ t−a , so

| t̃a − τa |≤ max{τa − t+a , t−a − τa}.

Note that

τa − t+a ≤ inf{n ≥ 1 : n + Xt+a +1 + · · ·+ Xt+a +n > ν+

t+a
}

≤ inf{n ≥ 1 : n + Xt+a +1 + · · ·+ Xt+a +n > max
δa≤n<∞

|νn|} , d1,

t−a − τa≤ inf{n ≥ 1 : n + Xτa+1 + · · ·+ Xτa+n > ν−τa+n}

≤ inf{n ≥ 1 : n + Xτa+1 + · · ·+ Xτa+n > max
δa≤n<∞

|νn|} , d2,

Therefore, if both dp
1 and dp

2 can be proved to be uniformly integrable,

| t̃a−τa |p is then uniformly integrable. The proofs for these two cases

are similar, so we give the proof for d2 only.

It is clear that

P{d2 > n} ≤ P{n + Xτa+1 + · · ·+ Xτa+n − max
δa≤n<∞

|νn| ≤ 0}

≤ P{Xτa+1 + · · ·+ Xτa+n ≤ −θ1n}+ P{− max
δa≤n<∞

|νn| ≤ −θ2n}

≤ P{|Xτa+1 + · · ·+ Xτa+n| ≥ θ1n}+ P{ max
δa≤n<∞

|νn| ≥ θ2n}

where θ1, θ2 > 0 and θ1 + θ2 = 1. Summing up over n from an integer

N gives

∞∑
N

np−1P{d2 > n} ≤
∞∑
N

np−1P{|Xτa+1 + · · ·+ Xτa+n| ≥ θ1n}

+
∞∑
N

np−1P{ max
δa≤n<∞

|νn| ≥ θ2n}

=
∞∑
N

np−1P{|X1 + · · ·+ Xn| ≥ θ1n}+
∞∑
N

np−1P{ max
δa≤n<∞

|νn| ≥ θ2n}.

The last equality is due to the fact that {Xτa+n, n ≥ 1} are i.i.d.

sequence with each element having the same distribution as X1 (since
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τa is a proper Fn-stopping times). For the first term, by Baum-Katz

inequality and (C1), we have

∞∑
N

np−1P{|X1 + · · ·+ Xn| ≥ θ1n} → 0 as N →∞

and it is free from a. For the second term, note that {maxδa≤n<∞ |νn|p ,

a > 0} is uniformly integrable, so from the integral by parts formula

we have

∞∑
N

np−1P{ max
δa≤n<∞

|νn| > θ2n} → 0 uniformly in a as N →∞.

Thus
∑∞

N np−1P{d2 > n} → 0 uniformly in a as N →∞, and hence

dp
2 is uniformly integrable. �

Theorem 2.1. Under (C1)-(C4), {|ta − τa|p , a > 0} is uniformly

integrable and, as a consequence, {|Rta − ζta |
p , a > 0} is uniformly

integrable.

Proof. | ta−τa |p is different from | t̃a−τa |p only on {ta < δa}∪{ta >

ha}. Note that

| ta − τa |p< 2p(tpa + τp
a )

and

apP{(ta < δa) ∪ (ta > ha)} → 0 as a →∞

by (C2) and Lemma 2.1. Thus the uniform integrability of | ta−τa |p

follows from Lemma 2.2 and Lemma 2.3. To prove the second part,

let Rτa = τa + Sτa − a. Comparing it with Rta = ta + Sta + ζta − a,

we get

Rta − ζta = ta − τa + Sta − Sτa + Rτa

and

|Rta − ζta | ≤ |ta − τa|+

∣∣∣∣∣
ta∨τa∑

i=ta∧τa+1

Xi

∣∣∣∣∣+ |Rτa | .
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According to a result of Gut, 1988, Theorem 5.1 of Chapter 1,

E

∣∣∣∣∣
ta∨τa∑

i=ta∧τa+1

Xi

∣∣∣∣∣
p+1

≤ CE |ta − τa|(p+1)/2 ≤ CE |ta − τa|p

for some constant C,which depends only on the distribution of X1

and parameter p. So, E
∣∣∑ta∨τa

i=ta∧τa+1 Xi

∣∣p+1
is uniformly bounded and

hence
∣∣∑ta∨τa

i=ta∧τa+1 Xi

∣∣p is uniformly integrable. The uniform integra-

bility of |Rτa |
p is a result in renewal theory (see, for instance, the

proof of Theorem 3.1 of Woodroofe 1982, and note that the delay

δa doesn’t affect the proof). Therefore |Rta − ζta |
p is uniformly inte-

grable. �

Remark. Gut, 1988 states that, if E |Xr
1 | < ∞, then E |Sη|r ≤

CE(η)r/2 for any proper Fn-stopping time η where constant C is

free from the choice of η. For two proper stopping times η and s, let

Bn = F(η∧s)+n, the σ-algebra of events before stopping time (η∧s)+n,

and let Zn = X(η∧s)+n. Then {Zn,Bn, n ≥ 1} is still an adapted i.i.d.

process and (η ∨ s) − (η ∧ s) is a Bn-stopping time. Thus, by Gut’s

result,

E

∣∣∣∣∣∣
(η∨s)−(η∧s)∑

i=1

Zi

∣∣∣∣∣∣
r

≤ CE[(η ∨ s)− (η ∧ s)]r/2

which is

E

∣∣∣∣∣∣
η∨s∑

i=η∧s+1

Xi

∣∣∣∣∣∣
r

≤ CE |η − s|r/2 .

Corollary 2.1. Denote t∗a = (ta − a)/
√

a. Under (C1)-(C4),

{(t∗a)p, a ≥ 1} is uniformly integrable.

Proof. The uniform integrability of (t∗a)
p follows clearly from the

equality

ta − a√
a

=
Rta − ζta√

a
− Sta√

a
,

Theorem 2.1 and Lemma 3.2 of Chow and Yu (1981).
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Theorem 2.1 and Corollary 2.1 are still true if condition (C4) is

replaced by a weaker condition as follows

(C4’) There are events An ∈ Fn, n ≥ 1 such that
∑∞

n=1 np−1P{∪∞k=nAc
k}

< ∞ and {max1≤j≤n | ζn+jIAn+j |p, n ≥ 1} is uniformly integrable.

Here Ac
n is the complement of An and IAn is an indicator function.

The proof is not difficult by making use of Lemma 2.2.

3 Moment expansions

Now we are ready to discuss the expansion for [
√

taȲta ]k, k = 1, 2, 3, 4.

Note that

[
√

taȲta ]
k =

1√
ak

[
(S′ta)

k + (S′ta)
k

(√
ak

tka
− 1

)]
.

Applying Taylor expansion to (ta/a)−k/2 − 1, we have

[
√

taȲta ]
k =

1√
ak

(S′ta)
k − k

2
√

ak
(S′ta)

k

(
ta − a

a

)
+

k(k + 2)

8u
(k+4)/2
a

√
ak

(S′ta)
k

(
ta − a

a

)2

=
1√
ak

(S′ta)
k +

k

2
√

ak+2
[(S′ta)

kSta ] +
1
a
T1 +

1
a
T2 (2)

where ua is between 1 and ta/a,

T1 = −k

2

(
S′ta√

a

)k

(Rta−ζta), and T2 =
k(k + 2)

8u
(k+4)/2
a

(
S′ta√

a

)k (
ta − a√

a

)2

.

We first give the following result about the uniform integrabilities of

T1 and T2.

Lemma 3.1. Under (C1)-(C4), T1 and T2 are uniformly integrable

for k = 1 and 2, if p ≥ 4 and E(Y 4
1 ) < ∞. Furthermore, T1 and T2

are uniformly integrable for k = 3 and 4, if p ≥ 6 and E(Y 8
1 ) < ∞.
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Proof. Note that
(
S′ta/

√
a
)2k is uniformly integrable by Lemma 3.2

of Chow and Yu, 1981 and (Rta − ζta)2 is uniformly integrable by

Theorem 2.1. So the uniform integrability of T1 in both cases follows

simply from Holder’s inequality. For T2, we divide it into two parts

T ′2 =
k(k + 2)

8u
(k+4)/2
a

(
S′ta√

a

)k (
ta − a√

a

)2

I{ta<δa},

T ′′2 =
k(k + 2)

8u
(k+4)/2
a

(
S′ta√

a

)k (
ta − a√

a

)2

I{ta≥δa}.

On {ta ≥ δa}, ua is bounded away for zero, so the uniform integra-

bility of T ′′2 in both cases follows directly from Holder’s inequality as

above for T1. On {ta < δa}, consider k = 2 first. By checking the

Taylor expansion of (ta/a)− 1, one will see that actually 1/u3
a = a/t.

So ∫
Ω

1
u3

a

(
S′ta√

a

)2(
ta − a√

a

)2

I{ta<δa}dP

≤
∫

Ω
a2

(
S′ta
ta

)2

I{ta<δa}dP

≤

√
a4P{ta < δa}E

(
S′ta
ta

)4

→ 0

by (C2) and the property

E

{
sup
n≥m

∣∣∣∣Y1 + · · ·+ Yn

n

∣∣∣∣q} ≤ ( q

q − 1

)q

E
∣∣Ȳm

∣∣q
if E |Y1|q exists (This is the Doob’s maximal inequality applying to

the reverse martingale {Ȳn, n ≥ 1}). The uniform integrability of T ′2

for k = 2 then follows. For k = 1, 3, 4, checking the Taylor expan-

sion we have in general C(a/ta)k > u
−(k+2)/2
a where C is constant

depending only on k and δ. So∫
Ω

k(k + 2)

8u
(k+4)/2
a

(
S′ta√

a

)k (
ta − a√

a

)2

I{ta<δa}dP ≤

Ck(k + 2)
8

∫
Ω

ak/2+1

(
S′ta
t

)k

I{ta<δa}dP ≤
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ak+2P{ta < δa}E

(
S′ta
ta

)2k

→ 0

by (C2), Doob’s maximal inequality and the moment assumptions of

the lemma. The proof is thus complete. �

In addition to (C1)-(C4) (or (C4’)), the following additional con-

dition (C5) is required.

(C5) ζn, n ≥ 1 are slowly changing and (Sn/
√

n, ζn) has weak limit

(V, ζ). Here Sn = (Sn, S′n).

It is obvious that V = (V1, V2) has a bivariate normal distribution

with mean (0, 0) and covariance matrix

(vij)2×2 =

(
E(X2

1 ) , E(X1Y1)

E(X1Y1) , E(Y 2
1 )

)
.

Suppose the distribution of X1 is nonarithmetic — we keep this as-

sumption throughout the rest of this paper. Then a consequence of

(C4) and (C5) is that (Sta/
√

ta, ζta , Rta) converges weakly to (V, ζ, R),

where R is the limit distribution of overshoot and independent of

(V, ζ). See Proposition 3 of Aras and Woodroofe (1993).

Lemma 3.2. Let λ = E(R) and ν = E(ζ). Then, under (C1)-

(C5),

lim
a→∞

E(ta − a) = λ− ν.

Proof. From the equality ta−a = Rta − ζta −Sta , the Wald’s lemma

gives

E(ta − a) = E(Rta − ζta),

which converges to λ− ν since Rta − ζta is uniformly integrable and

(Rta , ζta) has weak limit (R, ζ). �

We now consider the first two moments.
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Theorem 3.1. Suppose p ≥ 4 and E(Y 4
1 ) < ∞. Then, under

(C1)-(C5),

lim
a→∞

1
a
E(taS′ta) = −E(X1Y1), lim

a→∞

1
a
E (taSta) = −E(X2

1 ),

E(
√

taȲta) =
E(X1Y1)

2
√

a
+

E(ζV2)
2a

+ o

(
1
a

)
,

and

E[ta(Ȳta)
2] = E(Y 2

1 ) +
1
a
[E(ζV 2

2 ) + E(Y 2
1 X1)− νE(Y 2

1 )] + o

(
1
a

)
.

Proof. By Wald’s lemma, E(taS′ta) = E[(ta − a)S′ta ] . Note that

(ta − a)S′ta
a

=
[(Rta − ζta)− Sta ]S′ta

a

which converges weakly to −V1V2 as a →∞. Note also

(ta − a)S′ta
a

=
(

ta − a√
a

)
S′ta√

a

which is uniformly integrable by Corollary 2.1, Lemma 3.2 of Chow

and Yu (1981) and Holder’s inequality. So

1
a
E(taS′ta) → −E(V1V2) = −v12 = −E(X1Y1).

The second limit follows a similar argument as

1
a
E (taSta) = E

[
(ta − a)Sta

a

]
→ −E(V 2

1 ) = −v11 = −E(X2
1 ).

As for E(
√

taȲta), from (2) and Wald’s lemma, we have

E(
√

taȲta) =
E(X1Y1)E(ta)

2
√

a3
+

1
2a

E

(
S′ta√

a
(ζta −Rta)

)
+

3
8a

E

[
S′ta

u2.5
a

√
a

(
ta − a√

a

)2
]

.
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Observe that a−1/2S′ta(ζta − Rta) and u−2.5
a a−1/2S′ta [a

−1/2(ta − a)]2

converge weakly to V2(ζ − R) and V2V
2
1 , and both are uniformly

integrable from Lemma 3.1. Hence

E

(
S′ta√

a
(ζta −Rta)

)
→ E[V2(ζ −R)],

E

[
S′ta

u2.5
a

√
a

(
ta − a√

a

)2
]
→ E(V2V

2
1 ).

A simple calculation by noting the result of Lemma 3.2 and the in-

dependence of R and V then gives the desired result.

Finally consider E[ta(Ȳta)2]. By (2),

taȲta
2 =

1
a

(
S′ta
)2 +

1
a2

Sta

(
S′ta
)2 +

1
a
(T1 + T2)

where

T1 =
1
a
(ζta −Rta)

(
S′ta
)2

, T2 =
1

au3
a

(
ta − a√

a

)2 (
S′ta
)2

.

From Wald’s lemmas,

E(S′ta)
2 = E(Y 2

1 )E(ta)

and

E[Sta(S
′
ta)

2] = E(Y 2
1 )E(taSta)+2E(X1Y1)E(taS′ta)+E(X1Y

2
1 )E(ta).

Therefore, by Lemma 3.2 and the first part of this theorem, we have

E(S′ta)
2 = E(Y 2

1 )(a + λ− ν) + o(1)

and

1
a
E
[
Sta

(
S′ta
)2]→ E(X1Y

2
1 )− E(X2

1 )E(Y 2
1 )− 2[E(X1Y1)]2.

It is clear that

T1 → V 2
2 (ζ −R), T2 → V 2

1 V 2
2 .
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So, by Lemma 3.1,

ET1 → EV 2
2 (ζ −R), ET2 → EV 2

1 V 2
2 .

Combining all these results gives the expansion of E[ta(Ȳta)2]. �

The expansions for high order moments can be obtained in the

same way as above by using Lemma 3.1, Lemma 3.2 and Wald’s

lemmas, except that the moment requirements are higher in order

to ensure the validity of Lemma 3.1 and the validity of high order

Wald’s lemmas. We give only the assumptions and expansions for

the third and forth moment but not the proofs as they are similar

and involve much more lengthy and tedious manipulations.

Theorem 3.2. Suppose p ≥ 6, E(X8
1 ) < ∞ and E(Y 8

1 ) < ∞.

Then, under (C1)-(C5),

E
[√

taȲta

]3 =
1√
a

(
E(Y 3

1 ) +
3
2
v12v22

)
+

1
a

(
3
2
E(ζV 3

2 )− 3v22E(ζV2)
)

+ o

(
1
a

)
,

E
[√

taȲta

]4 = 3 +
1
a
[E(Y 4

1 ) + 4v12E(Y 3
1 ) + 6E(X1Y

2
1 )− 3

+2E(ζV 4
2 )− 6E(ζV 2

2 )] + o

(
1
a

)
.

4 Appendix

In this appendix, we present some Wald’s lemmas which may not be

readily available in the literature but are required in Section 3.

Let Sn =
∑n

i=1 Xi and S′n =
∑n

i=1 Yi where (Xn, Yn), n ≥ 1 are

i.i.d. random vectors with zero mean. Let η be a stopping time

with respect to process {(XnYn),Fn, n ≥ 1} where {Fn, n ≥ 1} is

an increasing σ-class such that (XnYn) ∈ Fn and (Xn+1Yn+1) is
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independent of Fn for all n. We consider the Wald’s lemmas for

E[Sη
kS′η], k = 1, 2, 3, 4.

Denote m(s1, s2) = E exp(is1X1 + is2Y1), the characteristic func-

tion of (X1, Y1). One can easily verify that {m(s1, s2)−n exp(is1Sn +

is2S
′
n),Fn, n ≥ 1} is a martingale. Suppose η satisfy the conditions

in Doob’s optional sampling theorem. Then

E[m(s1, s2)−η exp(is1Sη + is2S
′
η)] =

E[m(s1, s2)−1 exp(is1X1 + is2Y1)] = 1. (3)

Differentiating both sides of (3) with respect to s1 k (times) and s2

(once ) and then setting s1 = s2 = 0 will yield the following required

Wald’s lemma heuristically:

E(SηS
′
η) = E(X1Y1)E(η),

E(S2
ηS′η) = E(X2

1 )E(ηS′η) + 2E(X1Y1)E(ηSη) + E(X2
1Y1)E(η),

E(S3
ηS′η) = E(X3

1Y1)E(η)− 3E(X2
1 )E(X1Y1)E[η(η + 1)]

+3E(X2
1Y1)E(ηSη) + 3E(X1Y1)E(ηS2

η)

+E(X3
1 )E(ηS′η) + 3E(X2

1 )E(ηSηS
′
η),

E(S4
ηS′η) = E(X4Y )E(η)− [4E(X3)E(XY )

+6E(X2)E(X2Y )]E[η(η + 1)]

−12E(XY )E(X2)E[η(η + 1)Sη]

−3[E(X2)]2E[η(η + 1)S′η]

+4E(X3Y )E(ηSη) + 6E(X2Y )E(ηS2
η)

+4E(XY )E(ηS3
η) + 4E(X3)E(ηSηS

′
η)

+6E(X2)E(ηS2
ηS′η).

We give the conditions and rigorous proofs for the first two equations.

For the last two equations we provide only the conditions since the

proofs are similar.

Second order Wald’s lemma. If E
∣∣X2

1

∣∣, E
∣∣Y 2

1

∣∣ and E(η) are all
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finite, then

E(SηS
′
η) = E(X1Y1)E(η). (4)

Proof. Let Zn = SnS′n − nE(X1Y1). Then

E(Zn | Fn−1)

= E[(Sn−1 + Xn)(S′n−1 + Yn) | Fn−1]− nE(X1Y1)

= Sn−1S
′
n−1 + E(XnYn)− nE(X1Y1)

= Sn−1S
′
n−1 − (n− 1)E(X1Y1) = Zn−1.

So {Zn, Fn, n ≥ 1} is a martingale with E(Zn) = 0. Set ηn = η ∧ n.

Then by the optional sampling theorem, (4) is true for ηn. But under

the conditions EX2
1 < ∞ , EY 2

1 < ∞ and E |η| < ∞, both {Sηn , n ≥
1} and {S′ηn

, n ≥ 1} are Cauchy series in L2{Ω,F , P}—this can be

seen by noting that (taking Sηn for example)

Sηn+1 − Sηm =
n∑

k=m

Xk+1I{η≥k+1}

and hence (observe that I{η≥k+1} ∈ Fk is independent of Xk+1)

E(Sηn+1 − Sηm)2 =
n∑

k=m

E(X2
k+1)P{η ≥ k + 1}

= E(X2
1 )[E(ηn+1)− E(ηm)] → 0 as n, m →∞.

So E(SηnS′ηn
) → E(SηS

′
η) as n →∞. Thus (4) is true for η. �

Third order Wald’s lemma If E |X1|4, E |Y1|4 < ∞ and Fn-

stopping time η satisfies E(η2) < ∞, then

E(S2
ηS′η) = E(X2

1 )E(ηS′η) + 2E(X1Y1)E(ηSη) + E(X2
1Y1)E(η). (5)

Proof. Let Zn = S2
nS′n − E(X2

1 )nS′n − 2E(X1Y1)nSn − nE(Y 2
1 X1).

As in the last theorem we can prove {Zn,Fn, n ≥ 1} is a martingale
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and E(Zn) = 0. So (5) is true for ηn = η∧n by the optional sampling

theorem. Observe that

lim
n→∞

E(X2
1 )E(ηnS′ηn

) + 2E(X1Y1)E(ηnSηn) + E(X2
1Y1)E(ηn)

= E(X2
1 )E(ηS′η) + 2E(X1Y1)E(ηSη) + E(X2

1Y1)E(η),

since both {Sηn , n ≥ 1} and {S′ηn
, n ≥ 1} are Cauchy series in

L2{Ω,F , P} and E(η2) < ∞. Therefore limn→∞E(S2
ηn

S′ηn
) exists

and

lim
n→∞

E(S2
ηn

S′ηn
) = E(X2

1 )E(ηS′η)+2E(X1Y1)E(ηSη)+E(X2
1Y1)E(η).

Next we prove E(S2
ηn

S′ηn
− S2

ηS′η) → 0 as n →∞. Note that∣∣E(S2
ηn

S′ηn
− S2

ηS′η)
∣∣ = ∣∣ES2

ηn
(S′ηn

− S′η) + E(Sηn
S′η + SηS′η)(Sηn

− Sη)
∣∣

≤
(
ES4

ηn
E(S′ηn

− S′η)
2
)1/2 +

(
E(SηnS′η + SηS

′
η)

2E(Sηn − Sη)2
)1/2

.

So it is enough to show that ES4
ηn

, ES4
η and ES′4η are uniformly

bounded since E(S′ηn
−S′η)

2 and E(Sηn −Sη)2 converge to zero. The

boundedness of these three moments is an immediate consequence

of the assumptions E |X1|4, E |Y1|4 , E(η2) < ∞ and Gut, (1988)’s

inequality (see remark in Section 1). �

Forth and fifth order Wald’s lemma The equations for E(S3
ηS′η)

and E(S4
ηS′η) are valid under the conditions E |X1|8, E |Y1|8 and

E |η|4 < ∞.
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